In vitro micropropagation and gas chromatography-mass spectrometry profiling of callus culture in Pulicaria jaubertii for conservation and metabolite production
Pulicaria jaubertii is an aromatic and medicinal plant endemic to Yemen, currently facing habitat decline. This study aimed to evaluate its in vitro response in full-strength Murashige and Skoog (medium supplemented with different types and concentrations of plant growth regulators. Among the tested plant parts, only seed explants successfully initiated callus formation. Calli were subsequently subcultured in media containing 0.1 mg/L 1-naphthaleneacetic acid (NAA) with kinetin (Kin) at 0, 0.25, 0.5, or 1 mg/L. Additional experiments tested media with 0.1 mg/L 6-benzylaminopurine and indole-3-acetic acid (IAA) (0–1 mg/L), as well as 0.1 mg/L Kin with 2,4-dichlorophenoxyacetic acid (2,4-D) (0–1 mg/L). Growth parameters related to callus induction, root, shoot, and leaf production were assessed. Findings revealed that Kin had no significant effect on most growth parameters except callus colour (P = 0.012), with the best growth at 0.25 mg/L. Similarly, IAA significantly influenced callus induction (P = 0.009), with optimal results at 1.0 mg/L. In contrast, 2,4-D had no significant effect, but its highest concentration (1.0 mg/L) supported optimal growth. Gas chromatography-mass spectrometry (GC-MS) analysis identified 46 compounds in the ethanolic callus extract compared to 25 in the mother plant, which indicates a richer phytochemical profile in the callus. The 2-Ethoxyethylamine (85.60%) and Stigmasterol (58.79%) were most abundant in ethanolic and n-hexane extracts. In conclusion, P. jaubertii seeds are the most responsive explants for micropropagation, forming callus as an initial step. Interestingly, GC-MS profiling identified bioactive compounds with medicinal properties. Further studies should refine auxin and cytokinin ratios to enhance propagation efficiency.
Salam FMN, Alhadi FA, Al-nawd EA, Al-sanabani EJ, Aqlan EM, Al-mansoub MA. In vitro micropropagation and gas chromatography-mass spectrometry profiling of callus culture in Pulicaria jaubertii for conservation and metabolite production. J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2025.250540
1. Chaudhary SA, Al-Jowaid AA. Vegetation of the Kingdom of Saudi Arabia. Riyadh (Saudi Arabia): Ministry of Agriculture and Water; 1999.
2. Fawzy G, Ati HA, Gamal AE. Chemical composition and biological evaluation of essential oils of Pulicaria jaubertii. Pharmacogn Mag. 2013;9(33):28-32. https://doi.org/10.4103/0973-1296.108133
3. Muneer A, Shamsan A, Mohammed Y, Alsanea E, Alfardi T, Alhaidari S, et al. Nutritional, health-promoting properties and antioxidant activity of Yemeni fermented milk (laban) and a laban-Pulicaria jaubertii mixture. Turk J Agric Food Sci Technol. 2020;8:2049-58. https://doi.org/10.24925/turjaf.v8i10.2049-2058.3420
4. Dubaie AS, El-Khulaidi AA. Medicinal and Aromatic Plants in Yemen, Deployment-Components of Effective-Uses. Sana’a- Yemen: Ebadi Center for Studies and Publishing; 2005.
5. Algabr MN, Ameddah S, Menad A, Mekkiou R, Chalchat JC, Benayache S, et al. Essential oil composition of Pulicaria jaubertii from Yemen. Int J Med Aromat Plant. 2012;2(4):688-90.
