Assessment of matK, rbcL, rpoC1, trnA-trnH, ycf5, and ITS for DNA barcoding of a Mentha species from Madinah city, Saudi Arabia

Rashid Ismael Hag Ibrahim   

Open Access   

Published:  Sep 15, 2025

DOI: 10.7324/JABB.2025.57726
Abstract

Mentha (Lamiaceae) is a medicinal, aromatic plant known globally as mint. Madinah mint (Saudi Arabia) is grown and consumed as a drink, flavor for tea, spice for food, and a home remedy. In this report, matK, rbcL rpoC1, and ycf5 genes, the intergenic region trnA-trnH from the plastid genome, along with the two nuclear loci internal transcribed spacers (ITS1 and ITS2) were tested as DNA barcodes for Madinah mint. DNA was extracted, polymerase chain reaction was amplified using specific primers, and the products were sequenced. The partial sequences of the matK gene from Madinah mint are identical to those from Mentha piperita, while sequences of the rbcL gene were identical to Mentha canadensis and Mentha spicata discriminating this species from M. piperita. Phylogenetic analysis using ITS1 or ITS2 showed that Madinah mint is a basic taxon to M. spicata and M. canadensis. Phylogenetic analysis based on a combination of ITS1 and ITS2 sequences showed that Madinah mint is ancestral to other Mentha species. The same analysis using rbcL gene sequences again put Madinah mint as an ancestor of both M. spicata and M. canadensis as well as Mentha suaveolens, which might suggest that they have shared the same origin of the maternally inherited plastid genome.


Keyword:     Mentha Madinah DNA barcode Plastid


Citation:

Ibrahim RIH. Assessment of matK, rbcL, rpoC1, trnA-trnH, ycf5, and ITS for DNA barcoding of a Mentha species from Madinah city, Saudi Arabia. J App Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2025.57726

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Singh G. Plant Systematics : An Integrated Approach. New Hampshire: Science Publishers; 2010.

2. Assaf M, Korkmaz A, Karaman ?, Kulak M. Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. South Afr J Bot. 2022;144:480-93. https://doi.org/10.1016/j.sajb.2021.10.030

3. Naghibi F, Mosaddegh M, Motamed SM, Ghorbani A. Labiatae family in folk medicine in Iran: From ethnobotany to pharmacology. Iran J Pharm Res. 2005;2:63-79.

4. Barros L, Heleno SA, Carvalho AM, Ferreira IC. Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT. 2010;43:544-50. https://doi.org/10.1016/j.lwt.2009.09.024

5. Djilani A, Dicko A. The Therapeutic benefits of essential oils. In: Nutrition, Well-Being and Health. London: InTechopen; 2012. https://doi.org/10.5772/25344

6. Nazar N, Howard C, Slater A, Sgamma T. Challenges in medicinal and aromatic plants DNA barcoding-lessons from the Lamiaceae. Plants (Basel). 2022;11:137. https://doi.org/10.3390/plants11010137

7. Ramasubramania Raja R. Medicinally potential plants of labiatae (Lamiaceae) family: An overview. J Med Plant. 2012;3:203-13. https://doi.org/10.3923/rjmp.2012.203.213

8. Dorman HJ, Peltoketo A, Hiltunen R, Tikkanen MJ. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chem. 2003;83:255-62. https://doi.org/10.1016/S0308-8146(03)00088-8

9. Matkowski A, Piotrowska M. Antioxidant and free radical scavenging activities of some medicinal plants from the Lamiaceae. Fitoterapia. 2006;77:346-53. https://doi.org/10.1016/j.fitote.2006.04.004

10. De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, Labra M. A comparative study of different DNA barcoding markers for the identification of some members of Lamiacaea. Food Res Int. 2011;44:693-702. https://doi.org/10.1016/j.foodres.2010.12.032

11. Theodoridis S, Stefanaki A, Tezcan M, Aki C, Kokkini S, Vlachonasios KE. DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Çe?me-Karaburun Peninsula (Turkey). Mol Ecol Resour. 2012;12:620-33. https://doi.org/10.1111/j.1755-0998.2012.03129.x

12. Celep F, Dirmenci T. Systematic and biogeographic overview of Lamiaceae in Turkey. Nat Volatiles Essential Oils. 2017;4(4):14-27.

