Research Article | Volume: 6, Issue: 1, Jan-Feb, 2018

Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture

Ajar Nath Yadav Anil Kumar Saxena   

Open Access   

Published:  Jan 17, 2018

DOI: 10.7324/JABB.2018.60109
Abstract

Extreme saline environments represent unique ecosystems for novel microbial biodiversity. The salt-tolerant microbiomes have been reported from diverse saline habitat. The biodiversity of salt-tolerant microbes showed the presence of different groups of microbes including Actinobacteria, Bacteroidetes, Euryarchaeota, Firmicutes, Proteobacteria, and Spirochaetes. The salt-tolerant plant growth promoting (PGP) microbes such as Ammoniphilus, Arthrobacter, Azospirillum, Bacillus, Brevibacillus, Brevibacterium, Haloarcula, Halobacillus, Halococcus, Haloferax, Halolamina, Halomonas, Halorubrum, Haloterrigena, Lysinibacillus, Marinobacter, Marinospirillum, Oceanobacillus, Paenibacillus, Penicillium, Pontibacillus, Pseudomonas, Sediminibacillus, Sporosarcina, Streptomyces, Thalassobacillus, and Thermonema have been isolated and characterized for plant growth under the salinity stress. The halophilic microbes have ability to produce phytohormones (indole acetic acids, gibberellic acids, and cytokinin), solubilize and bind nutrients (phosphorus, potassium, zinc, and siderophores), besides eliciting plant defense reactions against pathogens, also help in plant growth under harsh saline environments. The halophilic PGP microbes increase the plant growth, yields, and nutrient uptake under the saline condition. In the present review, the biodiversity of halophilic microbes from diverse ecosystems, its functional PGP attributes and mechanisms of action for amelioration of salt stress, plant growth, and soil health for sustainable agriculture have been discussed. The salt-tolerant microbes with multifarious PGP attributes could be applied for plant growth and ameliorations of salt stress.


Keyword:     Biodiversity Halophilic microbes Plant growth promotion Plant-microbe interactions Sustainable agriculture.


Citation:

Yadav AN, Saxena AK. Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J App Biol Biotech. 2018;6(1):48-55. DOI: 10.7324/JABB.2018.60109