6. Patni B, Chandra H. Identification of phytochemical contents and antimicrobial activity of Saraca asoca leaves extract. Environ Conserv J. 2016;17(3):19-24. https://doi.org/10.36953/ECJ.2016.17303
7. Ghazal EM. Floristic study on the vegetation of Hajjah government, West of Yemen. J Med Plants Stud. 2019;7(2):12-7.
8. Ragab EA, Raafat M. A new monoterpene glucoside and complete assignments of dihydroflavonols of Pulicaria jaubertii: Potential cytotoxic and blood pressure lowering activity. Nat Prod Res. 2016;30(11):1280-8. https://doi.org/10.1080/14786419.2015.1055492
9. Mohammed HA, Abdelwahab MF, El-Ghaly EM, Ragab EA. Phytochemical characterization, in vitro anti-inflammatory, anti-diabetic, and cytotoxic activities of the edible aromatic plant; Pulicaria jaubertii. Molecules. 2021;26(1):203. https://doi.org/10.3390/molecules26010203
10. Al-Yahya MA, Khafagy S, Shihata A, Kozlowski JF, Antoun MD, Cassady JM. Phytochemical and biological screening of Saudi medicinal plants, part 6. Isolation of 2 alpha-hydroxyalantolactone the antileukemic principle of Francoeuria crispa. J Nat Prod. 1984;47(6):1013-7. https://doi.org/10.3109/13880208509069003
11. Al-Yahya MA, El-Sayed AM, Mossa JS, Kozlowski JF, Antoun MD, Ferin M, et al. Potential cancer chemopreventive and cytotoxic agents from Pulicaria crispa. J Nat Prod. 1988;51(3):621-4. https://doi.org/10.1021/np50057a038
12. Hussein SR, Marzouk MM, Soltan MM, Ahmed EK, Said MM, Hamed AR. Phenolic constituents of Pulicaria undulata (L.) C.A. Mey. Sub sp. Undulata (Asteraceae): Antioxidant protective effects and chemosystematic significances. J Food Drug Anal. 2017;25(2):333-9. https://doi.org/10.1016/j.jfda.2016.09.008
13. Al-Fatimi M, Awadh Ali NA, Wurster M, Al-Sokari SS, Lindequist U, Setzer WN. Chemical composition, antimicrobial and antioxidant activity of the essential oil of Pulicaria jaubertii from South Yemen. World J Pharm Res. 2015;4(12):1-9.
14. Algabr MN, Mekkiou R, Ameddah S, Menad A, Boumaza O, Seghiri R, et al. Antioxydant activities from the aerial parts of Pulicaria jaubertii. Adv Nat Appl Sci. 2010;4(1):63-70.
15. Al-Naqeb G. Antioxidant and antibacterial activities of some Yemeni medicinal plants. Int J Herb Med. 2015;3(3):6-11.
16. Alharthi AS, Alruwaili NW, Al-Baadani HH, Al-Garadi MA, Shamlan G, Alhidary IA. Investigating the effect of Pulicaria jaubertii as a natural feed additive on the growth performance, blood biochemistry, immunological response, and cecal microbiota of broiler chickens. Animals (Basel). 2023;13(6):1116. https://doi.org/10.3390/ani13061116
17. Mahfouz M, Ghazal A, El-Dakhakhny M, Ghoneim M. Pharmacological studies on the active principle isolated from Pulicaria dysenterica. J Drug Res. 1973;5(2):151-72.
18. El-Ghaly ES, Shaheen U, Ragab E, El-Hila AA, Abd-Allah MR. Bioactive constituents of Pulicaria jaubertii: A promising antihypertensive activity. Phcog J. 2016;8(1):81-6. https://doi.org/10.5530/pj.2016.1.18
19. Tanira MO, Ali BH, Bashir AK, Wasfi IA, Chandranath I. Evaluation of the relaxant activity of some United Arab Emirates plants on intestinal smooth muscle. J Pharm Pharmacol. 1996;48(5):545-50. https://doi.org/10.1111/j.2042-7158.1996.tb05971.x
20. Al-Fatimi M. Ethnobotanical survey of medicinal plants in central Abyan governorate, Yemen. J Ethnopharmacol. 2019;241:111973. https://doi.org/10.1016/j.jep.2019.111973
21. Chhetri BK, Awadh Ali NA, Setzer WN. A survey of chemical compositions and biological activities of Yemeni aromatic medicinal plants. Medicines (Basel). 2015;2(2):67-92.