13. Zhao F, Chen YP, Salmaki Y, Drew BT, Wilson TC, Scheen AC, et al. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biol. 2021;19:2. https://doi.org/10.1186/s12915-020-00931-z

14. Hussin N, Mohd Noor NN, Mohamed F. Taxonomic significance of trichome ultrastructure in five genera of Lamiaceae. J Sci Math Lett. 2024;12:8-17. https://doi.org/10.37134/jsml.vol12.1.2.2024

15. Brown N, John JA, Shahidi F. Polyphenol composition and antioxidant potential of mint leaves. Food Prod Process Nutr. 2019;1:1. https://doi.org/10.1186/s43014-019-0001-8

16. Al-Ali K, Abdelrazik M, Alghaithy A, Diab A, El-Beshbishy H, Baghdadi H. Antimutagenic and anticancer activity of Al Madinah Alhasawy mint (Mentha longifolia) leaves extract. Pakistan Journal of Biological Sciences 17(12):1231-6. https://doi.org/10.3923/pjbs.2014.1231.1236

17. Tafrihi M, Imran M, Tufail T, Gondal TA, Caruso G, Sharma S, et al. The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules. 2021;26:1118. https://doi.org/10.3390/molecules26041118

18. Hebert PD, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. Proc R Soc B Biol Sci. 2003;270:313-21. https://doi.org/10.1098/rspb.2002.2218

19. Abdel-Hamid AM, Elenazy HH, Abdel-Hameed UK. DNA barcoding of some taxa of genus Acacia and their phylogenetic relationship. All Life. 2021;14:588-98. https://doi.org/10.1080/26895293.2021.1938702

20. Jamdade R, Mosa KA, El-Keblawy A, Al Shaer K, Al Harthi E, Al Sallani M, et al. DNA Barcodes for accurate identification of selected medicinal plants (Caryophyllales): Toward barcoding flowering plants of the United Arab Emirates. Diversity (Basel). 2022;14:262. https://doi.org/10.3390/d14040262

21. Abdelaziz SA, Khaled KA, Younis RA, Al-Kordy MA, El-Domyati FM, Moghazee MM. Comparison of four DNA barcoding loci to distinguish between some Apiaceae family species. Beni Suef Univ J Basic Appl Sci. 2024;13:12. https://doi.org/10.1186/s43088-023-00457-7

22. Lonare N, Patil G, Waghmare S, Bhor R, Hardikar H, Tembe S. DNA barcoding of invasive terrestrial plant species in India. Mol Biotechnol. 2024;67(3):1027-1034. doi: 10.1007/s12033-024-01102-z https://doi.org/10.1007/s12033-024-01102-z

23. Lefébure T, Douady CJ, Gouy M, Gibert J. Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Mol Phylogenet Evol. 2006;40:435-47. https://doi.org/10.1016/j.ympev.2006.03.014

24. Wong EH, Hanner RH. DNA barcoding detects market substitution in North American seafood. Food Res Int. 2008;41:828-37. https://doi.org/10.1016/j.foodres.2008.07.005

25. Frézal L, Leblois R. Four years of DNA barcoding: Current advances and prospects. Infect Genet Evol. 2008;8:727-36. https://doi.org/10.1016/j.meegid.2008.05.005

26. Bruni I, De Mattia F, Galimberti A, Galasso G, Banfi E, Casiraghi M, et al. Identification of poisonous plants by DNA barcoding approach. Int J Legal Med. 2010;124:595-603. https://doi.org/10.1007/s00414-010-0447-3

27. Bafeel SO, Alaklabi A, Arif IA, Khan HA, Alfarhan AH, Ahamed A, et al. Ribulose-1, 5-biphosphate carboxylase (rbcL) gene sequence and random amplification of polymorphic DNA (RAPD) profile of regionally endangered tree species Coptosperma graveolens subsp. arabicum (S. Moore) Degreef. Plant Omics. 2012;5:285-90.

