Research Article | Volume 13, Supplement 1, July, 2025

Effect of Phytophthora drechsleri f. sp cajani infection on local pigeon pea variety of Gujarat

Kirti A. Yadav Satheesh S. J. Naik Vasantika Chauhan Neelam Yadav Yachana Jha   

Open Access   

Published:  Jul 03, 2025

DOI: 10.7324/JABB.2025.214212
Abstract

Pigeon pea (Cajanus cajan L), is a perennial crop plant of arid and semiarid regions and its growth has been affected by many biotic stresses and phytophthora blight is one of them. Phytophthora drechsleri f. sp cajani is a causative agent of phytophthora blight disease in pigeon pea. The morphological, anatomical, and biochemical analysis of two local pigeon pea varieties Shrawani and Shweta for phytophthora infection was assayed in this study. The morphological investigation showed that the infection significantly decreased root length; shoot length, number of leaves, fresh weight, and dry weight by 0.5–2 fold in the Shrawani variety, compared to Shweta. In anatomical analysis, infected Shrawani especially showed signs of cellular damage and mycelial invasion, but the infected Shweta variety showed no symptom of fungal development in another part of the plant except in the roots by the 20th day of infection. The results of the biochemical analysis were related to the morphological and anatomical analysis. These results highlight the strong defensive mechanisms in Shweta, which was characterized by prolonged biochemical responses and enhanced lignification. These findings propose a piece of critical valuable information for screening pigeon pea varieties for resistance toward phytophthora.


Keyword:     Anatomical analysis biochemical analysis pigeon pea phytophthora blight morphological PR Proteins


Citation:

Yadav KA, Naik SSJ, Chauhan V, Yadav N, Jha Y. Effect of Phytophthora drechsleri f. sp cajani infection on local pigeon pea variety of Gujarat. J Appl Biol Biotech. 2025;13(Suppl 1):62–68. http://doi.org/10.7324/JABB.2025.214212

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Sarkar S, Panda S, Yadav KK, Kandasamy P. Pigeon pea (Cajanus cajan) an important food legume in Indian scenario-A review. Legume Res Int J 2020;43(5):601–10; doi: http://doi.org/10.18805/LR-4021

2. Food and Agriculture Organization of the United Nations. Rome, Italy: FAO; 2023. (Accessed 18 June 2024).

3. Jha Y, Yadav KA, Mohamed HI. Plant growth-promoting bacteria and exogenous phytohormones alleviate the adverse effects of drought stress in pigeon pea plants. Plant Soil 2023;17:1–21; doi: http://doi.org/10.1007/s11104-023-06155-8

4. Pande S, Sharma M, Mangla UN, Ghosh R, Sundaresan G. Phytophthora blight of Pigeon pea (Cajanus cajan (L.) Millsp.): an updating review of biology, pathogenicity and disease management. Crop Prot 2011;30(8):951–7; doi: http://doi.org/10.1016/j.cropro.2011.03.031

5. Sharma M, Ghosh R, Tarafdar A, Telangre R. An efficient method for zoospore production, infection and real-time quantification of Phytophthora cajani causing Phytophthora blight disease in Pigeon pea under elevated atmospheric CO2. BMC Plant Biol 2015;15(90):1– 12; doi: http://doi.org/10.1186/s12870-015-0470-0

6. Sharma M, Pande S, Pathak M, Rao JN, Kumar PA, Reddy DM, et al. Prevalence of Phytophthora blight of pigeon pea in the Deccan Plateau of India. Plant Pathol J 2006;22(4):309–13; doi: http://doi.org/10.5423/PPJ.2006.22.4.309

7. Singh CK, Sudhir I, Chand R, Singh V, Sharma M. Variability in Phytophthora drechsleri f. sp. cajani and effect of temperature. J Pure Appl Microbiol 2017;11(2):1053–9; doi: http://doi.org/10.22207/JPAM.11.2.48

8. Jha Y. Enhanced cell viability with induction of pathogenesis related proteins against Aspergillus niger in maize by endo-rhizospheric bacteria. Jordan J Biol Sci 2022;15(1):139–47; doi: http://doi.org/10.54319/jjbs/150119

9. Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, et al. How do plants defend themselves against pathogens- Biochemical mechanisms and genetic interventions? Physiol Mol Biol Plants 2022;28(2):485–504; doi: http://doi.org/10.1007/s12298-022-01146-y

10. Dos Santos C, Franco OL. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. Plants (Basel) 2023;12(11):2226; doi: http://doi.org/10.3390/plants12112226

11. Saeed A, Tahira. Plant defense mechanisms against bacterial pathogens. J Genet Genomic Sci 2019;3:12; doi: http://doi.org/10.24966/GGS-2485/100012

12. Baba SA, Malik SA. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J Taibah Univ Sci 2015;9(4):449–54; doi: http://doi.org/10.1016/j.jtusci.2014.11.001

13. El-Haci IA, Bekkara FA, Mazari W, Hassani F, Didi MA. Screening of biological activities of Polygonum maritimum L. from Algerian coast. Asian Pac J Trop Biomed 2013;3(8):611–6; doi: http://doi.org/10.1016/S2221-1691(13)60124-0

14. Pan SQ, Ye XS, Ku? J. Association of β-1, 3-glucanase activity and isoform pattern with systemic resistance to blue mould in tobacco induced by stem injection with Peronospora tabacina or leaf inoculation with tobacco mosaic virus. Physiol Molec Pl Pathol 1991;39(1):25–39; doi: http://doi.org/10.1016/0885-5765(91)90029-H

15. Boller T, Mauch F. Colorimetric assay for chitinase. Meth Enzymol 1988;161:430–5; doi: http://doi.org/10.1016/0076-6879(88)61052-4

16. Reissig JL, Strominger JL, Leloir LF. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 1955;217(2):959–66; doi: http://doi.org/10.1016/S0021-9258(18)65959-9

17. Vågsholm I, Arzoomand NS, Boqvist S. Food security, safety, and sustainability—getting the trade-offs right. Front Sustain Food Syst 2020;4:16; doi: http://doi.org/10.3389/fsufs.2020.00016

http://doi.org/10.3389/fsufs.2020.00016

18. Piquerez SJ, Harvey SE, Beynon JL, Ntoukakis V. Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Front Plant Sci 2014;3(5):671; doi: http://doi.org/10.3389/fpls.2014.00671

19. Van Dijk LJA, Ehrlén J, Tack AJM. Direct and insect-mediated effects of pathogens on plant growth and fitness. J Ecol 2021;109:2769–79; doi: http://doi.org/10.1111/1365-2745.13689

20. Hussain K, Jaweed TH, Kamble AC. Modulation of phenylpropanoid and lignin biosynthetic pathway is crucial for conferring resistance in pigeon pea against Fusarium wilt. Gene 2023;851:146994; doi: http://doi.org/10.1016/j.gene.2022.146994

21. Lee MH, Jeon HS, Kim SH, Chung JH, Roppolo D, Lee HJ, et al. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J 2019;38(23):e101948; doi: http://doi.org/10.15252/embj.2019101948

22. Jha Y. Differential fungal metabolite accumulation in response to abiotic and biotic stresses. In: Kamel A. Abd-Elsalam, Mohamed HI (eds.). Nanobiotechnology for plant protection, fungal secondary metabolites, Elsevier, Giza, Egypt, pp 457–67; doi: http://doi.org/10.1016/B978-0-323-95241-5.00014-9

23. Dehghanian Z, Habibi K, Dehghanian M, Aliyar S, Lajayer BA, Astatkie T, et al. Reinforcing the bulwark: unravelling the efficient applications of plant phenolics and tannins against environmental stresses. Heliyon 2022;8(3):e09094; doi: http://doi.org/10.1016/j.heliyon.2022.e09094

24. Wang L, Chen M, Lam PY, Dini-Andreote F, Dai L, Wei Z. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome 2022;10(1):233; doi: http://doi.org/10.1186/s40168-022-01420-x

25. Long L, Liu J, Gao Y, Xu FC, Zhao JR, Li B. Flavonoid accumulation in spontaneous cotton mutant results in red coloration and enhanced disease resistance. Plant Physiol Biochem 2019;143:40–9; doi: http://doi.org/10.1016/j.plaphy.2019.08.021

http://doi.org/10.1016/j.plaphy.2019.08.021

26. Perrot T, Pauly M, Ramírez V. Emerging roles of β-Glucanases in plant development and adaptative responses. Plants (Basel) 2022;11(9):1119; doi: http://doi.org/10.3390/plants11091119