22. Al-Fatimi M. Traditional knowledge of wild plants on traditional tools, materials, products and economic practices in Southern Yemen. J Ethnobiol Ethnomed. 2024;20(1):62. https://doi.org/10.1186/s13002-024-00698-5
23. Delgado-Paredes GE, Vásquez-Díaz C, Esquerre-Ibañez B, Bazán- Sernaqué P, Rojas-Idrogo C. In vitro tissue culture in plants propagation and germplasm conservation of economically important species in Peru. Sci Agropecu. 2021;12(3):337-49. https://doi.org/10.17268/sci.agropecu.2021.037
24. Gulzar B, Mujib A, Malik MQ, Mamgain J, Syeed R, Zafar N. Plant tissue culture: Agriculture and industrial applications. In: Transgenic Technology Based Value Addition in Plant Biotechnology. Netherlands: Elsevier; 2020. p. 25-49.
25. Holobiuc M, Blindu R, Mitoi M, Cristea V. The establishment of an in vitro gene bank in Dianthus spiculifolius Schur and D. Glacialis ssp. Gelidus (Schott Nym. Et Kotschy) Tutin: I. The initiation of a tissue collection and the characterization of the cultures in minimal growth conditions. Ann For Res. 2009;52:117-28. https://doi.org/10.15287/afr.2009.128
26. Rajasekharan PE, Ambika SR, Ganeshan S. In-vitro conservation of Tylophora indica: A threatened medicinal plant. Icfai Univ J Gen Evol. 2009;11:26-35.
27. Rout GR, Mohapatra A, Jain SM. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnol Adv. 2006;24(6):531-60. https://doi.org/10.1016/j.biotechadv.2006.05.001
28. Debnath M, Malik CP, Bisen PS. Micropropagation: A tool for the production of high quality plant-based medicines. Curr Pharm Biotechnol. 2006;7(1):33-49. https://doi.org/10.2174/138920106775789638
29. Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: Means for production of biological active compounds. Planta. 2018;248:1-18. https://doi.org/10.1007/s00425-018-2910-1
30. Podwyszy?ska M, Orlikowska T, Trojak-Goluch A, Wojtania A. Application and improvement of in vitro culture systems for commercial production of ornamental, fruit, and industrial plants in Poland. Acta Soc Bot Pol. 2022;91(1):914.
31. Rani V, Raina SN. Genetic fidelity of organized meristem-derived micropropagated plants: A critical reappraisal. In Vitro Cell Dev Biol Plant. 2000;36:319-30. https://doi.org/10.1007/s11627-000-0059-6
32. Xiao Y, Niu G, Kozai T. Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue Organ Cult. 2011;105:149-58. https://doi.org/10.1007/s11240-010-9863-9
33. Hajare ST, Chauhan NM, Kassa G. Effect of growth regulators on in vitro micropropagation of potato (Solanum tuberosum L.) Gudiene and belete varieties from Ethiopia. Sci World J. 2021;2021(1):5928769. https://doi.org/10.1155/2021/5928769
34. Werbrouck S. Merits and drawbacks of new aromatic cytokinins in plant tissue culture. In: IV International Symposium on Acclimatization and Establishment of Micropropagated Plants. Belgium: International Society for Horticultural Science; 2008. p. 103-7.
35. Zebarjadi A, Bourjian L, Ghasempor HR, Kahrizi D. Study on effect of different concentration of plant hormones (BAP, NAA, 2,4-D and kinetin) on callus induction in Brassica napus. J Biotechnol. 2013;136(2):S151. https://doi.org/10.1016/j.jbiotec.2008.07.322
36. Ghasempour H, Dabiri S, Cheraghi M. Composition of the volatile oil, tissue culture and micro-regeneration optimization of wild yarrow (Achillea biebersteinii). Iran J Plant Physiol. 2012;2(4):539-46.
