Melatonin (MT), a multifunctional signaling molecule is endogenously produced in different microorganisms such as bacteria, cyanobacteria, algae, fungi, and plants, animals including human beings. In addition to controlling the sleep cycle, MT has gained popularity in treating various human diseases, including cancer, COVID-19, and neurological and psychiatric disorders. It plays an important role in abiotic stress tolerance in all living beings including plants and cyanobacteria. In comparison to plants and other eukaryotes, MT is less studied in cyanobacteria. Cyanobacteria are the first photosynthetic oxygen-evolving microorganisms. They play an important role as natural biofertilizers in the agriculture fields, hence widely used for human welfare and environmental sustainability. The current review emphasizes the biosynthetic mechanisms, the function of MT in cyanobacteria under abiotic stress conditions, and the application of MT in human welfare and sustainable agriculture. A possible method for commercial production of MT with the support of a biotechnology approach where cyanobacteria can be used as a natural source has been discussed in brief.
Pandey S, Vimal SR, Prasad SM. Melatonin: possible mechanism of commercial production by cyanobacteria for human welfare and sustainable agriculture. J Appl Biol Biotech. 2025;13(Suppl 1):34–44. http://doi.org/10.7324/JABB.2025.227821
1. Rubatzky VE, Yamaguchi M. Sweet corn, Zea mays L. In: World vegetables. Springer, Boston, MA, 1997; doi: https://doi.org/10.1007/978-1-4615-6015-9_15
2. Erenstein O, Jaleta M, Sonder K, Mottaleb K, Prasanna BM. Global maize production, consumption and trade: trends and R&D implications. Food Secur 2022;14(5):1295–319; doi: https://doi.org/10.1007/s12571-022-01288-7
3. Siriyod T, Natthanan T, Sukasem L, Chairerk T, Nalinthip K, Tanaworakit O. Risk factor analysis for enhancing Thai sweet corn supply chain efficiency for export. Kasetsart Business Appl J 2023;17(27):21–43.
4. Patel R, Mehta K, Prajapat, J, Shukla A, Parmar P, Goswami D, et al. An anecdote of mechanics for Fusarium biocontrol by plant growth promoting microbes. Bio Control 2022;174:105012; doi: https://doi.org/10.1016/j.biocontrol.2022.105012
5. Xu W, Wang K, Wang H, Liu Z, Shi Y, Gao Z, et al. Evaluation of the biocontrol potential of Bacillus sp. WB against Fusarium oxysporum f. sp. niveum. BioControl 2020; 147:104288; doi: https://doi.org/10.1016/j.biocontrol.2020.104288
6. Zhou F, Wang Y, Liu P, Ma W, He R, Cao H, et al. Function of zmbt2a gene in resistance to pathogen infection in maize. Phytopathol Res 2024;6(1):43; doi: https://doi.org/10.1186/s42483-024-00263-8
7. Maitong S, Permpoonpattana P, Sowanpreecha R. Optimal conditions of Bacillus sp. from mangrove soil against plant pathogenic fungi. Khon Kaen Agr J 2021;49(Suppl. 1):272–78.
8. Blacutt AA, Gold SE, Voss KA, Gao M, Glenn AE. Fusarium verticillioides: advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathol 2018;108:312–26.
9. Omotayo OP, Babalola OO. Fusarium verticillioides of maize plant: potentials of propitious phytomicrobiome as biocontrol agents. Front Fungal Biol 2023;4:1095765; doi: https://doi.org/10.3389/ffunb.2023.1095765
10. Mohialden YM, Hussien NM, Salman SA, Ahmed Bahaaulddin AA, Mumtaz A. Enhancing agriculture crop classification with deep learning. BJAI 2024;20–26; doi: https://doi.org/10.58496/bjai/2024/004
11. Lebsing P, Wongcharoen A, Saepaisan S. Control of tomato seed disease caused by Fusarium oxysporum sp. lycopersici using fungicides and antagonistic fungi. Khon Kaen Agr J 2021;49(4):956–66.
