Steviol glycoside biosynthesis pathway gene expression profiling of transformed and non-transformed plant leaf tissues of Stevia rebaudiana (Bertoni)
Stevia rebaudiana Bertoni, a member of the Asteraceae family, is recognized for its sweetened leaves, which are remarkably sweeter than sucrose by 200–300 times. This astounding property is because of steviol glycosides (SGs), a class of diterpenoid secondary metabolites that primarily consist of stevioside and rebaudioside A. These compounds are formed through a specific SG biosynthetic pathway that contains several key genes. In the present work, gene expression profiling of 15 core genes of SG biosynthetic pathway, along with metabolite analysis, was conducted in three groups of S. rebaudiana plants: In vitro regenerated non-transformed plantlets (NP), in vitro regenerated transformed plantlets (TP) via hairy root cultures using Rhizobium rhizogenes mediated transformation, and control plants (CP). Quantitative real?time polymerase chain reaction results showed that in NP and TP there was upregulation of 13 genes. Both NP and TP showed downregulated SrDXR and SrCDPS in comparison to CP, whereas SrUGT74G1 had higher expression in NP than TP. High-performance liquid chromatography chromatographic studies on SGs showed that stevioside content followed the order TP > NP > CP. These findings demonstrate that transformation enhances SG biosynthesis and support the use of genetically modified S. rebaudiana lines for increased natural sweetener production. Further studies are warranted to elucidate regulatory mechanisms and optimize metabolic engineering approaches.
Singh P, Phule AS, Tabassum H, Wani M. Steviol glycoside biosynthesis pathway gene expression profiling of transformed and non-transformed plant leaf tissues of Stevia rebaudiana (Bertoni). J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2026.250346
1. Sharma S, Gupta S, Kumari D, Kothari SL, Jain R, Kachhwaha S. Exploring plant tissue culture and steviol glycosides production in Stevia rebaudiana (Bert.) Bertoni: A review. Agriculture. 2023;13(2):475. https://doi.org/10.3390/agriculture13020475
2. Hajihashemi S, Geuns JM, Ehsanpour AA. Gene transcription of steviol glycoside biosynthesis in Stevia rebaudiana Bertoni under polyethylene glycol, paclobutrazol and gibberellic acid treatments in vitro. Acta Physiol Plantarum. 2013;35:2009-14. https://doi.org/10.1007/s11738-013-1226-9
3. Brandle JE, Telmer PG. Steviol glycoside biosynthesis. Phytochemistry. 2007;68(14):1855-63. https://doi.org/10.1016/j.phytochem.2007.02.010
4. Thakur K, Ashrita, Sood A, Kumar P, Kumar D, Warghat AR. Steviol glycoside accumulation and expression profiling of biosynthetic pathway genes in elicited in vitro cultures of Stevia rebaudiana. In Vitro Cell Dev Biol Plant. 2021;57:214-24. https://doi.org/10.1007/s11627-020-10151-3
5. Zhou X, Gong M, Lv X, Liu Y, Li J, Du G, et al. Metabolic engineering for the synthesis of steviol glycosides: Current status and future prospects. Appl Microbiol Biotechnol. 2021;105(13):5367-81. https://doi.org/10.1007/s00253-021-11419-3
6. Ceunen S, Werbrouck S, Geuns JM. Stimulation of steviol glycoside accumulation in Stevia rebaudiana by red LED light. J Plant Physiol. 2012;169(7):749-52. https://doi.org/10.1016/j.jplph.2012.01.006
7. Eslami-Firouzabadi A, Karimi M, Abbasi-Surki A, Shafeinia A, Derikvand-Moghadam F. Optimising the rate and stages of application of nitrogen fertiliser for stevia under greenhouse conditions. South African Journal of Plant and Soil 2023;40:58-63.
8. Olas B. Stevia rebaudiana Bertoni and its secondary metabolites: Their effects on cardiovascular risk factors. Nutrition. 2022;99:111655.