37. Sifaoui I, López-Arencibia A, Martín-Navarro CM, Reyes-Batlle M, Wagner C, Chiboub O, et al. Programmed cell death in Acanthamoeba castellanii Neff induced by several molecules present in olive leaf extracts. PLoS One. 2017;12(8):e0183795. https://doi.org/10.1371/journal.pone.0183795
38. Hussein K, Ahmed AH, Al-Maqtari MA. Composition and radical scavenging activity of edible wild Pulicaria jaubertii (Asteraceae) volatile oil. PSM Biol Res. 2017;2(1):21-9.
39. Hassanpour H. Optimized medium composition in Physalis alkekengi callus culture altered nitric oxide level for inducing antioxidant enzyme activities and secondary metabolites. Sci Rep. 2024;14(1):16425. https://doi.org/10.1038/s41598-024-67191-7
40. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
41. Salam FM, Alhadi FA, Al-Thobhani MA. Effect of full and half ms-salt strength on some commercial cultivars of carnation (Dianthus caryophyllus L.). PSM Biol Res. 2021;6(1):5-12.
42. Yisak H, Yaya EE, Chandravanshi BS, Redi-Abshiro M. Volatile compounds in two varieties of teff (Eragrostis tef (Zuccagni) Trotter) cultivated in Ethiopia by gas chromatography-mass spectrometry. Int J Food Prop. 2021;24(1):1279-88. https://doi.org/10.1080/10942912.2021.1963275
43. Ghareb HE. In vitro propagation of the rare Pulicaria incisa DC. J Basic Appl Sci. 2018;8(7):26-33.
44. Nanda RM, Das P, Rout GR. In vitro clonal propagation of Acacia mangium Willd. and its evaluation of genetic stability through RAPD marker. Ann For Sci. 2004;61(4):381-6. https://doi.org/10.1051/forest:2004031
45. Mittal A, Agarwal R, Gupta SC. In vitro development of plantlets from axillary buds of Acacia auriculiformis-a leguminous tree. Plant Cell Tissue Organ Cult. 1989;19:65-70. https://doi.org/10.1007/BF00037777
46. Jin H, Deng ZC, He H. Effect of explant types and plant growth regulators on direct regeneration in medicinal plant ‘Pogostemon cablin’. Plant Omics. 2014;7(5):322-7.
47. Sita GL, Sreenatha K, Sujata S. Plantlet production from shoot tip cultures of red sandalwood (Pterocarpus santalinus L.). Curr Sci. 1992;62(7):532-5.
48. George EF, Hall MA, De Klerk GJ. Plant Propagation by Tissue Culture: The Background. Vol. 1. Berlin: Springer Science and Business Media; 2008.
49. Baskaran P, Rajeswari B, Jayabalan N. Development of an in vitro regeneration system in sorghum [Sorghum bicolor (L.) Moench] using root transverse thin cell layers (tTCLs). Turk J Bot. 2006;30(1):1-9.
50. Younes L, Shibli R, Al-Qudah T. In vitro propagation and acclimatization of Achillea fragrantissima frossk sch. Bip. Jordan J Agric Sci. 2015;11(2):339-51.https://doi.org/10.12816/0030430
51. Sivanesan I, Jeong BR. Micropropagation and in vitro flowering in Pentanema indicum Ling. Plant Biotechnol. 2007;24(5):527-32.https://doi.org/10.5511/plantbiotechnology.24.527
52. Thulaseedharan A, Vaidyanathan C. Induction of callus and plant regeneration in Vicoa indica. Plant Cell Tissue Organ Cult. 1990;23:45-8. https://doi.org/10.1007/BF00116088
53. Kamili AN, Kaloo ZA, Shah AM. Plant regeneration from callus cultures of Artemisia annua Linn. J Res Dev. 2001;1:100-6.
54. Juan C, Kaiwen P, Bin G, Jinchuang W, Yuehua W, Tao WT. Atractylodes macrocephala rapid propagation by direct shoot and plant regeneration by leaf. Chin Agric Sci Bull. 2006;22(11):65-9.