12. Kongtragoul P, Ishikawa K, Ishii H. Metalaxyl resistance of phytophthora palmivora causing durian diseases in Thailand. Hortic 2021;7(10):375; doi: https://doi.org/10.3390/horticulturae7100375
13. Sidorova TM, Asaturova, AM, Homyak AI, Zhevnova NA, Shternshis MV, Tomashevich NS. Optimization of laboratory cultivation conditions for the synthesis of antifungal metabolites by Bacillus subtilis strains. Saudi J Biol Sci 2020;27(7):1879–85; doi: https://doi.org/10.1016/j.sjbs.2020.05.002
14. Helisto P, Aktuganov G, Galimzianova N, Melentjev A, Korpela T. Lytic enzyme complex of antagonistic Bacillus sp. X-b: isolation and purification of components. J Chromatogr B Biomed 2001;758:197– 205; doi: https://doi.org/10.1016/s0378-4347(01)00181-5
15. Kloepper JW, Ryu CM, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathol 2004;94(11):1259–66. https://doi.org/10.1094/PHYTO.2004.94.11.1259
16. Jino S, Chairat S, Supakitthanakarn S, Ruangwong O. In vitro efficiency of Bacillus subtilis S93 and Bacillus siamensis RFCD306 in controlling Fusarium oxysporum causing chrysanthemum wilt disease. Khon Kaen Agr J 2022;50(Suppl. 1):184–90.
17. Ragavendran C, Natarajan D. Serratia marcescens (Enterobacteriaceae): an alternate biocontrol agent for mosquito vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). PTB Rep 2017;3(1):14–20.
18. Foysal MJ, Lisa AK. Isolation and characterization of Bacillus sp. strain BC01 from soil displaying potent antagonistic activity against plant and fish pathogenic fungi and bacteria. J Genet Eng Biotechnol 2018;16(2):387–92. https://doi.org/10.1016/j.jgeb.2018.01.005
19. Noppakuadrittidej P, Charlermroj R, Makornwattana M, Kaew- Amdee S, Waditee-Sirisattha R, Vilaivan T, et al. Development of peptide nucleic acid-based bead array technology for Bacillus cereus detection. Sci Rep 2023;13(1):12482; doi: https://doi.org/10.1038/s41598-023-38877-1
20. Duan Y, Pang Z, Yin S, Xiao W, Hu H, Xie J. Screening and analysis of antifungal strains Bacillus subtilis JF-4 and B. amylum JF-5 for the biological control of fusarium wilt of banana. J Fungi 2023;9(9):886; doi: https://doi.org/10.3390/jof9090886
21. Sowanpreecha R, Kanchanabanca C, Sangvanish P, Rerngsamran P. Bacillus subtilis N3 as a biocontrol agent for Culvalaria lunata and its antifungal protein propoties. Int J Agric Biol 2018;20:531–8; doi: https://doi.org/10.17957/ijab/15.0511
22. Tipsing S, Sathit P, Jaran P, Ratchanu M. Efficiency of Bacillus spp. from ant-hill soils against Pestalotiopsis sp. causing fruit rot disease in guava. Veridian E-J Sci Technol Silpakorn Univ 2019;6(2):1–14.
23. Ketkhiao T, Phonwichai R, Taktuen S. Isolation and evaluation potential efficacy of bacteria from durian orchard soils against fungal pathogen growth on durian leaves. Senior project, Bachelor Degree, Major Program of Agricultural Science and Technology, Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand, 2021.
24. Khan N, Martínez-Hidalgo P, Ice TA, Maymon M, Humm EA, Nejat N, et al. Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front Microbiol 2018;9:2363; doi: https://doi.org/10.3389/fmicb.2018.02363
25. Chen PH, Chen RY, Chou JY. Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on Strawberry Fruits. Mycobiology 2018;46(1):33–46; doi: https://doi.org/10.1080/12298093.2018.1454013
26. Duan Y, Chen R, Zhang R, Jiang W, Chen X, Yin C, et al. Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Front Microbiol 2021;12:746799; doi: https://doi.org/10.3389/fmicb.2021.746799
27. Duan Y, Chen R, Zhang R, Jiang W, Chen X, Yin C, et al. Isolation and identification of Bacillus Vallismortis HSB-2 and its biocontrol potential against apple replant disease. Bio Control 2022;170:104921; doi: https://doi.org/10.1016/j.biocontrol.2022.104921
28. Bressan W, Fontes Figueiredo JE. Chitinolytic Bacillus spp. isolates antagonistic to Fusarium moniliforme in maize. J Plant Pathol 2010;92(2):343–7.
29. Srikhong P, Lertmongkonthum K, Sowanpreecha R, Rerngsamran P. Bacillus sp. strain M10 as a potential biocontrol agent protecting chili pepper and tomato fruits from anthracnose disease caused by Colletotrichum capsici. BioControl 2018;63(6):833–42; doi: https://doi.org/10.1007/s10526-018-9902-8
30. Ashwini N, Srividya S. Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3Biotech 2014;4(2):127–36; doi: https://doi.org/10.1007/s13205-013-0134-4
31. Akeed Y, Atrash F, Naffaa W. Partial purification and characterization of chitinase produced by Bacillus licheniformis B307. Heliyon 2020;6(5):e03858; doi: https://doi.org/10.1016/j.heliyon.2020.e03858
32. El-Housseiny G, Shams G, Ghobashi Z, Mamdouh R, Almaqsod I, Saleh S. Optimization of antifungal activity by Bacillus subtilis isolate CCASU 2021-4 using response surface methodology. Arch Pharm Sci Ain Shams Univ 2021;5(1):171–83; doi: https://doi.org/10.21608/aps.2021.80383.1063
33. Motamedi H, Zahedi E, Abadi AZ. Optimizing conditions for the production of antifungal agents using the native Bacillus cereus SB15. Feyz Med Sci J 2017;21(1):9–18.