9. Abdel-Aal RA, Abdel-Rahman MS, Al Bayoumi S, Ali LA. Effect of stevia aqueous extract on the antidiabetic activity of saxagliptin in diabetic rats. J Ethnopharmacol. 2021;265:113188. https://doi.org/10.1016/j.jep.2020.113188
10. Bugliani M, Tavarini S, Grano F, Tondi S, Lacerenza S, Giusti L, et al. Protective effects of Stevia rebaudiana extracts on beta cells in lipotoxic conditions. Acta Diabetol. 2022;59:113-126. https://doi.org/10.1007/s00592-021-01793-9
11. Peteliuk V, Rybchuk L, Bayliak M, Storey KB, Lushchak O. Natural sweetener Stevia rebaudiana: Functionalities, health benefits and potential risks. EXCLI J. 2021;20:1412. https://doi.org/10.17179/excli2021-4211
12. Abdullah S, Mohamad Fauzi NY, Khalid AK, Osman M. Effect of gamma rays on seed germination, survival rate and morphology of Stevia rebaudiana hybrid. Malays J Fundam Appl Sci. 2021;17(5):543-9. https://doi.org/10.11113/mjfas.v17n5.2157
13. Álvarez-Robles MJ, López-Orenes A, Ferrer MA, Calderón AA. Methanol elicits the accumulation of bioactive steviol glycosides and phenolics in Stevia rebaudiana shoot cultures. Ind Crops Prod. 2016;87:273-9. https://doi.org/10.1016/j.indcrop.2016.04.054
14. Kahrizi D, Ghaheri M, Yari Z, Yari K, Bahraminejad S. Investigation of different concentrations of MS media effects on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni. Cell Mol Biol. 2018;64(2):23-7. https://doi.org/10.14715/cmb/2018.64.2.11
15. Singh P, Labade D, Chote M, Deshmukh P, Panchal B, Deshpande J, et al. Efficient regeneration of Stevia rebaudiana Bertoni transformants through hairy root culture technique. J Appl Bot Food Qual. 2025;98:22-8. https://doi.org/10.5073/JABFQ.2025.098.003
16. Pan H, Xiao L, Tang K, Xia H, Li Y, Jia H, et al. Screening UDP-glycosyltransferases for effectively transforming stevia glycosides: Enzymatic synthesis of glucosylated derivatives of rubusoside. J Agric Food Chem. 2022;70(48):15178-88. https://doi.org/10.1021/acs.jafc.2c06185
17. Yu J, Tao Y, Pan H, Lin L, Sun J, Ma R, et al. Mutation of Stevia glycosyltransferase UGT76G1 for efficient biotransformation of rebaudioside E into rebaudioside M. J Funct Foods. 2022;92:105033. https://doi.org/10.1016/j.jff.2022.105033
18. Ghaheri M, Kahrizi D, Bahrami G, Mohammadi-Motlagh HR. Study of gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni under various mannitol concentrations. Mol Biol Rep. 2019;46(1):7-16. https://doi.org/10.1007/s11033-018-4250-4
19. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402-8. https://doi.org/10.1006/meth.2001.1262
20. Herath V, Gayral M, Adhikari N, Miller R, Verchot J. Genome-wide identification and characterization of Solanum tuberosum BiP genes reveal the role of the promoter architecture in BiP gene diversity. Sci Rep. 2020;10(1):11327. https://doi.org/10.1038/s41598-020-68407-2
21. Phule AS, Barbadikar KM, Maganti SM, Seguttuvel P, Subrahmanyam D, Babu MP, et al. RNA-seq reveals the involvement of key genes for aerobic adaptation in rice. Sci Rep. 2019;9(1):5235. https://doi.org/10.1038/s41598-019-41703-2
22. Ye J, Jin CF, Li N, Liu MH, Fei ZX, Dong LZ, et al. Selection of suitable reference genes for qRT-PCR normalisation under different experimental conditions in Eucommia ulmoides Oliv. Sci Rep. 2018;8(1):15043. https://doi.org/10.1038/s41598-018-33342-w
23. Sarmiento-López LG, López-Meyer M, Sepúlveda-Jiménez G, Cárdenas L, Rodríguez-Monroy M. Photosynthetic performance and stevioside concentration are improved by the arbuscular mycorrhizal symbiosis in Stevia rebaudiana under different phosphate concentrations. PeerJ. 2020;8:e10173. https://doi.org/10.7717/peerj.10173
24. Libik-Konieczny M, Michalec-Warzecha ?, Dziurka M, Zastawny O, Konieczny R, Rozp?dek P, et al. Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Appl Microbiol Biotechnol. 2020;104:5929-41. https://doi.org/10.1007/s00253-020-10661-5
25. Sanchéz-Cordova ÁD, Capataz-Tafur J, Barrera-Figueroa BE, López-Torres A, Sanchez-Ocampo PM, García-López E, et al. Rhizobium rhizogenes-mediated transformation enhances steviol glycosides production and growth in Stevia rebaudiana plantlets. Sugar Tech. 2019;21(3):398-406. https://doi.org/10.1007/s12355-018-0681-4
26. Zheng J, Zhuang Y, Mao HZ, Jang IC. Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants. BMC Plant Biol. 2019;19:1-6. https://doi.org/10.1186/s12870-018-1600-2
27. Nasrullah N, Ahmad J, Saifi M, Shah IG, Nissar U, Quadri SN, et al. Enhancement of diterpenoid steviol glycosides by co-overexpressing SrKO and SrUGT76G1 genes in Stevia rebaudiana Bertoni. PLoS One. 2023;18(2):e0260085. https://doi.org/10.1371/journal.pone.0260085