28. Alaklabi A, Arif IA, Bafeel SO, Alfarhan AH, Ahamed A, Thomas J, et al. Nucleotide based validation of the endangered plant Diospyros mespiliformis (Ebenaceae) by evaluating short sequence region of plastid rbcL gene. Plant Omics. 2014;7:102-7.

29. Safhi FA, Alshamrani SM, Bogmaza AF, El-Moneim DA. DNA barcoding of wild plants with potential medicinal properties from faifa mountains in Saudi Arabia. Genes (Basel). 2023;14:469. https://doi.org/10.3390/genes14020469

30. Han JP, Shi LC, Chen XC, Lin YL. Comparison of four DNA barcodes in identifying certain medicinal plants of Lamiaceae. J Syst Evol. 2012;50:227-34. https://doi.org/10.1111/j.1759-6831.2012.00184.x

31. Bayley A. A summary of current DNA methods for herb and SPICE identification. J AOAC Int. 2019;102:386-9. https://doi.org/10.5740/jaoacint.18-0388

32. Sasikumar B, Syamkumar S, Remya R, Zachariah TJ. PCR based detection of adulteration in the market samples of turmeric powder. Food Biotechnol. 2004;18:299-306. https://doi.org/10.1081/FBT-200035022

33. Dhanya K, Sasikumar B. Molecular marker based adulteration detection in traded food and agricultural commodities of plant origin with special reference to spices. Curr Trends Biotechnol Pharm. 2010;4:454-89.

34. Focke F, Haase I, Fischer M. DNA-based identification of spices: DNA isolation, whole genome amplification, and polymerase Chain reaction. J Agric Food Chem. 2011;59:513-20. https://doi.org/10.1021/jf103702s

35. Parvathy VA, Swetha VP, Sheeja TE, Leela NK, Chempakam B, Sasikumar B. DNA barcoding to detect chilli adulteration in traded black pepper powder. Food Biotechnol. 2014;28:25-40. https://doi.org/10.1080/08905436.2013.870078

36. Galimberti A, Labra M, Sandionigi A, Bruno A, Mezzasalma V, De Mattia F. DNA barcoding for minor crops and food traceability. Adv Agric. 2014;2014:831875. https://doi.org/10.1155/2014/831875

37. Thakur VV, Tripathi N, Tiwari S. DNA barcoding of some medicinally important plant species of Lamiaceae family in India. Mol Biol Rep. 2021;48:3097-106. https://doi.org/10.1007/s11033-021-06356-3

38. Raclariu-Manolic? AC, Anmarkrud JA, Kierczak M, Rafati N, Thorbek BL, Schrøder-Nielsen A, et al. DNA metabarcoding for quality control of Basil, Oregano, and Paprika. Front Plant Sci. 2021;12:3097-106. https://doi.org/10.3389/fpls.2021.665618

39. Waugh J. DNA barcoding in animal species: Progress, potential and pitfalls. BioEssays. 2007;29:188-97. https://doi.org/10.1002/bies.20529

40. Ratnasingham S, Hebert PD. A DNA-based registry for all animal species: The barcode index number (BIN) system. PLoS One. 2013;8:e66213. https://doi.org/10.1371/journal.pone.0066213

41. Gorini T, Mezzasalma V, Deligia M, De Mattia F, Campone L, Labra M, et al. Check your shopping cart: DNA barcoding and mini-barcoding for food authentication. Foods. 2023;12:2392. https://doi.org/10.3390/foods12122392

42. Newmaster SG, Fazekas AJ, Ragupathy S. DNA barcoding in land plants: Evaluation of rbcL in a multigene tiered approach. Can J Bot. 2006;84:335-41. https://doi.org/10.1139/b06-047