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK. Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol. 2015; 65: 611-629.
https://doi.org/10.1007/s13213-014-0897-9
2. Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS. Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour. 2017; 3: 1-8. doi:10.19080/IJESNR.2017.03.555601
https://doi.org/10.19080/IJESNR.2017.03.555601
3. Yoshida M, Matsubara K, Kudo T, Horikoshi K. Actinopolyspora mortivallis sp. nov., a moderately halophilic actinomycete. Int J Syst Evol Microbiol. 1991; 41: 15-20.
https://doi.org/10.1099/00207713-41-1-15
4. Cayol JL, Ollivier B, Patel B, Prensier G, Guezennec J, Garcia JL. Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Evol Microbiol. 1994; 44: 534-540.
https://doi.org/10.1099/00207713-44-3-534
5. Xin H, Itoh T, Zhou P, Suzuki KI, Kamekura M, Nakase T. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol. 2000; 50: 1297-1303.
https://doi.org/10.1099/00207713-50-3-1297
6. Yoon JH, Choi SH, Lee K-C, Kho Y, Kang K, Park YH. Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol. 2001; 51: 1171-1177.
https://doi.org/10.1099/00207713-51-3-1171
7. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol. 2003; 53: 1297-1303.
https://doi.org/10.1099/ijs.0.02365-0
8. Donachie SP, Bowman JP, On SL, Alam M. Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. Int J Syst Evol Microbiol. 2005; 55: 1271-1277.
https://doi.org/10.1099/ijs.0.63581-0
9. Delgado O, Quillaguamán J, Bakhtiar S, Mattiasson B, Gessesse A, Hatti-Kaul R. Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Syst Evol Microbiol. 2006; 56: 1229-1232.
https://doi.org/10.1099/ijs.0.63633-0
10. Márquez M, Carrasco I, Xue Y, Ma Y, Cowan D, Jones B, Grant W, Ventosa A. Aquisalimonas asiatica gen. nov., sp. nov., a moderately halophilic bacterium isolated from an alkaline, saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol. 2007; 57: 1137-1142.
https://doi.org/10.1099/ijs.0.64916-0
11. Tang S-K, Wang Y, Guan T-W, Lee J-C, Kim C-J, Li W-J. Amycolatopsis halophila sp. nov., a halophilic actinomycete isolated from a salt lake. Int J Syst Evol Microbiol. 2010; 60: 1073-1078.
https://doi.org/10.1099/ijs.0.012427-0
12. Yang Y, Zou Z, He M, Wang G. Pontibacillus yanchengensis sp. nov., a moderately halophilic bacterium isolated from salt field soil. Int J Syst Evol Microbiol. 2011; 61: 1906-1911.
https://doi.org/10.1099/ijs.0.023911-0
13. Ray L, Suar M, Pattnaik AK, Raina V. Streptomyceschilikensis sp. nov., a halophilic streptomycete isolated from brackish water sediment. Int J Syst Evol Microbiol. 2013; 63: 2757-2764.
https://doi.org/10.1099/ijs.0.046284-0
14. Saker R, Bouras N, Meklat A, Zitouni A, Schumann P, Spröer C, Sabaou N, Klenk H-P. Prauserella isguenensis sp. nov., a halophilic actinomycete isolated from desert soil. Int J Syst Evol Microbiol. 2015; 65: 1598-1603.
https://doi.org/10.1099/ijs.0.000145
15. Wu YH, Xamxidin M, Meng FX, Zhang XQ, Wang CS, Tohty D, Xu XW. Marinirhabdus gelatinilytica gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol. 2016; 66: 3095-3101.
https://doi.org/10.1099/ijsem.0.001007
16. Zhang G, Gu J, Zhang R, Rashid M, Haroon MF, Xun W, Ruan Z, Dong X, Stingl U. Haloprofundus marisrubri gen. nov., sp. nov., an extremely halophilic archaeon isolated from a brine–seawater interface. Int J Syst Evol Microbiol. 2017; 67: 9-16.
https://doi.org/10.1099/ijsem.0.001559
17. Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L. Microbial diversity of extreme regions: An unseen heritage and wealth. Indian J Plant Genet Resour. 2016; 29: 246-248.
https://doi.org/10.5958/0976-1926.2016.00036.X
18. Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R. Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc. 2017; 5: 1-2.
https://doi.org/10.1128/genomeA.01593-16
19. Yadav AN, Verma P, Kaushik R, Dhaliwal HS, Saxena AK. Archaea endowed with plant growth promoting attributes. EC Microbiol. 2017; 8: 294-298.
20. Chelius M, Triplett E. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol. 2001; 41:
https://doi.org/10.1007/s002480000087
21. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol. 2008; 55: 415-424.
https://doi.org/10.1007/s00248-007-9287-1
22. Yadav AN, Sharma D, Gulati S, Singh S, Kaushik R, Dey R, Pal KK, Saxena AK. Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep. 2015; 5:12293 doi:10.1038/srep12293
https://doi.org/10.1038/srep12293
23. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK. Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol. 2015; 31: 95-108.
https://doi.org/10.1007/s11274-014-1768-z
24. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Neha P, Gupta VK, Saxena AK, Biodiversity of the Genus Penicillium in Different Habitats, in New and Future Developments in Microbial Biotechnology and Bioengineering. 2017, Elsevier.
25. Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK. Extreme cold environments: A suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol. 2017; 2: 1-4.
https://doi.org/10.19080/AIBM.2017.02.555584
26. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol. 2016; 56: 44-58.
https://doi.org/10.1002/jobm.201500459
27. Pandey S, Singh S, Yadav AN, Nain L, Saxena AK. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotech Biochem. 2013; 77: 1474-1480.
https://doi.org/10.1271/bbb.130121
28. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A. Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci. 2015; 12: 105-110.
29. Yadav AN, Verma P, Sachan SG, Saxena AK. Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol. 2017; ECO.01: 48-54.
30. Yadav AN, Sachan SG, Verma P, Saxena AK. Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng. 2015; 119: 683-693.
https://doi.org/10.1016/j.jbiosc.2014.11.006
31. Yadav AN, Rana KL, Kumar V, Dhaliwal HS. Phosphorus solubilizing endophytic microbes: Potential application for sustainable agriculture. EU Voice. 2016; 2: 21-22.
32. Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK. First, High quality draft genome sequence of a plant growth promoting and Cold Active Enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci. 2016; 11: 54. doi:10.1186/s40793-016-0176-4
https://doi.org/10.1186/s40793-016-0176-4
33. Yadav AN, Verma P, Singh B, Chauhan VS, Sugitha T, Suman A, Saxena AK. Plant growth promoting bacteria: Biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol. 2017:
34. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A. Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. 2016. doi:10.1016/j.sjbs.2016.01.042
https://doi.org/10.1016/j.sjbs.2016.01.042
35. Suman A, Yadav AN, Verma P, Endophytic Microbes in Crops: Diversity and Beneficial impact for Sustainable Agriculture, In: Singh DP, Abhilash PC, Prabha R, editors, Microbial Inoculants in Sustainable Agricultural Productivity, Research Perspectives. Springer-Verlag, India. 2016. p. 117-143.
