Plants phyllosphere, or aerial surface, is the largest and peculiar microbial habitat throughout the world, supporting rich and varied species of bacteria, fungi, viruses, cyanobacteria, actinobacteria, nematodes, and protozoans. The physiology of the host and its functioning of the ecosystem are influenced by these diversified microbial communities, which are linked to the host's unique functional characteristics. The last few years have seen remarkable progress in elucidating a number of phyllosphere microbiology-related issues, including as diversity and the composition, dynamics, and functional relationships of microbial communities. This highlights the influence of both ecological and evolutionary considerations, resulting in the classification of microbial species and the identification of keystone species or microbial hubs, which are facilitated by networking and communication between kingdoms. Characteristics that support growth and survival in the hostile environment of the phyllosphere are production of hormones, pigments, volatiles, extracellular polysaccharides (EPS), cross-kingdom signaling, and quorum sensing. Recent scientific and technological developments have made it easier to use phyllosphere microbiota; in particular, developments in genomic and metagenomics methodologies provide new opportunities to comprehend the role of phyllosphere microbiota on plant growth promotion.
Yadav AN. Phyllospheric microbiomes for agricultural sustainability. J Appl Biol Biotech. 2025;13(3):1–3. https://doi.org/10.7324/JABB.2025.239716ed
1. Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS. Phyllosphere microbiome: diversity and functions. Microbiol Res 2022;254:126888. https://doi.org/10.1016/j.micres.2021.126888 | |
2. Vorholt JA. Microbial life in the phyllosphere. Nature Rev Microbiol 2012;10:828-40. https://doi.org/10.1038/nrmicro2910 | |
3. Pattnaik SS, Paramanantham P, Busi S. Agricultural importance of phyllosphere microbiome. In: Srivastava AK, Kashyap PL, Srivastava M (eds.). The plant microbiome in sustainable agriculture, John Wiley & Sons Ltd, Hoboken, NJ, pp 119-39, 2020. https://doi.org/10.1002/9781119505457.ch7 | |
4. Thapa S, Prasanna R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann Microbiol 2018;68:229-45. https://doi.org/10.1007/s13213-018-1331-5 | |
5. Doan HK, Ngassam VN, Gilmore SF, Tecon R, Parikh AN, Leveau JH. Topography-driven shape, spread, and retention of leaf surface water impacts microbial dispersion and activity in the phyllosphere. Phytob J 2020;4:268-80. https://doi.org/10.1094/PBIOMES-01-20-0006-R | |
6. Sivakumar N, Sathishkumar R, Selvakumar G, Shyamkumar R, Arjunekumar K. Phyllospheric microbiomes: diversity, ecological significance, and biotechnological applications. In: Yadav AN, Singh J, Singh C, Yadav N (eds.). Plant microbiomes for sustainable agriculture, Springer International Publishing, Cham, Switzerland, pp 113-72, 2020. https://doi.org/10.1007/978-3-030-38453-1_5 | |
7. Zhu Y-G, Xiong C, Wei Z, Chen QL, Ma B, Zhou SYD, et al. Impacts of global change on the phyllosphere microbiome. New Phytol 2022;234:1977-86. https://doi.org/10.1111/nph.17928 | |
8. Stone B, Weingarten E, Jackson C. The role of the phyllosphere microbiome in plant health and function. Ann Plant Rev 2018;1:1- 24. https://doi.org/10.1002/9781119312994.apr0614 | |
9. Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 2010;4:719-28. https://doi.org/10.1038/ismej.2010.9 | |
10. Ogata-Gutiérrez K, Chumpitaz-Segovia C, Lirio-Paredes J, Zúñiga- Dávila D. Antifungal activity of phyllospheric bacteria isolated from Coffea arabica against Hemileia vastatrix. Microorganisms 2024;12:582. https://doi.org/10.3390/microorganisms12030582 | |
11. Belova AA, Kaparullina EN, Agafonova NV, Grouzdev DS, Kopitsyn DS, Machulin AV, et al. Ancylobacter crimeensis sp. nov., a new species of aerobic methylotrophic bacteria isolated from oak phyllosphere. Microbiology 2023;92:598-608. https://doi.org/10.1134/S0026261723601331 | |
12. Liu H, Jiang J, An M, Li B, Xie Y, Xu C, et al. Bacillus velezensis SYL-3 suppresses Alternaria alternata and tobacco mosaic virus infecting Nicotiana tabacum by regulating the phyllosphere microbial community. Front Microbiol 2022;13:840318. https://doi.org/10.3389/fmicb.2022.840318 | |