43. Hollingsworth ML, Andra Clark A, Forrest LL, Richardson J, Pennington RT, Long DG, et al. Selecting barcoding loci for plants: Evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour. 2009;9:439-57. https://doi.org/10.1111/j.1755-0998.2008.02439.x

44. CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci U S A. 2009;106:12794-7. https://doi.org/10.1073/pnas.0905845106

45. Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, et al. Land plants and DNA barcodes: Short-term and long-term goals. Philos Trans R Soc B Biol Sci. 2005;360:1889-95. https://doi.org/10.1098/rstb.2005.1720

46. Chase MW, Cowan RS, Hollingsworth PM, Van Den Berg C, Madriñán S, Petersen G, et al. A proposal for a standardised protocol to barcode all land plants. Taxon. 2007;56:295-9. https://doi.org/10.1002/tax.562004

47. Chase MW, Fay MF. Barcoding of plants and fungi. Science (1979). 2009;325:682-3. https://doi.org/10.1126/science.1176906

48. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A. 2005;102:8369-74. https://doi.org/10.1073/pnas.0503123102

49. Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One. 2007;2:e508. https://doi.org/10.1371/journal.pone.0000508

50. Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, et al. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One. 2008;3:e2802. https://doi.org/10.1371/journal.pone.0002802

51. Letsiou S, Madesis P, Vasdekis E, Montemurro C, Grigoriou ME, Skavdis G, et al. DNA barcoding as a plant identification method. Appl Sci (Switzerland). 2024;14:1415. https://doi.org/10.3390/app14041415

52. Filipowicz N, Nee M, Renner S. Description and molecular diagnosis of a new species of Brunfelsia (Solanaceae) from the Bolivian and Argentinean Andes. PhytoKeys. 2012;10:83. https://doi.org/10.3897/phytokeys.10.2558

53. Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5:e8613. https://doi.org/10.1371/journal.pone.0008613

54. Saarela JM, Sokoloff PC, Gillespie LJ, Consaul LL, Bull RD. DNA barcoding the canadian arctic flora: Core plastid barcodes (rbcL + matK) for 490 vascular plant Species. PLoS One. 2013;8:e77982. https://doi.org/10.1371/journal.pone.0077982

55. Tanabe AS, Toju H. Two new computational methods for universal DNA barcoding: A benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. PLoS One. 2013;8:e76910. https://doi.org/10.1371/journal.pone.0076910

56. Fu N, Xu Y, Jin L, Xiao TW, Song F, Yan HF, et al. Testing plastomes and nuclear ribosomal DNA sequences as the next-generation DNA barcodes for species identification and phylogenetic analysis in Acer. BMC Plant Biol. 2024;24:445. https://doi.org/10.1186/s12870-024-05073-w

57. Altschup SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403-10. https://doi.org/10.1016/S0022-2836(05)80360-2

58. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947-8. https://doi.org/10.1093/bioinformatics/btm404

59. Tatusova TA, Madden TL. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett. 1999;174:247-50. https://doi.org/10.1111/j.1574-6968.1999.tb13575.x

60. Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022-7. https://doi.org/10.1093/molbev/msab120

61. Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1-15. https://doi.org/10.1086/284325

62. Ross HA, Murugan S, Li WL. Testing the reliability of genetic methods of species identification via simulation. Syst Biol. 2008;57:216-30. https://doi.org/10.1080/10635150802032990

63. Kuzmina ML, Johnson KL, Barron HR, Hebert PD. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library. BMC Ecol. 2012;12:25. https://doi.org/10.1186/1472-6785-12-25

64. Syme AE, Udovicic F, Stajsic V, Murphy DJ. A test of sequence-matching algorithms for a DNA barcode database of invasive grasses. DNA Barcodes. 2013;1:19-26. https://doi.org/10.2478/dna-2012-0002

65. Tsaballa A, Kelesidis G, Krigas N, Sarropoulou V, Bagatzounis P, Grigoriadou K. Taxonomic identification and molecular DNA barcoding of collected wild-growing orchids used traditionally for salep production. Plants (Basel). 2023;12:3038. https://doi.org/10.3390/plants12173038