34. Lee HA, Kim JH. Isolation of Bacillus amyloliquefaciens strains with antifungal activities from Meju. Prev Nutr Food Sci 2012;17(1):64– 70; doi: https://doi.org/10.3746/pnf.2012.17.1.064
35. Ragavendran C, Manigandan V, Kamaraj C, Balasubramani G, Prakash JS, Perumal P, et al. Larvicidal, histopathological, antibacterial activity of indigenous fungus Penicillium sp. against Aedes aegypti L and Culex quinquefasciatus (say) (Diptera: Culicidae) and its acetylcholinesterase inhibition and toxicity assessment of zebrafish (Danio rerio). Front Microbiol 2019;10:427; doi: https://doi.org/10.3389/fmicb.2019.00427
36. Khazaal SM, Haitham M. Predicting coronary artery disease utilizing support vector machines: optimizing predictive model. MJAIH 2023;2023:21–26; doi: https://doi.org/10.58496/mjaih/2023/004
37. Zhu H, Zhou X, Shen C, Ao Z, Cao X, Song C, et al. Bacillus licheniformis-based intensive fermentation of Tibetan tea improved its bioactive compounds and reinforced the intestinal barrier in mice. Front Microbiol 2024;15:1376757; doi: https://doi.org/10.3389/fmicb.2024.1376757
38. Kim PI, Ryu J, Kim YH, Chi YT. Production of biosurfactant Lipopeptides Iturin A, fengycin and surfactin a from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 2010;20(1):138–45; doi: https://doi.org/10.4014/jmb.0905.05007
39. Yang L, Quan X, Xue B, Goodwin PH, Lu S, Wang J, et al. Isolation and identification of Bacillus subtilis strain YB-05 and its antifungal substances showing antagonism against Gaeumannomyces graminis var. tritici. Biol Control 2015;8:52–8.
40. Zhu J, Tan T, Shen A, Yang X, Yu Y, Gao C, et al. Biocontrol potential of Bacillus subtilis IBFCBF-4 against fusarium wilt of watermelon. J Plant Pathol 2020;102(2):433–41; doi: https://doi.org/10.1007/s42161-019-00457-6
41. Zhou S, Xia Y, Zhu C, Chu W. Isolation of marine Bacillus sp. with antagonistic and organic-substances-degrading activities and its potential application as a fish probiotic. Marine Drugs 2018;16(6):196; doi: https://doi.org/10.3390/md16060196
Year
Month
Dagaa (Rastrinoebola argentea) protein hydrolysate as a nitrogen source in microbial culture media
Katherine Pere, Betty Mbatia, Edward Muge, Vitalis W. WekesaIsolation and screening of dye decolorizing bacteria from industrial effluent
Mayur Gahlout, Poonam Chauhan, Hiren Prajapati, Suman Saroj, Poonam NaraleAntibacterial and antifungal activities of leaf and stem of Marsilea minuta L. against selected microbial pathogens
Govindaraj Sabithira, Rajangam UdayakumarRole of effective microorganisms on hematological and biochemical indices of cultured Oreochromis niloticus exposed to lead, copper, and cadmium under temperature variations
Ragab G. Abdel Salam,, Samah M. Bassem, Eman Salah Abdel-Reheim, Mahmoud Abdel-Latif, Giulia Guerriero, Fagr Kh Abdel-Gawad,Biofertilizer science and practice for agriculture and forestry: A review
Sudipta Saha, Debasish Paul, Tika Ram Poudel, Nafis Mahadi Basunia, Tasnimul Hasan, Mahadi Hasan, Bei Li, Rubel Reza, Ahmed Redwan Haque, Md. Abu Hanif, Manobendro Sarker, Nathan James Roberts, Muneer Ahmad Khoso, Haibo Wu, Hai-long ShenBacillus paralicheniformis (OQ202112) - Mediated biodiesel production using groundnut husk: A sustainable approach for bioenergy generation
Roshani Kantibhai Chaudhary, Priti Hemant Patel, Nikita Rajendrasinh Chavda, Vaidehi Kamlesh Patel, Kaushal Kantilal ChaudharyIsolation and screening of potential lignocellulolytic microbes from Phra Nakhon Si Ayutthaya Province
Sunisa Suwannaphan, Paweena Suksaard, Piyangkun Lueangjaroenkit, Suvichark Aroonluk, Phakhwan ThongrakDecolorization of selected industrial synthetic dyes using laccase from an indigenous isolate strain SK1