27. Wang Y, Liu M, Wang X, Zhong L, Shi G, Xu Y, et al. A novel β-1,3-glucanase Gns6 from rice possesses antifungal activity against Magnaporthe oryzae. J Plant Physiol 2021;265:153493; doi: http://doi.org/10.1016/j.jplph.2021.153493

http://doi.org/10.1016/j.jplph.2021.153493

28. Fesel PH, Zuccaro A. β-Glucan: crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol 2016;90:53– 60; doi: http://doi.org/10.1016/j.fgb.2015.12.004

29. Poria V, Rana A, Kumari A, Grewal J, Pranaw K, Singh S. Current perspectives on chitinolytic enzymes and their agro-industrial applications. Biology (Basel) 2021 12;1319; doi: http://doi.org/10.3390/biology10121319

30. Jain D, Khurana JP. Role of pathogenesis-related (PR) proteins in plant defense mechanism. In: Singh A, Singh IK (eds.). Molecular aspects of plant-pathogen interaction, Springer, Singapore, pp 265– 81, 2018; doi: http://doi.org/10.1007/978-981-10-7371-7_12

http://doi.org/10.1007/978-981-10-7371-7_12

31. Zhou Z, Zhu Y, Tian Y, Yao J-L, Bian S, Zhang H, et al. MdPR4, a pathogenesis-related protein in apple, is involved in chitin recognition and resistance response to apple replant disease pathogens. J Plant Physiol 2021;260:153390; doi: http://doi.org/10.1016/j.jplph.2021.153390

Article Metrics
75 Views 48 Downloads 123 Total

Year

Month

Related Search

By author names

Similar Articles

Influence of soaking and germination treatments on the nutritional, anti-nutritional, and bioactive composition of pigeon pea (Cajanus cajan L.)

Qurat Ul Eain Hyder Rizvi, Krishan Kumar, Naseer Ahmed, Ajar Nath Yadav, Divya Chauhan, Priyanka Thakur, Sumaira Jan, Imran Sheikh

Isolation and Identification by Morphological and Biochemical Methods of Antibiotic Producing Microorganisms from the gut of Macrotermes michaelseni in Maseno, Kenya

Aswani Susan Ayitso, David Miruka Onyango

Morphological Trait, Molecular Genetic Evidence and Proteomic Determination of Different Chickens (Gallus gallus) Breeds

Wirot Likittrakulwong, Pisit Poolprasert, Sittiruk Roytrakul

Mushroom fruiting body yield and morphological characteristics from different strains of Pleurotus eryngii

Iryna Bandura, Omoanghe S. Isikhuemhen, Alina Kulik, Nina Bisko, Maryna Serduik, Volodymyr Khareba, Olena Khareba, Iryna Ivanova, Olesya Priss, Oleksandr Tsyz, Serhii Makohon, Serhii Chausov

Woodfordia fruticosa (Linn.) Kurz’s fungal endophyte Mucor souzae’s secondary metabolites, kaempferol and quercetin, bestow biological activities

Kavyashree Doreswamy, Priyanka Shenoy, Sneha Bhaskar, Ramachandra K. Kini, Shailasree Sekhar

Phenotypic variation and genetic divergence studies in Cameroonian potato (Solanum tuberosum L.) genotypes

Mariette Anoumaa, Eric Bertrand Kouam, Gabriel Kanmegne, Yanick Borel Kamga, Hervé Djomo Sime, Lisette Laure Chimi Nkombo, Théophile Fonkou

A computational statistical approach to assess cowpea [Vigna unguiculata (L.) Walp.] cultivars diversity and select elite genotypes from Agro-morphological and biochemical traits

Noel Dougba Dago, Jean Simon Konan Assouman, Saraka Didier Martial Yao, Nafan Diarrassouba

Terfezia claveryi truffles at Hafr Al Batin, Saudi Arabia: A study based on morphological and molecular characterizations

Sabry Younis Mahmoud