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An array of industrial dyes most often azo dyes (-N=N-) deployed for different staining purposes, consequently
impacting the environment significantly. The increasing pace of dye production often produces enormous wastewater
from textile processing. After processing steps, dyes concentration remains left in expelled wastewater, consequently
causing water pollution, and triggers negative toxicological impacts. However, remediation or decolorization is
necessitating minimizing its negative consequences. Improper treatment of dye-containing waste waters triggers

I};iegr:nolglisi;ltion pollution of soil, water bodies, and so on. Numerous biological, physical, and chemical approaches for dye
Bacteria, ’ degradation and wastewater decolorization have been established. However, the high cost and practical feasibility of
Dyes, such methodologies remain obstacles in dye-containing wastewater. Microbial-assisted remediation is predominantly
Environmental sustainability, resilient to transforming dye compounds and reducing toxicity from water matrices in the ability to cope and provide
Fungi. cost-effective and efficient solutions. To cover the literature gap, and highlighting recent update information on
dye remediation, we outlined different azo dyes, and their remediation deploying different physicochemical and
microbial-mediated systems. In addition, recent advances in dye degradation, together with concluding remarks and

future perspectives, have been pointed out.
1. INTRODUCTION affinity towards the substrate to which it is being applied by giving

it an everlasting color. These have been applied to products such as
paint [2], plastic [3], textile [4] printing ink [5], pharmaceuticals [6],
cosmetics [7], photographic, and paper [8]. According to estimates,
more than 10,000 dyes and pigments are put to industrial use and over
7 x 10° tons of synthetic dyes are annually produced across the world
and 10% of which is released into the water [9].

Water is a key resource to sustain life on earth. Better access to clean
water, sanitation services, and water management create tremendous
strategies for the economic growth of the country. Water pollution due
to various effluents is a cause of concern worldwide. There is a rising
demand for adopting practices to minimize water pollution. Among
all industries, the textile industry is one of the leading contributors to

pollution by liquid effluents and the reason is the use of high quantities Azo dyes are most extensively used in the textile industry
of water in the process of dyeing [1]. One of such industrial waste (60-70%) [10]. These have nitrogen-nitrogen (N=N) in their chemical
that is considered as hazardous pollutant is dye. Dye is an organic structure. The azo group is generally connected to naphthalene and

(natural or synthetic chemical), colored compound which has an benzene rings and could also be attached to enolizable aliphatic groups
or aromatic heterocyclic. These attached side groups to the ring are
necessary for the dye to impart the color, with a variety of shades and
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as per the legislation and freely release these toxic chemicals into
the environmental sink. Color is one of the obvious water pollution
indicators and is usually the first recognized contaminant [13].
The dye presence in water bodies interferes with the penetration of
sunlight [14] and adversely affects the aquatic ecosystem. Some of the
azo dyes are mutagenic and very toxic to living organisms [15]. Their
discharge in water bodies could result in serious health issues and can
have chronic and acute effects on aquatic life [16].

Several factors, including the type of dye, wastewater composition,
environmental fate, and operation and handling costs of generated
waste products, determine the economic and technical feasibility
of each single dye removal technique. Different physicochemical
methods such as membrane filtration, flocculation or coagulation,
ion exchange (Dotto et al., 2012), adsorption, electrolysis, activated
carbon, Fenton’s reagent, ozonation, and advanced oxidation process
are utilized by industries to remove dye from the effluents. Such
methods are often very costly, less efficient, and inapplicable to a wide
dyes variety [17]. Moreover, these methods generate concentrated
sludge which creates a disposal problem [18].

Bioremediation or utilization of microbial-based techniques to deal with
pollution is a key area of research in the field of environmental sciences
where naturally developed or acclimatized microbes are used to transform
various toxic chemical compounds into less toxic forms. In the process
of biological treatment, microorganisms follow two methods: adsorption
on microbial biomass and dye biodegradation by the microbial cells [19].
Adsorption of dye may be on live cells of microbes or dead cells of
microbes and this type of adsorption on biomaterial is also known as
biosorption, where the dye original structure remains untouched, that
is, not fragmented. On the hand in biodegradation, the structure of the
original dye is fragmented or broken by microorganisms, thus achieving
complete mineralization in certain cases, that is, conversion to some
inorganic salts, CO, and H,0. On studying the mechanism involved in
the two processes (biosorption and biodegradation), biodegradation was
more convincing. The process of biosorption does not remove or destroy
the dye, instead entraps the dye in biomatrix (microbial cells). Dumping
of these microbial cells having absorbed dye itself is a roadblock in
their projected role in the bio-cleaning of colored water [20]. Thus,
because of the disposal of adsorbed biomass, biosorption might
not be the pragmatic approach for treating colored effluent from
industries [21]. The effectiveness of microbial decolorization depends
on the activity and adaptability of the selected microorganisms.
Several microbiomes, including bacteria, fungi, and algae, are
capable of biodegrading azo dyes, among which bacteria represent a most
promising tool for the removal of the azo dye from textile effluents [22].
The environmentally friendly and efficient technologies development to
decrease the content of dye in wastewater is of utmost important. An
insight into the present review detailed the role of microbial systems in
the bioremediation of environmental pollutants, their mechanism, and
factors affecting biodegradation.