https://doi.org/10.1007/978-81-322-2647-5_7
36. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A. Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci. 2014; 3: 432-447.
37. Kumar V, Yadav AN, Verema P, Sangwan P, Abhishake S, Singh B. β-Propeller phytases: Diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromolec. 2017; 98: 595-609.
https://doi.org/10.1016/j.ijbiomac.2017.01.134
38. Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS. Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol. 2016; 2: 1009.
39. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A. Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol. 2015; 65: 1885-1899.
https://doi.org/10.1007/s13213-014-1027-4
40. Vazquez P, Holguin G, Puente M, Lopez-Cortes A, Bashan Y. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fert Soils. 2000; 30: 460-468.
https://doi.org/10.1007/s003740050024
41. Yadav AN, Verma P, Kumar R, Kumar V, Kumar K. Current applications and future prospects of eco-friendly microbes. EU Voice. 2017; 3:
42. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A. Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci. 2013; 10: 219-227.
43. Kaur R, Saxena A, Sangwan P, Yadav AN, Kumar V, Dhaliwal HS. Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nus Biosci. 2017; 9: 68-76.
https://doi.org/10.13057/nusbiosci/n090112
44. Yadav AN, Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. 2015, Ph.D. Thesis, IARI, New Delhi/BIT, Ranchi pp. 234, DOI: 10.13140/RG.2.1.2948.1283/2.
45. Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS, Microbiome in crops: Diversity, distribution and potential role in crops improvements, in Crop Improvement through Microbial Biotechnology, R. Prasad, S.S. Gill, and N. Tuteja, editors. Elsevier, 2017.
46. Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R. Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.). Int J Curr Microbiol Appl Sci. 2016; 5: 890-901.
https://doi.org/10.20546/ijcmas.2016.503.103
47. Glick BR, Introduction to Plant Growth-promoting Bacteria, in Beneficial Plant-Bacterial Interactions. 2015, Springer. p. 1-28.
https://doi.org/10.1007/978-3-319-13921-0_1
48. Yadav AN, Sachan SG, Verma P, Saxena AK. Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol. 2016; 54: 142-150.
49. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol. 2016; 56: 294-307.
https://doi.org/10.1002/jobm.201500230
50. Verma P, Yadav AN, Kumar V, Khan MA, Saxena AK, Microbes in Termite Management: Potential Role and Strategies, In: Sustainable Termite Management, Springer, 2017.
51. Ashraf M, Hasnain S, Berge O, Mahmood T. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fert Soils. 2004; 40: 157-162.
https://doi.org/10.1007/s00374-004-0766-y
52. Yildirim E, Turan M, Donmez MF. Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Roumanian Biotechnol Lett. 2008; 13: 3933-3943.
53. Egamberdieva D, Kucharova Z. Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fert Soils. 2009; 45: 563-571.
https://doi.org/10.1007/s00374-009-0366-y
54. Abbaspoor A, Zabihi HR, Movafegh S, Asl MA. The efficiency of plant growth promoting rhizobacteria (PGPR) on yield and yield components of two varieties of wheat in salinity condition. Am Eurasian J Sustain Agric. 2009; 3: 824-828.
55. Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK. Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fert Soils. 2011; 47: 907.
https://doi.org/10.1007/s00374-011-0598-5
56. Siddikee MA, Glick BR, Chauhan PS, Jong Yim W, Sa T. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem. 2011; 49: 427-434.
https://doi.org/10.1016/j.plaphy.2011.01.015
57. Khan AL, Hamayun M, Khan SA, Kang S-M, Shinwari ZK, Kamran M, Ur Rehman S, Kim J-G, Lee I-J. Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol. 2012; 28: 1483-1494. doi:10.1007/s11274-011-0950-9
https://doi.org/10.1007/s11274-011-0950-9
58. Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol. 2012; 61: 264-272.
https://doi.org/10.1016/j.apsoil.2012.01.006
59. Jha A, Saxena J, Sharma V. Investigation on Phosphate Solubilization Potential of Agricultural Soil Bacteria as Affected by Different Phosphorus Sources, Temperature, Salt, and pH. Communications in soil science and plant analysis. 2013; 44: 2443-2458.
https://doi.org/10.1080/00103624.2013.803557
60. Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem. 2013; 66: 1-9.
https://doi.org/10.1016/j.plaphy.2013.01.020
61. Ali S, Charles TC, Glick BR. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem. 2014; 80: 160-167.
https://doi.org/10.1016/j.plaphy.2014.04.003
62. Yaish MW, Antony I, Glick BR. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek. 2015; 107: 1519-1532.
https://doi.org/10.1007/s10482-015-0445-z
63. Barra PJ, Inostroza NG, Acu-a JJ, Mora ML, Crowley DE, Jorquera MA. Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol. 2016; 102: 80-91.
https://doi.org/10.1016/j.apsoil.2016.02.014
64. Singh RP, Jha PN. A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front Plant Sci. 2016; 7: 1890.
https://doi.org/10.3389/fpls.2016.01890
65. Zhang S, Gan Y, Xu B. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci. 2016; 7: 1405.
https://doi.org/10.3389/fpls.2016.01405
66. Li H, Jiang X. Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Rus J Plant Physiol. 2017; 64: 235-241.
https://doi.org/10.1134/S1021443717020078
67. Bhise KK, Bhagwat PK, Dandge PB. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3 Biotech. 2017; 7: 105.
https://doi.org/10.1007/s13205-017-0739-0
68. Singh RP, Jha P, Jha PN. Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.). J Plant Growth Reg. 2017. doi:10.1007/s00344-017-9683-9
https://doi.org/10.1007/s00344-017-9683-9
69. Singh RP, Jha PN. Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat. Symbiosis. 2017. doi:10.1007/s13199-017-0477-4
https://doi.org/10.1007/s13199-017-0477-4
70. Chaudhary D, Sindhu SS. Amelioration of salt stress in chickpea (Cicer arietinum L.) by coinculation of ACC deaminase-containing rhizospheric bacteria with Mesorhizobium strains. Legume Res: An Int J. 2017; 40:
71. Piernik A, Hrynkiewicz K, Wojciechowska A, Szymańska S, Lis MI, Muscolo A. Effect of halotolerant endophytic bacteria isolated from Salicornia europaea L. on the growth of fodder beet (Beta vulgaris L.) under salt stress. Arch Agron Soil Sci. 2017; 63: 1-15.
https://doi.org/10.1080/03650340.2017.1286329
72. Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Khan MA, Kang S-M, Kim Y-H, Yun B-W. Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot. 2017; 133: 58-69.
https://doi.org/10.1016/j.envexpbot.2016.09.009

