Research Article | Volume: 5, Issue: 4, July-August, 2017

Potential of FTIR spectroscopy in chemical characterization of Termitomyces Pellets

Rosy Agnes D#;Souza Nandkumar Mukund Kamat   

Open Access   

Published:  Aug 14, 2017

DOI: 10.7324/JABB.2017.50412
Abstract

Potential of Fourier-Transform Infrared (FTIR) spectroscopy was assessed and Hierarchical Cluster Analysis (HCA) was applied over entire range of spectra for determining characteristic chemical compositional similarity of 11 different Termitomyces Heim strains using 20 days old pelletized dry biomass produced under submerged shaken condition at 28±1oC. Four dominant spectral windows showing C-H, O-H stretching region, amide I, amide II and polysaccharide regions were identified displaying characteristic variable bands across species at 3400-3200 cm-1, 2900-2850 cm-1, 2350-2215 cm-1, 1750 cm-1, 1658-1625 cm-1, 1582-1547 cm-1, 1375-1315 cm-1 and 900-725 cm-1. The HCA dendrogram showed formation of two major clusters based on their presumptive chemical similarity.


Keyword:     Termitomyces FTIR Hierarchical Cluster Chemometry Spectral windows Pellet.


Citation:

D'Souza RA, Kamat NM. Potential of FTIR spectroscopy in chemical characterization of Termitomyces Pellets. J App Biol Biotech. 2017; 5 (04): 080-084. DOI: 10.7324/JABB.2017.50412

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Lecellier A, Mounier J, Gaydou V, Castrec L, Barbier G, Ablain W, Manfait M, Toubas D, Sockalingum GD. Differentiation and identification of filamentous fungi by high-throughput FTIR spectroscopic analysis of mycelia. International Journal of Food Microbiology. 2014; 168:32-41.

2. Fischer G, Braun S, Thissen R, Dott W. FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. Journal of Microbiological Methods. 2006; 64(1):63-77.

3. Aguiar JC, Mittmann J, Ferreira I, Ferreira-Strixino J, Raniero L. Differentiation of Leishmania species by FT-IR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 142:80-85.

4. Amiel C, Mariey L, Curk-Daubié MC, Pichon P, Travert J. Potentiality of Fourier transform infrared spectroscopy (FTIR) for discrimination and identification of dairy lactic acid bacteria. Le Lait. 2000; 80(4):445-459.

5. Johler S, Stephan R, Althaus D, Ehling-Schulz M, Grunert T. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy. Systematic and Applied Microbiology. 2016; 39(3):189-194.

6. Santos C, Fraga ME, Kozakiewicz Z, Lima N. Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Research in Microbiology. 2010; 161(2):168-175.

7. Lecellier A, Gaydou V, Mounier J, Hermet A, Castrec L, Barbier G, Ablain W, Manfait M, Toubas D, Sockalingum GD. Implementation of an FTIR spectral library of 486 filamentous fungi strains for rapid identification of molds. Food Microbiology. 2015; 45:126-134.

8. Mohacek-Grosev V, Bozac R, Puppels GJ. Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2001; 57(14):2815-2829.

9. Liu G, Liu JH, Yang AM, Dong Q, Song DS. Identification of edible mushrooms by Fourier transform infrared spectroscopy. Guang pu xue yu guang pu fen xi= Guang pu. 2004; 24(8):941-945.

10. Gonzaga ML, Ricardo NM, Heatley F, Soares SD. Isolation and characterization of polysaccharides from Agaricus blazei Murill. Carbohydrate Polymers. 2005; 60(1):43-49.

11. Shapaval V, Moretro T, Suso HP, Asli AW, Schmitt J, Lillehaug D, Martens H, Bocker U, Kohler A. A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi. Journal of Biophotonics. 2010; 3(8-9): 512-521.

12. Erukhimovitch V, Pavlov V, Talyshinsky M, Souprun Y, Huleihel M. FTIR microscopy as a method for identification of bacterial and fungal infections. Journal of Pharmaceutical and Biomedical Analysis. 2005; 37(5):1105-1108.