2. CLASSIFICATION OF DYES

The society of dyers and colorists (TDC) and the American Association
of Textile Chemists and Colorists had classified the dyes based on
their color, structure, and application method which are revised every
3 months since 1924. A C.I. (Color index number) generic name was
given to each dye based on the color as well as its application and
characteristics. Dyes based on their origin are classified into two types,
namely, natural and synthetic.

2.1. Natural Dye

The dyes obtained from natural sources are called natural dyes.
They are mostly applied to textiles using mordants. These mordants
are metallic salts that have a high affinity for fiber as well as any
coloring matter. These metallic mordants after mixing with dye in
fiber form an insoluble precipitate, leading to both dye and mordant
getting fixed [23]. On the basis of the chemical constitution, a
natural dye can further be classified namely, indigoid dyes, alpha-
hydroxynaphthoquinones, flavones, dihydropyrans, anthocyanidins,
and carotenoids. Indigoid dye’s most common examples are indigo
and Tyrian purple [24]. This dye type is obtained from the leaves of
a wood plant as it possesses indigo as the key component in dyeing.
Oppositely, alpha-hydroxy-naphthoquinones is a lawsone also known
as Heena. It is mainly cultivated in Egypt and India. This dye type
is also found in the unripe walnuts shell which gives orange color
shades [25]. Flavones are colorless organic compounds. In general,
natural yellows are derivatives of methoxy and hydroxyl substituted
isoflavones and flavones. Weld (containing luteolin pigment) is a
common example, which gives bright and fast colors to silk and
wool [26]. Dihydropyrans are similar in chemical structure to flavones.
Some examples are hematin and its leuco form, hematoxylin. These
categories of natural dyes give dark shades to wool, silk, and cotton.
Some of the common sources of these dyes are brazilwood, sappan
wood, and logwood. Another dye, anthocyanidins, naturally possesses
orange dye for cotton, and these are extracted from Bignonia chica
leaves. Carotene is derivative of orange pigment found in carrots.
Carotenoids owe their color to the conjugated double bonds which
are present in their structure. Annatto and saffron are examples of
carotenoids [27].

2.2. Synthetic Dyes

Synthetic dyes are man-made petrochemicals that may consist of lead,
mercury, copper, sodium chloride, toluene, chromium, and benzene.
Synthetic dyes have a brighter and wider range of colors, longer
color permanence, and are easier, faster, and cheaper to produce in
comparison with natural dyes. There are over 10,000 different types
of synthetic dyes. Synthetic dyes are categorized on the basis of
their chemical composition and the method of their application in
the dyeing process. Although natural dyes are important from the
chemical and historical point of view, these dyes are very expensive,
need purification, and do not bind well because they lack the chemical
grouping required to react with the binding sites of a fabric. Therefore,
for dyeing applications, synthetic colors are utilized in place of
natural dyes. This is because synthetic dyes are generally purer, less
expensive, and their colors bind faster to the fabric [28]. Synthetic
dyes are classified into three categories including anionic, non-ionic
acid, and azo dyes. Anionic synthetic dyes include acid and whereas
non-ionic dyes are basic, dyes are also known as cationic. On the other
hand, dyes can be classified based on their chemical structure into
anthraquinone dyes and azo dyes [29].