Article Metrics
359 Views 241 Downloads 600 Total

Year

Month

Related Search

By author names

Similar Articles

Phyllospheric microbiomes for agricultural sustainability

Ajar Nath Yadav,

Screening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants

Rajat Maheshwari, Namita Bhutani, Pooja Suneja

Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.)

Kusam Lata Rana, Divjot Kour, Tanvir Kaur, Rubee Devi, Ashok Yadav, Ajar Nath Yadav

Bacterial endophytes from halophyte black saxaul (Haloxylon aphyllum Minkw.) and their plant growth-promoting properties

Vyacheslav Shurigin,, Begali Alikulov, Kakhramon Davranov, Zafar Ismailov

Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability

Kumar Anand, Gaurav Kumar Pandey, Tanvir Kaur, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Kriti Akansha, Ashok Yadav, Rubee Devi, Divjot Kour, Ashutosh Kumar Rai, Manish Kumar, Ajar Nath Yadav

Phosphate-Solubilizing Microorganisms for Agricultural Sustainability

Ajar Nath Yadav

Potassium Solubilizing Microorganisms for Agricultural Sustainability

Ajar Nath Yadav

Stress Adaptive Phosphorus Solubilizing Microbiomes for Agricultural Sustainability

Divjot Kour, Ajar Nath Yadav

Microbial diversity of Azadirachta indica (Neem) gum: An unexplored niche

Pragya Saxena,, Hillol Chakdar, Arjun Singh, Sheetal Shirodkar, Alok K. Srivastava

Rhizospheres of Rubus ellipticus and Ageratina riparia from Meghalaya exhibit Actinomycetota that promote plant growth

Debulman Syiemiong, Dhruva Kumar Jha, Samrat Adhikari, Dapkupar Mylliemngap, Richborn Kharbuki, Dominic Lyngdoh, Joel Paul Warlarpih, Neha Paul, Kevin Matthew Lamare, Chalcedony Wahlang, Rangehbok Lyngkhoi

Minerals Solubilizing Microbes for Agricultural Sustainability

Ajar Nath Yadav

Beneficial plant-microbe interactions for agricultural sustainability

Ajar Nath Yadav

Microbes for Agricultural and Environmental Sustainability

Ajar Nath Yadav, Divjot Kour, Ahmed M. Abdel-Azeem, Murat Dikilitas, Abd El-Latif Hesham, Amrik Singh Ahluwalia