Home >Archive

Volume: 3, Issue: 1, Jan-Feb, 2015
DOI: 10.7324/JABB.2015.3104

Research Article

Comparison of microbiological parameters in experimental and conventional recirculation aquaculture systems

Ivaylo Sirakov, Katya Velichkova, Stefka Stoyanova

  Author Affiliations


The purpose of current study was to compare the influence on sanitary - hygienic parameters of water in recirculation aquaculture systems (RAS) using natural zeolite and macrophytes Lemna minor and Elodea canadensis like a part of its filtration system with the microbiological indicators of water in conventional RAS. For the quantitative determination the total number of mesophilic microorganisms in 1 ml of water, and the number of certain sanitary indicative (coliforms, E.coli, Enterobacteriaceae) and pathogenic (Salmonella spp.) microorganism were used textile substrates with pre-installed on them selective chromogenic nutrient media. Microbiological testing of water in the both recirculation systems indicated that the total number microorganisms, sanitary indicative coliform bacteria as well as pathogens from the genus Salmonella in recirculation system using natural zeolite and macrophytes like a filter more rapidly declined their numbers compared with microbiological parameters of conventional RAS.


Macrophyte, microbiological parameters, RAS, zeolite.

Citation: Ivaylo Sirakov, Katya Velichkova, Stefka Stoyanova. Comparison of microbiological parameters in experimental and conventional recirculation aquaculture systems. J App Biol Biotech, 2015; 3 (01): 021-023. DOI: 10.7324/JABB.2015.3104

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. Martins C, Eding E, Verdegem M, Heinsbroek L, Schneider O, Blancheton J, Roque d’Orbcastel E, Verreth J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural Engineering. 2010; 43(3): 83-93.

2. Booker N, Cooney E, Priestley A. Ammonia Removal from Sewage using Australian Zeolite. Wat. Sci. Tech. 1996; 34(9): 17-24.

3. Brix H. Functions of macrophytes in constructed wetlands. Water Sci. Tech. 1994; 4: 71–78.

4. Awuah E. Pathogen Removal Mechanisms in Macrophyte and Algal Waste Stabilization Ponds. Dissertacion, Published by: Taylor & Francis/Balkema; 2006.

5. McDonnell A, Beving D, Wang A, Chen W, Yan Y. Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation. Adv. Funct. Mater. 2005; 15 (2): 336-340.

6. Michaud L, Lo Giudice A, Troussellier M, Smedile F, Bruni V, Blancheton J. Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system. Journal of Applied Microbiology. 2009; 107: 1935-1946.

7. Patir B, Inanli A. Microbiological quality and TMA-N levels of fresh horse Mackerel (Trachurus mediterraneus, S. 1868) marketed in elazig. F.U. Fen ve Muhendislik Bilimleri Dergisi. 2005; 17: 360-369.

8. Cahill M. Bacterial flora of fishes: A review. Microbial Ecology. 1990; 19 (1): 21-41.

9. Brown E, Gratzek J. 1980. Fish Farming Handbook. Van Nostrand Reinhold, New York; 1980.

10. Jordanov D, Kitanov B, Valev S. 1963. Flora Reipublicae Popularis Bulgaricae, Sofia, Acad. Press; 1963 (Bg).

11. Pal D, Gupta C. 1992. Microbial Pollution in Water and its Effects on Fish. Journal of Aquatic Animal Health. 1992; 4: 32 - 39.

12. Kleinheinz G, Coenan A, Zehms T, Preedit J, Leewis M, Becker D, McDermott C. Effect of aquatic macrophytes on the survival of Escherichia coli in a laboratory microcosm. Lake and Reservoir Management. 2009; 25 (2): 149-154.

13. Gagnon V, Chazarenc F, Comeau Y, Brisson J. Influence of macrophyte species on microbial density and activity in constructed wetlands. Water Sci Technol. 2007; 56 (3): 249-54.

14. Barth-Wirsching U, Höller H. 1989. Experimental studies on zeolite formation conditions. Eur J Mineral. 1989; 1: 489–506.

15. Heinitz M, Ruble R, Wagner D, Tatini S. Incidence of Salmonella in fish and seafood. J. Food Prot. 2000; 63: 579–592.

16. Spira WM, Hug A, Ahmed QS, Saeed YA (1981). Uptake of Vibrio cholerae biotype eltor from contaminated water by water hyacinth (Eichhornia crassipes). Appl. Environ. Microbiol. 1981; 42: 50-553.

17. Awuah E, Oppong-Peprah M, Lubberding HJ, Gijzen HJ. Comparative performance studies of macrophyte and algal-based stabilization ponds. J. Toxicol. and Environ. Health. 2004; 67: 1-13.

18. Awuah E, Anohene F, Asante K, Lubberding HJ and Gijzen HJ. Environmental conditions and pathogen removal in macrophyte and algal-based domestic wastewater treatment systems. Wat. Sci. Tech. 2001; 44 (6): 11-18.

Article Metrics

Similar Articles