Azo dyes are characterized by being strong, having good all-around
properties, and being less expensive. This dye has at least one azo bond
(-N=N-), along with one or more aromatic structures. Azo dyes are
intended to transport resistance and high photolytic stability toward
major oxidizing agents. They have wide variety of applications in
textile, food making, and cosmetic industries [3]. After azo dyes,
anthraquinone dyes are widely used textile dyes [30]. Anthraquinone
dyes have a wide color range and it almost covers the whole visible
light spectrum. Dyes based on anthraquinone are the most resistant
to degradation because of their fused aromatic structures, which
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retain the color for a duration [31]. Acid dyes are soluble in water
and is used for silk, wool, nylon, modified acrylics, leather, paper,
ink-jet printing, cosmetics, and food. The principal chemical classes
of acid dyes are azo (including premetallized), anthraquinone, azine,
triphenylmethane, nitro, nitroso, and xanthene [32]. Metal complex
dyes consist of dyestuff and metal (usually chrome such as chromium,
cobalt, nickel, and copper) and are being used since the 1940s. On
the other hand, direct dyes are compounds of poly azo having some
phthalocyanines, oxazines, and stilbenes. These dyes types are the
anionic dye having water-soluble properties. They are utilized in dying
rayon, cotton, nylon, leather, and paper [33]. Basic dyes are utilized
on polyacrylonitrile, paper, cation dyeable polyethylene terephthalate
modified polyesters, modified nylons, and in medicines. Dyes yield
colored cations in a solution and they are known as cationic dyes.
The chemical structure of basic dyes encompasses triarylmethane,
aromatic methane, xanthene, thiazine, hemicyanine, oxazine, cyanine,
and acridine [32,33].

Another dye, reactive dye is mainly used for dyeing cotton, silk,
wool, nylon, and leather. This class of dyes makes a covalent bond
with the fiber. It is so tightly fixed that they cannot be removed even
in hash conditions [34]. Sulfur dyes have a complex structure and it
contains sulfur. This class of dyes is economically friendly as they
are low priced and has good wash fastness properties. These dyes are
not brightly colored and are used for dyeing cotton, rayon, polyamide
fibers, paper, leather, silk, and wood [33]. Vat dyes are fast dyes and
are used for coloring cellulosic fiber, mainly cotton fiber. These dyes
belong to the chemical class comprising indigoids and anthraquinone
derivatives (including polycyclic quinones) [32]. Disperse dyes are
primarily used on polyester and to a lesser amount on nylon, acrylic
fibers, cellulose, and cellulose acetate. They are insoluble in water and
non-ionic in nature. Disperse dyes molecule is based on azobenzene
or anthraquinone molecules having nitro, hydroxyl, and amine groups
attached [32,33].

3. DYES: ENVIRONMENTAL CONCERN

Wastewater released from the textile industry has many substances
which are polluting in nature, like organochloride-based pesticides, and
heavy metals [35]. Synthetic dyes are modeled in such a manner that
they are recalcitrant and resist fading on treatment with water, soap,
sweat, light, or any type of oxidizing agent [18]. The textile industry is
the main producer of wastewater because water is the key component
in the process of dyeing [36]. It had been estimated that 100 L of
water was being used for the processing of 1 kg of textile materials.
Every year all around the world almost 280,000 tons of textile dyes get
discharged into industrial wastewater [37]. The appearance of color
in the effluent is the leading sign that water has been polluted and
the release of this colored effluent affects negatively the main water
stream [38]. These water streams, when utilized in agriculture, have an
adverse impact on the environment which, in turn, affects the health of
living organisms [39]. These colored effluents when mixed with water
bodies reduce the light penetration capacity of the water body and thus
have a negative impact on aquatic flora and fauna by affecting the
food chain. Even at a 1 mg/L concentration some of the dyes could be
observed in water [40]. Dye-containing effluent also has been shown
to increase the contaminated water’s biochemical oxygen demand
[41]. Out of all the known dyes, azo dyes are the major group of
synthetic dyes and are extensively used [42]. Textile effluent has been
characterized by the presence of undefined organic pollutants, dyes,
increased COD (organic compounds), and high conductivity due to a
high amount of dissolved salt, sulfide, halogen, and heavy metals [43].

Maximum dyes pose health risks to all kinds of life forms because of
their non-biodegradable nature.

Azo dyes have been known as potential health hazards. Several azo
dyes have also been the cause of DNA damage which leads to malignant
tumors [44]. When these compounds contacted the body of humans
through skin or injection and ingestion, they are metabolized inside the
mammalian liver and gastrointestinal tract by the azoreductases and
converted into aromatic amines and free radicals. Azo dyes are known
as relatively persistent pollutants as they are not easily degraded under
aerobic conditions. Under limited oxygen conditions, these dyes could
be reduced by intestinal bacteria and other microbes to colorless
amines. The converted amines are toxic, mutagenic, and carcinogenic
to humans and animals [40,45].