66. Lanubile A, Stagnati L, Marocco A, Busconi M. DNA-based techniques to check quality and authenticity of food, feed and medicinal products of plant origin: A review. Trends Food Sci Technol. 2024;149:104568. https://doi.org/10.1016/j.tifs.2024.104568

67. Jamdade R, Upadhyay M, Al Shaer K, Al Harthi E, Al Sallani M, Al Jasmi M, et al. Evaluation of arabian vascular plant barcodes (rbcL and matK): Precision of unsupervised and supervised learning methods towards accurate identification. Plants. 2021;10:2741. https://doi.org/10.3390/plants10122741

68. Algarni AA. Evaluation of plastid and nuclear DNA markers in barcoding of Aloe saudiarabica, KSA. Cell Mol Biol (Noisy-le- Grand). 2023;69:126-32. https://doi.org/10.14715/cmb/2023.69.2.21

69. De Boer H, Orwick M, Verstraete RB, Gravendeel B. Molecular Identification of Plants: From Sequence to Species. Prof. Georgi Zlatarski Str. 12 1111. Sofia, Bulgaria: Pensoft; 2022. https://doi.org/10.3897/ab.e98875

70. Xiong C, Sun W, Wu L, Xu R, Zhang Y, Zhu W, et al. Evaluation of four commonly used DNA barcoding loci for Ardisia species identification. Front Plant Sci. 2022;13:860778. https://doi.org/10.3389/fpls.2022.860778

71. Wei L, Pacheco-Reyes FC, Villarreal-Quintanilla JÁ, Robledo-Torres V, Encina-Domínguez JA, Lara-Ramírez EE, et al. Effectivness of DNA barcodes (rbcL, matK, ITS2) In identifying genera and species in Cactaceae. Pak J Bot. 2024;56:1911-28. https://doi.org/10.30848/PJB2024-5(11)

72. Bafeel SO, Arif IA, Bakir M, Khan H. Comparative evaluation of PCR success with universal primers of maturase K (matK) and ribulose-1, 5-bisphosphate carboxylase oxygenase large subunit (rbcL) for barcoding of some ar. Plant Omics. 2011;4:195-8.

73. Hollingsworth PM. Refining the DNA barcode for land plants. Proc Natl Acad Sci U S A. 2011;108:19451-2. https://doi.org/10.1073/pnas.1116812108

74. Yu J, Xue JH, Zhou SL. New universal matK primers for DNA barcoding angiosperms. J Syst Evol. 2011;49:176-81. https://doi.org/10.1111/j.1759-6831.2011.00134.x

75. Karbarz M, Szlachcikowska D, Zapa? A, Le?ko A. Unlocking the genetic identity of endangered Paphiopedilum orchids: A DNA barcoding approach. Genes (Basel). 2024;15:689. https://doi.org/10.3390/genes15060689

76. Nair RR, Udayan PS, Thilaga S, Kavitha M, Bharathanandhini RM, Nizzy AM, et al. Molecular distinction of two closely resembling Morinda species using rbcL and matK loci for quality management of Indian herbal medicines. Plant Genet Resour Character Util. 2013;11:90-3. https://doi.org/10.1017/S147926211200041X

77. Bharatha Nandhini RM, Rahul RN, Thilaga S, Rao NS, Ganesh D. Molecular distinction of C×R hybrid (Coffea congensis × Coffea canephora) from morphologically resembling male parent using rbcL and matK gene sequences. South Afr J Bot. 2013;88:334-40. https://doi.org/10.1016/j.sajb.2013.08.011

78. Wong KH, Zheng T, Yue GG, Li MC, Wu HY, Tong MH, et al. A systematic approach for authentication of medicinal Patrinia species using an integration of morphological, chemical and molecular methods. Sci Rep. 2024;14:6566. https://doi.org/10.1038/s41598-024-57115-w

79. Schuettpelz E, Korall P, Pryer KM. Plastid atpA data provide improved support for deep relationships among ferns. Taxon. 2006;55:897-906. https://doi.org/10.2307/25065684