55. Sánchez-Ramos M, Bahena SM, Romero-Estrada A, Bernabé-Antonio A, Cruz-Sosa F, Gonzálesssz-Christen J, et al. Establishment and phytochemical analysis of a callus culture from Ageratina pichinchensis (Asteraceae) and its anti-inflammatory activity. Molecules. 2018;23(6):1258. https://doi.org/10.3390/molecules23061258
56. Manasa DJ, Chandrashekar KR, Bhagya N. Rapid in vitro callogenesis and phytochemical screening of leaf, stem and leaf callus of Mussaenda frondosa Linn.: A medicinal plant. Asian J Pharm Clin Res. 2017;10(6):81-6. https://doi.org/10.22159/ajpcr.2017.v10i6.17527
57. Mehta SR, Subramanian R. Direct in vitro propagation of Asparagus adscendens Roxb. Plant Tissue Cult. 2005;15(1):25-32.
58. Pramanik KC, Biswas R, Mitra A, Bandyopadhyay D, Mishra M, Chatterjee TK. Tissue culture of the plant Pluchea indica (L.) Less. And evaluation of diuretic potential of its leaves. Adv Tradit Med. 2007;7(2):197-204.
59. Rouane A, Chabane D, Arab K. Evaluation of acute toxicity and anti-inflammatory activity of callus extracts of Pulicaria incisa (Lam.) DC. Appl Ecol Environ Res. 2019;17(1):1013-25. https://doi.org/10.15666/aeer/1701_10131025
60. Farvardin A, Ebrahimi A, Hosseinpour B, Khosrowshahli M. Effects of growth regulators on callus induction and secondary metabolite production in Cuminum cyminum. Nat Prod Res. 2017;31(17):1963-70. https://doi.org/10.1080/14786419.2016.1272105
61. Gaurav N, Singh A, Srivastava A, Kumar A, Gariya HS. In vitro propagation of Withania somnifera l.(dunal) from callus of embryonic cotyledon explants in B5 medium. Indian For. 2018;144(1):36-40.
62. Gupta M, Kour B, Kaul S, Dhar MK. Mucilage synthesis in callus cultures of Plantago ovata forsk. Natl Acad Sci Lett. 2015;38:103-6. https://doi.org/10.1007/s40009-014-0303-y
63. Shariff N, Sudarshana M, Umesha S, Hariprasad P. Antimicrobial activity of Rauvolfia tetraphylla and Physalis minima leaf and callus extracts. Afr J Biotechnol. 2006;5(10):946-50.
64. Ali N, Afrasiab H. Effect of TIBA and other plant growth regulators on callogenic response from different explants of safflower (Carthamus tinctorius). Int J Agric Biol. 2014;16(6):1112-6.
65. Dangash A, Ram M, Niranjan R, Bharillya A, Misra H, Pandya N, et al. In vitro selection and hormonal regulation in cell culture of Artemisia annua L. Plant. JSM Cell Dev Biol. 2015;3(1):1013.
66. Uddin MS, Chowdhury MS, Khan MM, Uddin MB, Ahmed R, Baten M. In vitro propagation of Stevia rebaudiana bert in Bangladesh. Afr J Biotechnol. 2006;5(13):1238-40.
67. Sari Y, Kusuma R. Modification of sucrose concentration in solid and liquid medium for Myrmecodia tuberosa Jack callus growth in vitro. Biowallacea J Penelitian Biol. 2015;1(1):9-13.