Maegala Nallapan Maniyam,, Primeela Gunalan,, Hazeeq Hazman Azman, Hasdianty Abdullah,, Nor Suhaila Yaacob,Asparagus racemosus extract increases the life span in Drosophila melanogaster
K. V. Kiran Kumar, K. S. Prasanna, J. S. AshadeviImpact of Phyllanthus amarus extract on antioxidant enzymes in Drosophila melanogaster
N. Manasa, J. S. AshadeviAlterations in antioxidant defense system in hepatic and renal tissues of rats following aspartame intake
Saeed A. AlwaleediDietary Supplementation of Citric acid (monohydrate) Improves Health Span in Drosophila melanogaster
Komal Panchala, Kesha Patelb , Anand K. TiwariaBiochemical Modulations in Duttaphrynus melanostictus Tadpoles, Following Exposure to Commercial Formulations of Cypermethrin: An Overlooked Impact of Extensive Cypermethrin use
David Muniswamy, Shrinivas S Jadhav, Kartheek R MalowadeDNP induced oxidative stress on blood components ameliorated by Pyrrole derivative of Tinospora cordifolia
K. C. Rashmi, H. S. AparnaManagement of heat stress in Drosophila melanogaster with Abhrak bhasma and ascorbic acid as antioxidant supplements
Rambhadur P. Subedi, Rekha R. Vartak, Purushottam G. KaleAntioxidant and antihyperlipidemic effects of aqueous seed extract of Daucus carota L. in triton ×100-induced hyperlipidemic mice
Habibu Tijjani, Abubakar Mohammed, Sani Muktar, Saminu Musa, Yusuf Abubakar, Adegbenro Peter Adegunloye, Ahmed Adebayo Ishola, Enoch Banbilbwa Joel, Carrol Domkat Luka, Adamu Jibril AlhassanBiochemical and liver histological changes in rats exposed to sub-lethal dose of Uproot-pesticide and the protective potentials of nutritional supplements
Cosmas Onyekachi Ujowundu, Kingsley Isaac Ogamanya, Favour Ntite Ujowundu, Victoria Ojone Adejoh, Calistus I. Iheme, Kalu Okereke IgweBiochemical and ultrastructural alterations in the brain of mice induced by aqueous leaf extract of a medicinal plant, Lantana camara L. and its amelioration by nimodipine and flunarizine
H. Ashalata Singha, Mahuya Sengupta, Meenakshi BawariChronic cold exposure aggravates oxidative stress in reproductive organs of STZ-induced diabetic rats: Protective role of Moringa oleifera
Hanumanthappa Rakesh, Saumya S. Mani, Piler Mahaboob BashaCorrelates of sperm quality parameters and oxidative stress indices in diabetic rats exposed to cold stress: Role of Moringa oleifera leaf extract
Piler Mahaboob Basha, Hanumanthappa Rakesh, Saumya S. ManiLeaf senescence and its regulation with phytohormones and essential elements: An overview
Shatrupa Singh, Madhulika Singh,, Sanskriti Bisht, Jai Gopal SharmaAssessment of oxidative stress, genotoxicity, and histopathological alterations in freshwater food fish Channa punctatus exposed to fungicide, Mancozeb
Manoj Kumar, Anjali Mishra, Akash Verma, Anamika Jain, Adeel Ahmad Khan, Shikha Dwivedi, Sunil P. TrivediThe protective action of a novel DinB protease against diarrhea infection in Drosophila Melanogaster
Jyoti Guleria, Mohammad Rashid Khan, Minhaj Ahmad KhanConsumption of corn and soybean sprouts enriched with egg shell in improving oxidative stress and estrogen depletion in ovariectomized rats
Siti Aminah, Wulandari Meikawati, Sri Hartati, Diode YonataFlood stress and its effects on fruit crops: A critical review
S. R. Jervin Ananth, Sajan Kurien, V. Suresh, P. Ramesh Kumar, K. Indira PetchiammalOxidative status of cryopreserved sperm of stallions of different ages
Anna Mikhailovna Shitikova, Mikhail Mikhailovich Atroshchenko, Valentina Ivanovna Zvyagina, Marya Alexandrovna Aronova