80. Zhu S, Liu Q, Qiu S, Dai J, Gao X. DNA barcoding: An efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chin Med. 2022;17:112. https://doi.org/10.1186/s13020-022-00655-y

81. Yong WTL, Mustafa AA, Derise MR, Rodrigues KF. DNA barcoding using chloroplast matK and rbcL regions for the identification of bamboo species in Sabah. Adv Bamboo Sci. 2024;7:100073. https://doi.org/10.1016/j.bamboo.2024.100073

82. Gadek PA, Quinn CJ. An analysis of relationships within the Cupressaceae sensu stricto based on rbcL sequences. Ann Missouri Bot Garden. 1993;80:581-6. https://doi.org/10.2307/2399847

83. Les DH, Philbrick CT, Novelo A. The phylogenetic position of river-weeds (Podostemaceae) Insights from rbcL sequence data. Aquat Bot. 1997;57:5-27. https://doi.org/10.1016/S0304-3770(96)01117-5

84. Chen ZD, Manchester SR, Sun HY. Phylogeny and evolution of the Betulaceae as inferred from DNA sequences. Am J Bot. 1999;86:1168-81. https://doi.org/10.2307/2656981

85. Weerasena J, Rajphriyadharshini R, Weerasena OV. DNA barcoding of medicinal plant: A systemic review. 2020;9:6-16.

86. Rattray RD, Stewart RD, Niemann HJ, Olaniyan OD, van der Bank M. Leafing through genetic barcodes: An assessment of 14 years of plant DNA barcoding in South Africa. South Afr J Bot. 2024;172:474-87. https://doi.org/10.1016/j.sajb.2024.07.055

87. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-25.

88. Nei M, Kumar S. Molecular Evolution and Phylogenetics. Madison Avenue, New York, New York 10016, USA: Oxford University Press, Inc.198; 2000.

Article Metrics
40 Views 13 Downloads 53 Total

Year

Month

Related Search

By author names

Similar Articles

DNA barcode of matK combined with ITS effectively distinguishes the medicinal plant Stephania brachyandra Diels collected in Laocai, Vietnam

Nhan Thi Thanh Pham, Dung Phuong Le, Khanh Thi Ngoc Pham,, Xaykham Thipphavong,, Mau Hoang Chu

Assessing DNA barcodes species discriminating ability and phylogenetic relation within Embelia species

Shrisha Naik Bajpe,, K. M. Marulasiddaswamy, Ramith Ramu, Abhijeeth S. Badiger, Maruthi Katenahally Rudrappa, Ramachandra Kukkundoor Kini

Revised morphology and barcoding of Strobilanthes andersonii Bedd. a critically endangered plant

Tiny Antony, Jomy Augustine, Linu Mathew

Evaluating DNA barcoding using five loci (matK, ITS, trnH- psbA, rpoB, and rbcL) for species identification and phylogenetic analysis of Capsicum frutescens

Meetali Chinnkar, Pratima Jadhav

An exploration of the phylogeny and phylogeographic relationships of the subfamily Salacioideae

Shrisha Naik Bajpe, Kuppuru Mallikarjunaiah Marulasiddaswamy, Manu G, Abhijeeth S Badiger, Ramith Ramu, Maruthi Katenahally Rudrappa, Kukkundoor Ramachandra Kini

DNA barcoding for species identification and phylogenetic investigation employing five genetic markers of Withania coagulans

Neelam Balkrishna Bare, Pratima Sharad Jadhav, Manivel Ponnuchamy

DNA barcoding-based molecular profiling of Bougainvillea, Dianthus, and Plumeria using matK locus

Nischay Patel, Wesley Ochieng’ Otieno, Nilesh D. Gawande, Sourabh Parmar, Karthik H N, Subramanian Sankaranarayanan

Identification of Mango (Mangifera indica L.) cultivars in the Mekong Delta using ISSR markers and DNA barcodes

Thuy Phuong Nguyen, Khang Tan Do