13. Bastert J, Korting HC, Traenkle P, Schmalreck AF. Identification of dermatophytes by Fourier transform infrared spectroscopy (FT-IR). Mycoses. 1999; 42(9-10):525-528.

14. Naumann A, Navarro-González M, Peddireddi S, Kües U, Polle A. Fourier transform infrared microscopy and imaging: detection of fungi in wood. Fungal Genetics and Biology. 2005; 42(10): 829-835.

15. Shapaval V, Schmitt J, Moretro T, Suso HP, Skaar I, Asli AW, Lillehaug D, Kohler A. Characterization of food spoilage fungi by FTIR spectroscopy. Journal of Applied Microbiology. 2013; 114(3):788-796.

16. Edwards HG, Russell NC, Weinstein R, Wynn‐Williams D. Fourier transform Raman spectroscopic study of fungi. Journal of Raman Spectroscopy. 1995; 26(8-9):911-916.

17. Das SK, Das AR, Guha AK. Structural and nanomechanical properties of Termitomyces clypeatus cell wall and its interaction with chromium (VI). The Journal of Physical Chemistry B. 2009; 113(5):1485-1492.

18. Kansci G, Mossebo DC, Selatsa AB, Fotso M. Nutrient content of some mushroom species of the genus Termitomyces consumed in Cameroon. Molecular Nutrition and Food Research. 2003; 47(3):213-216.

19. Pahlevanlo A. Diversity nutritional value and bioactive principles from Termitomyces species of Kodagu region in Karnataka. Doctoral Thesis at Department of Microbiology, University of Mysore. 2013. [cited 2017 March 4]. Available from http://ir.inflibnet.ac.in:8080/jspui/handle/10603/72039.

20. Qi J, Ojika M, Sakagami Y. Neuritogenic cerebrosides from an edible Chinese mushroom. Part 2: Structures of two additional termitomycesphins and activity enhancement of an inactive cerebroside by hydroxylation. Bioorganic and Medicinal Chemistry. 2001; 9(8):2171-2177.

21. Choi JH, Maeda K, Hirai H, Harada E, Kawade M, Qi J, Ojika M, Kawagishi H. Novel Cerebroside, Termitomycesphin I, from the Mushroom, Termitomyces titanicus. Bioscience, Biotechnology, and Biochemistry. 2012; 76(7):1407-1409.

22. Olila D, Kyeyune G, Kabasa JD, Kisovi L, Munishi PKT. Assessment of potential for domestication of Termitomyces microcarpus: An indigenous edible and medicinal mushroom from the lake Victoria Basin. Agricultural Journal. 2007; 2(5):627-631.

23. D’Souza RA, Kamat NM. Importance of understanding pellelization in Termitomyces Heim species for potential applications to produce edible nutritious mycoprotein. Presented at 8th International Conference on Mushroom Biology and Mushroom Products, 19-22th November 2014 at NASC complex, New Delhi. [cited 2017 March 4] Available from http://f1000.com/posters/browse/summary/1097335.

24. Das SK, Guha AK. Biosorption of chromium by Termitomyces clypeatus. Colloids and Surfaces B: Biointerfaces. 2007; 60(1):46-54.

25. Ramrakhiani L, Majumder R, Khowala S. Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: Surface characterization and mechanism of biosorption. Chemical Engineering Journal. 2011; 171(3):1060-1068.

26. Ramrakhiani L and Khowala, S. Effect of pretreatment on hexavalent chromium biosorption and multimetal biosorption efficiency of Termitomyces clypeatus biomass. International Journal of Integrative Sciences, Innovation and Technology. 2012; 1:7-15.

27. Fathima A, Aravindhan R, Rao JR, Nair BU. Biomass of Termitomyces clypeatus for chromium (III) removal from chrome tanning wastewater. Clean Technologies and Environmental Policy. 2015; 17(2):541-547.