28. Gachon CM, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci. 2005;10(11):542-9.
29. Tiwari P, Sangwan RS, Sangwan NS. Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnol Adv. 2016;34(5):714-39. https://doi.org/10.1016/j.biotechadv.2016.03.006
30. Bednarek PT, Or?owska R. Plant tissue culture environment as a switch-key of (EPI) genetic changes. Plant Cell Tissue Organ Cult. 2020;140(2):245-57. https://doi.org/10.1007/s11240-019-01724-1
31. Kajla M, Roy A, Singh IK, Singh A. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. Front Plant Sci. 2023;14:1126567.
32. Kim MJ, Zheng J, Liao MH, Jang IC. Overexpression of Sr UGT-76G1 in Stevia alters major steviol glycosides composition towards improved quality. Plant Biotechnol J. 2019;17(6):1037-47. https://doi.org/10.1111/pbi.13035
33. Abdelsalam NR, Botros WA, Khaled AE, Ghonema MA, Hussein SG, Ali HM, et al. Comparison of uridine diphosphate-glycosyltransferase UGT76G1 genes from some varieties of Stevia rebaudiana Bertoni. Sci Rep. 2019;9(1):8559. https://doi.org/10.1038/s41598-019-44989-4
34. Singh S, Murmu S, Das AB, Haider ZA, Banerjee M. Establishment of root-to-root culture and evaluation of phytochemicals in Rhizobium rhizogenes transformed roots of Stevia rebaudiana. J Pharmacogn Phytochem. 2017;6(6S):49-54.
35. Bayraktar M, Naziri E, Karabey F, Akgun IH, Bedir E, Röck-Okuyucu B, et al. Enhancement of stevioside production by using biotechnological approach in in vitro culture of Stevia rebaudiana. Int J Secondary Metab. 2018;5(4):362-74. https://doi.org/10.21448/ijsm.496724
36. Fazili MA, Bashir I, Ahmad M, Yaqoob U, Geelani SN. In vitro strategies for the enhancement of secondary metabolite production in plants: A review. Bull Natl Res Centre. 2022;46(1):35. https://doi.org/10.1186/s42269-022-00717-z
Year
Month
Enzymes and qualitative phytochemical screening of endophytic fungi isolated from Lantana camara Linn. Leaves
Mbouobda Hermann Desire , Fotso Bernard , Muyang Rosaline Forsah , Chiatoh Thaddeus Assang, Omokolo Ndoumou DenisAntibacterial activity of Ferula asafoetida: a comparison of red and white type
Richa Bhatnager, Reena Rani, Amita Suneja DangAntimicrobial Activity Screening of Marine Bacteria Isolated from the Machilipatnam Sea Coast of Andhra Pradesh, India
K. Bala Chandra, V. Umamaheswara Rao, Subhaswaraj Pattnaik, Siddhardha BusiMicrobial biotechnology for bio-prospecting of microbial bioactive compounds and secondary metabolites
Ajar Nath YadavDifferential metabolic responses associated with drought tolerance in Egyptian rice
Amira Hassanein, Eman Ibrahim, Rania Abou Ali, Hanan HashemAgrobacterium rhizogenes as molecular tool for the production of hairy roots in Withania somnifera
Manali Singh,, Deep Chandra Suyal, Nisha Dinkar, Soniya Joshi, Nishtha Srivastava, Vineet Kumar Maurya, Abhiruchi Agnihotri, Sanjeev AgrawalGenome mining and AntiSMASH analysis of an Endophytic Talaromyces sp. reveal biosynthetic pathway gene clusters for novel bioactive compounds
Priyanka N. Shenoy, Sneha Bhaskar, M. Manu, M. P. Likitha, N. Geetha, Shailasree Sekhar, K Ramachandra KiniSecondary metabolite profiles, antimicrobial and antioxidant activities of callus, and leaves extract of Piper sarmentosum Roxb.