13. Abadi VAJM, Sepehri M, Rahmani HA, Dolatabad HK, Shamshiripour M, Khatabi B. Diversity and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize. J Appl Microbiol 2021;131:898-912. https://doi.org/10.1111/jam.14975 | |
14. Kumar S, Diksha, Sindhu SS, Kumar R, Kumari A, Panwar A. Harnessing phyllosphere microbiome for improving soil fertility, crop production, and environmental sustainability. J Soil Sci Plant Nutr 2023;23:4719-64. https://doi.org/10.1007/s42729-023-01397-y | |
15. Gayathry G, Sabarinathan KG, Jayalakshmi T. Phyllosphere microbiome in ecosystem management and plant growth promotion for agricultural sustainability. Int J Ecol Environ Sci 2024;50:807- 15. https://doi.org/10.55863/ijees.2024.0300 | |
16. Abadi VAJM, Sepehri M, Rahmani HA, Zarei M, Ronaghi A, Taghavi SM, et al. Role of dominant phyllosphere bacteria with plant growth-promoting characteristics on growth and nutrition of maize (Zea mays L.). J Soil Sci Plant Nutr 2020;20:2348-63. https://doi.org/10.1007/s42729-020-00302-1 | |
17. Sharath S, Triveni S, Nagaraju Y, Latha PC, Vidyasagar B. The role of phyllosphere bacteria in improving cotton growth and yield under drought conditions. Front Agron 2021; 3:680466. https://doi.org/10.3389/fagro.2021.680466 | |
18. Herpell JB, Alickovic A, Diallo B, Schindler F, Weckwerth W. Phyllosphere symbiont promotes plant growth through ACC deaminase production. ISME J 2023;17:1267-77. https://doi.org/10.1038/s41396-023-01428-7 | |
19. Geat N, Singh D, Singh D, Saha P, Jatoth R, Babu PL. Assessing the efficacy of phyllospheric growth-promoting and antagonistic bacteria for management of black rot disease of cauliflower incited by Xanthomonas campestris pv. campestris. Folia Microbiol 2024;69:789-804. https://doi.org/10.1007/s12223-023-01106-3 | |
20. Parasuraman P, Pattnaik S, Busi S. Chapter 10 - Phyllosphere microbiome: functional importance in sustainable agriculture. In: Singh JS, Singh DP (eds.). New and future developments in microbial biotechnology and bioengineering, Elsevier, Amsterdam, The Netherlands, pp 135-48, 2019. https://doi.org/10.1016/B978-0-444-64191-5.00010-9 | |
21. Arya GC and Harel A. Phyllosphere and its potential role in sustainable agriculture. In Tripathi V, Kumar P, Tripathi P, Kishore A (eds.). Microbial genomics in sustainable agroecosystems: Volume 1, Springer Singapore, Singapore, pp 39-65, 2019. https://doi.org/10.1007/978-981-13-8739-5_3 | |
22. Gupta R, Patil R. Phyllospheric microbes: diversity, functions, interaction, and applications in agriculture. In: Yadav AN, Singh J, Singh C, Yadav N (eds.). Current trends in microbial biotechnology for sustainable agriculture, Springer Singapore, Singapore, pp 301- 23, 2021. https://doi.org/10.1007/978-981-15-6949-4_13 |
Year
Month
Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture
Ajar Nath Yadav, Anil Kumar SaxenaScreening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants
Rajat Maheshwari, Namita Bhutani, Pooja SunejaBioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.)
Kusam Lata Rana, Divjot Kour, Tanvir Kaur, Rubee Devi, Ashok Yadav, Ajar Nath YadavBacterial endophytes from halophyte black saxaul (Haloxylon aphyllum Minkw.) and their plant growth-promoting properties
Vyacheslav Shurigin,, Begali Alikulov, Kakhramon Davranov, Zafar IsmailovArbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability
Kumar Anand, Gaurav Kumar Pandey, Tanvir Kaur, Olivia Pericak, Collin Olson, Rajinikanth Mohan, Kriti Akansha, Ashok Yadav, Rubee Devi, Divjot Kour, Ashutosh Kumar Rai, Manish Kumar, Ajar Nath YadavPhosphate-Solubilizing Microorganisms for Agricultural Sustainability
Ajar Nath YadavPotassium Solubilizing Microorganisms for Agricultural Sustainability
Ajar Nath YadavStress Adaptive Phosphorus Solubilizing Microbiomes for Agricultural Sustainability
Divjot Kour, Ajar Nath YadavMicrobial diversity of Azadirachta indica (Neem) gum: An unexplored niche
Pragya Saxena,, Hillol Chakdar, Arjun Singh, Sheetal Shirodkar, Alok K. SrivastavaRhizospheres of Rubus ellipticus and Ageratina riparia from Meghalaya exhibit Actinomycetota that promote plant growth
Debulman Syiemiong, Dhruva Kumar Jha, Samrat Adhikari, Dapkupar Mylliemngap, Richborn Kharbuki, Dominic Lyngdoh, Joel Paul Warlarpih, Neha Paul, Kevin Matthew Lamare, Chalcedony Wahlang, Rangehbok LyngkhoiMinerals Solubilizing Microbes for Agricultural Sustainability
Ajar Nath Yadav