28. Heim R. Termites et Champignons. Boube´e: Paris. 1977.

29. Morris B. Notes on the genus Termitomyces Heim in Malawi. The Society of Malawi Journal. 1986; 40-49.

30. Botha WJ, Eicker A. Cultural studies on the genus Termitomyces in South Africa. I. Macro- and microscopic characters of basidiome context cultures. Mycological Research. 1991; 95(4):435-443.

31. Pegler DN, Vanhaecke M. Termitomyces of Southeast Asia. Kew Bulletin. 1994, p. 717-736.

32. Tibuhwa DD, Kivaisi AK, Magingo FSS. Utility of the macro-micromorphological characteristics used in classifying the species of Termitomyces. Tanzania Journal of Science. 2010; 36(1).

33. Tibuhwa DD. Termitomyces Species from Tanzania, Their Cultural Properties and Unequalled Basidiospores. Journal of Biology and Life Science. 2012; 3(1).

34. Karun NC, Sridhar KR. Occurrence and distribution of Termitomyces (Basidiomycota, Agaricales) in the Western Ghats and on the west coast of India. Czech Mycology. 2013; 65(2):233-254.

35. Savitzky A, Golay MJ. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. 1964; 36(8):1627-1639.

36. Dziuba B, Babuchowski A, Nałęcz D, Niklewicz M. Identification of lactic acid bacteria using FTIR spectroscopy and cluster analysis. International Dairy Journal. 2007; 17(3):183-189.

37. Zhu Y, Tan AT. Chemometric Feature Selection and Classification of Ganoderma lucidum Spores and Fruiting Body Using ATR-FTIR Spectroscopy. American Journal of Analytical Chemistry. 2015; 6(10):830-840.

38. Szeghalmi A, Kaminskyj S. Gough KM. A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions. Analytical and Bioanalytical Chemistry. 2007; 387(5):1779-1789.

39. Rinaudo M, Chitin and chitosan: properties and applications. Progress in Polymer Science. 2006; 31(7):603-632.

40. Di Mario F, Rapana P, Tomati U, Galli E. Chitin and chitosan from Basidiomycetes. International Journal of Biological Macromolecules. 2008; 43(1):8-12.

41. Barberel SI, Walker JR. The effect of aeration upon the secondary metabolism of microorganisms. Biotechnology and Genetic Engineering Reviews. 2000; 17(1):281-326.

42. Barry DJ, Williams GA. Microscopic characterisation of filamentous microbes: towards fully automated morphological quantification through image analysis. Journal of Microscopy. 2011; 244(1):1-20.

43. Trinci AP. Kinetics of the growth of mycelial pellets of Aspergillus nidulans. Archives of Microbiology. 1970; 73(4):353-367.

44. Bizukojc M, Ledakowicz S. The morphological and physiological evolution of Aspergillus terreus mycelium in the submerged culture and its relation to the formation of secondary metabolites. World Journal of Microbiology and Biotechnology. 2010; 26(1):41-54.

45. Pirt SJ. A theory of the mode of growth of fungi in the form of pellets in submerged culture. Proceedings of the Royal Society of London B: Biological Sciences. 1966; 166(1004):369-373.

46. Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews. 2002; 66(3):447-459.

47. Cho YJ, Hwang HJ, Kim SW, Song CH, Yun JW. Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. Journal of Biotechnology. 2002; 95(1):13-23.

48. Welthagen JJ, Viljoen BC. The value of certain chemotaxonomic methods in the identification of food related yeasts. Food Microbiology. 1997; 14(3):231-245.

49. Mariey L, Signolle JP, Amiel C, Travert J. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vibrational Spectroscopy. 2001; 26(2):151-159.

50. Kümmerle M, Scherer S, Seiler H. Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Applied and Environmental Microbiology. 1998; 64(6):2207-2214.

Article Metrics
182 Views 60 Downloads 242 Total

Year

Month

Related Search

By author names