68. Elias H, Taha RM, Hasbullah NA, Mohamed N, Manan AA, Mahmad N, et al. The effects of plant growth regulators on shoot formation, regeneration and coloured callus production in Echinocereus cinerascens in vitro. Plant Cell Tissue Organ Cult. 2015;120:729-39. https://doi.org/10.1007/s11240-014-0642-x
69. Sivaram L, Mukundan U. In vitro culture studies on Stevia rebaudiana. In Vitro Cell Dev Biol Plant. 2003;39:520-3. https://doi.org/10.1079/IVP2003438
70. Tamura Y, Nakamura S, Fukui H, Tabata M. Comparison of Stevia plants grown from seeds, cuttings and stem-tip cultures for growth and sweet diterpene glucosides. Plant Cell Rep. 1984;3:180-2. https://doi.org/10.1007/BF00270194
71. Singh M, Saharan V, Dayma J, Rajpurohit D, Sen Y, Sharma A. In vitro propagation of Stevia rebaudiana (Bertoni): An overview. Int J Curr Microbiol Appl Sci. 2017;6(7):1010-22. https://doi.org/10.20546/ijcmas.2017.607.122
72. Bo?a M, Erta? A, Ye?il Y, Ha?imi N, Y?lmaz MA, Özaslan C. Phytochemical analysis and antioxidant and anticholinesterase activities of Pulicaria dysenterica from Turkey. Dicle Univ Tip Fakul Derg. 2014;3(1):53-60.
73. Helal NM, Ibrahim N, Khattab H. Phytochemical analysis and antifungal bioactivity of Pulicaria undulata (L.) methanolic extract and essential oil. Egypt J Bot. 2019;59(3):827-44. https://doi.org/10.21608/ejbo.2019.12259.1308
74. Lougraimzi H, Benhima R, Kholssi R, Fatima E, Achbani E, Fadli M. Chemical composition and insecticidal potential of Pulicaria incisa (Lam) essential oil from Moroccan plant against Sitophilus oryzae (L.) and Tribolium castaneum (Herbst.). Biointerface Res Appl Chem. 2022;12:2262-74. https://doi.org/10.33263/BRIAC122.22622274
75. Georgiev V, Schumann A, Pavlov A, Bley T. Temporary immersion systems in plant biotechnology. Eng Life Sci. 2014;14(6):607-21. https://doi.org/10.1002/elsc.201300166
76. Ramachandra Rao S, Ravishankar GA. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol Adv. 2002;20(2):101-53. https://doi.org/10.1016/S0734-9750(02)00007-1
77. Garg M, Datta S, Ahmad S. Plant tissue culture: A potential tool for the production of secondary metabolites. In: In Vitro Propagation and Secondary Metabolite Production from Medicinal Plants: Current Trends (Part 2). United Arab: Bentham Science Publishers; 2024. p. 15-63.
78. Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, et al. Production of secondary metabolites using tissue culture-based biotechnological applications. Front Plant Sci. 2023;14:1132555. https://doi.org/10.3389/fpls.2023.1132555
79. Choudhary D, Shekhawat J, Kataria V. GC-MS analysis of bioactive phytochemicals in methanol extract of aerial part and callus of Dipterygium glaucum Decne. Phcogn J. 2019;11(5):1055-63.
80. El-Naggar HM, Shehata AM, Morsi MA. Micropropagation and GC-MS analysis of bioactive compounds in bulbs and callus of white squill. In Vitro Cell Dev Biol Plant. 2023;59(1):154-66. https://doi.org/10.1007/s11627-023-10333-9
81. Olivia NU, Goodness UC, Obinna OM. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Futur J Pharm Sci. 2021;7:59. https://doi.org/10.1186/s43094-021-00208-4
Year
Month
In vitro plant regeneration in Capsicum chinense Jacq. (Naga Chili)
Rahul P. Raj,V. D. Glint,K. Nirmal BabuEvaluation of salt tolerance ability in some fig (Ficus carica L.) cultivars using tissue culture technique
Hemaid Ibrahim Ahemaidan Soliman, Mohamed R. A. Abd AlhadyIn vitro propagation by axillary shoot proliferation, assessment of antioxidant activity, and genetic fidelity of micropropagated Paederia foetida L.