Junairiah Junairiah, Listijani Suhargo, Tri Nurhariyati, Nabilah Istighfari ZuraidassanaazAntifungal potential of entomopathogenic bacteria, Photorhabdus, and Xenorhabdus (Morganellaceae) against pathogenic fungi
Mary Lalramchuani,, Lal Ramliana, Hrang Chal Lalramnghaki, Albana L. Chawngthu, Van Ramliana, Esther LalhminglianiThe role of plant growth regulators in modulating secondary metabolite production in nampu (Homalomena rostrata Griff)
Fahrauk Faramayuda, Demia Pratiwi, I. Gusti Ngurah Dwi Wiryawan, Elfahmi ElfahmiGenomic and functional characterization of Bacillus sp. B.PNR2 from extinct volcanic soil in Buriram province, Thailand
Praphat Kawicha, Kusavadee Sangdee, Thanwanit Thanyasiriwat, Rattana Pengproh, Khanitta Somtrakoon, Aphidech SangdeeGene expression study of Saccharomyces cerivisae GPH1 gene in response to chemical modulators
Prasad M. P.Transcriptional expression of three putative pathogenesis-related proteins in leaves of rubber tree (Hevea brasiliensis) inoculated with Neofusicoccum ribis
A. I. C. Nyaka Ngobisa , Godswill Ntsomboh-Ntsefong , Wong Mui Yun , M. Z. Dzarifah, P. A. Owona NdongoGenome-wide identification and expression analysis along the leaf developmental gradient of the sigma factor gene family in foxtail millet (Setaria italica)
Hongyun Liu, Jinjin Cheng, Siyuan Cheng, Hui Fan , Bo Wen , Zheng LiuProgress in understanding the regulation and expression of genes during plant somatic embryogenesis: A review
Vikrant, Prajisha JanardhananComparative transcriptome analysis to identify common genes involved in the progression of Sjögren’s syndrome and rheumatoid arthritis
Khushboo Choudhury, Navjyoti Chakraborty, Monika Gandhi, Sayan Chatterjee, Ram Singh PurtyEvaluation of seven different wheat cultivars for their resistance to drought in terms of growth indicators and yield
Zeyad H. AL-Fatlawi, Ali Nadhim Farhood, Saleh Abed Alwahed Mahdi, Auday Hamid Taha Al-TmimeIn silico characterization of Melittin from Apis cerana indica and evaluation of melittin intron for transgene expression in mammalian cells
Kevin Kumar Vijayakumar, Abisheik Rajandran, Sandhya Lumumba, Shakila HarshavardhanMolecular characterization and expression profiling of arsenic mediated stress-responsive genes in Dawkinsia tambraparniei (Silas, 1954)
Selvakumar Sakthivel,, Anand Raj Dhanapal,, Venkataa Suresh Munisamy, Mohammed Parvez Nasirudeen, Varatharaji Selvaraj, Vijay Velu, Annadurai GurusamyComputational analysis of differential gene expression in rice during abiotic stress
Shivani Devi, Yogeeta Goyal, Mansi Malik, Navjot Kaur, Yamini Sangar, Kashmir Singh, Ruchi SachdevaThe comparative anti-obesity potential of Lagerstroemia speciosa (L.) leaf extracts and their synthesized gold nanoparticles by downregulation of PPAR-γ, C/EBP-α, and FABP4/aP2 gene expression
Tarsem Nain, Mahendra Bishnoi, Navpreet Kaur, Santosh Kumar Tiwari, Jaya Parkash YadavGenome-wide analysis and gene expression studies revealed putative homeotic genes with a role in flower formation in sesame (Sesamum indicum L.)
H. N. Annapurna, Arya Ramachandran, N. S. Ronald Reagan, Injangbuanang Pamei, K. T. Ramya, Ragiba Makandar