Biswaranjan Behera, Priyajeet Sinha, Sushanto Gouda, Sakti K. Rath, Durga P. Barik, Padan K. Jena, Pratap C. Panda, Soumendra K. NaikSustainable development of plant tissue culture industry: The Indian scenario
Shashank M. Patil, V. B. Chandana Kumari, K. Sumana, S. Sujay, M. Tejaswini, Prithvi S. Shirahatti, Ramith RamuAn insight on micro propagation of Myrica species for improvement in cultivation practices of nutraceutically important fruits
Sohan Lal, Amita Kumari, Ishita Guleria, Jyoti Dhatwalia, Shabnam Thakur, Shailja Kumari, Subhash SharmaMicropropagation strategies in medicinally important turmeric (Curcuma sp): Current research and future challenges
Hemavathi Brijesh, Brijesh AjjappalaThe development of multiplication conditions in vitro of Stevia rebaudiana Bertoni in Morocco
Bouaaza Ghizlane,, Chetto Ouiam, Beniken Lhou, Dziri Laila, Benkirane Rachid, Hamid BenyahiaImproving micropropagation of Moringa oleifera: The use of semi-solid medium for rooting and sucrose-free liquid medium combined with temporary ventilation for hardening
Eufrocinio Dela Cruz MarforiOptimized protocol for high-efficiency micropropagation of banana varieties G9 and Malbhog
Anjali Kumari, Vinay Bhushan KumarRapid in vitro adventitious rooting and proliferation by leaf and nodal cultures of Momordica cymbalaria Fenzl.
Chaitanya Gopu, Chandra Shekar Chakilam, Pavani Chirumamilla, Suvarchala Vankudoth, Shasthree TaduriIn-Vitro Propagation of Dioscorea alata for Tyrosinase Production
B. Gopal Samy, K. Jegatheesan, C. Infant FrancinaEffect of growth regulators on callus morphology of Rice anther culturec
Avinash Sharma, Dalpat Lal and Monoj SutradharEffect of growth hormones in induction of callus, antioxidants, and antibacterial activity in Nerium odorum
Avinash Prakasha, S UmeshaCallus induction, Indirect Organogenesis and Plantlet Regeneration from different explants of Vernonia anthelmintica (L.) Willd
Maya Rajan, Shahena Soororbhavan, Vinaya Chandran, Linu MathewOptimization of culture variables for efficient callus induction and rapid plant regeneration in zinc rich rice (Oryza sativa L.) cv. “Chittimuthyalu”
Swapan Kumar TripathyEffect of nutrient media enhanced with plant-growth regulators on indirect somatic embryogenesis induction for the tissue culture of Digitalis purpurea
Mohammed Ahmed Al-Oqab, Salim Zaid, Youssef Al-AmmouriEffect of nutrient media enhanced with plant growth regulators on genetic stability in sub-cultures of Digitalis purpurea callus
Mohammed Ahmed AL-Oqab, Salim Zaid, Youssef Al-Ammouri, Shawqi H. AlawdiDifferential response of oil palm (Elaeis guineensis Jacq.) genotypes on somatic embryogenesis and plantlet regeneration from zygotic embryo
D. S. Sparjanbabu, Naveen Kumar Prathapani, M. S. R. Krishna, D. Ramajayam, B. SusanthiThidiazuron-mediated and genotype-independent regeneration system for tomato (Solanum lycopersicum L.)
Arshlyonel C. Velda, Sherry Anne G. Rodriguez, Michelle Lyka V. Descalsota, Olivia P. DamascoSecondary metabolite profiles, antimicrobial and antioxidant activities of callus, and leaves extract of Piper sarmentosum Roxb.
Junairiah Junairiah, Listijani Suhargo, Tri Nurhariyati, Nabilah Istighfari ZuraidassanaazThe role of plant growth regulators in modulating secondary metabolite production in nampu (Homalomena rostrata Griff)
Fahrauk Faramayuda, Demia Pratiwi, I. Gusti Ngurah Dwi Wiryawan, Elfahmi Elfahmi