4. METHODS OF REMEDIATION OF DYES

Dye could be removed by three methods namely, physical, chemical,
and biological. The conventional treatment methods, that is, physical
and chemical have been ineffective in dealing with effluents
containing synthetic dyes which are highly unstable chemical
pollutants. There have been remarkable achievements in the use of
biotechnological methods in recent years. Chemical and physical
methods are used for the decolorization of colored effluent and were
subjective to physiochemical factors such as dye interaction, particle
size, temperature, sorbent surface area, pH, and contact time [46].
On the other hand, the biological method uses microbial cells for the
bioremediation of dye.

4.1. Physical Method

There are several physical methods through which dye is biodegraded
such as adsorption, membrane filters, coagulation/flocculation, ion
exchange, and radiation. Adsorption is an effective and attractive
method for dye elimination from wastewater, particularly if the
adsorbent is not expensive and commonly available [47]. Activated
carbon is mainly utilized for dye removal with great success due to its
higher adsorption capacity [48]. The cellular structure of peat makes it
a perfect choice as an adsorbent. It can adsorb polar organic compounds
and transition metals from colored effluents. Unlike activated carbon,
it requires no activation and is less expensive [49,50]. Wood chips
have high-quality adsorption capabilities for acid dyes, although
because of their hardness and longer contact times are required [51].
Many low-priced adsorbents have been studied on fly ash for dye
adsorption [52]. Its adsorption ability depends on various properties of
the adsorbent: Porous chemical structure, porous structure, and surface
area [53]. Silica gel could be considered effective for removing basic
dyes. However, side reactions such as air binding and air fouling with
particulate matter prevent it from becoming effective for commercial
use [18].

Membrane filter methods have several applications by improving the
finished product quality, increasing the amount of yield generation,
saving raw materials, or recovery of products from waste [54]. This
method has some special features which are not found in other
methods, namely, resistance to temperature, an adverse microbial
attack, and chemical environment [18]. Concentrated sludge
production is the main disadvantage. lon exchange resins were used
to decolorize the textile wastewater and to reduce the COD [55].
Most of the dyes are either anionic or cationic in nature; therefore, it
was possible to remove them through ion exchange resins. These are
not utilized extensively for the treatment of colored effluents, mainly
because they couldn’t accommodate a wide spectrum of dyes. The
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whole process is possible only in the presence of organic solvents
during regeneration time [18].

Coagulation/flocculation is the only cost-effective method used for the
removal of color from the effluent. The primary wastewater treatment
method proceeds with coagulation and flocculation by removing
colloidal particles of turbidity, color, and bacteria. Coagulants such as
Fe (IIT) or Al (III) salts are used in high concentrations for initiating
precipitation and settling along with it [56]. Generation of the huge
toxic sludge and disposal amount has been the major drawback of this
method. Radiation, in general, is the emission of any rays or particles
from a source. Radiation is classified into two main categories: Ionizing
radiation and non-ionizing [57]. The rate of reaction was monitored by
radiation dose and the amount of oxygen present in the solution. It is
a proven effective method for the removal of the dye at the same time
toxic organic compounds. Almost 90% of the color has been removed
from the effluent. The whole process of radiation is very expensive
which makes it less feasible for use. Finally, the drawbacks of all such
processes have been mainly due to low efficiency, high cost, problems
in the disposal, and limited versatility. Thus, most of the chemical
and physical methods for the treatment of colored wastewater are not
widely used in textile industry sites or plants [37].

4.2. Chemical Method

In the chemical method, various types of chemical reagents and
treatments are applied to degrade the dyes such as ozone treatment,
Fenton’s reagent, photochemical oxidation, sodium hypochlorite
(NaOCl), and electrochemical. Fenton’s reagent is an effective
decolorization chemical method of the textile wastewater which is
unaffected to a biological method or is toxic to living biomass but not
useful in reducing its COD if not combined with one more process
such as coagulation [58]. In the acidic mixture, iron (II) acts as a
catalyst which when acts on hydrogen peroxide, immediately leads
to the formation of hydroxide radicals. These hydroxide radicals help
in decolorizing dye wastes. This method can act on both insoluble
and soluble dyes. Sludge generation is the major disadvantage of this
process [59]. Ozone treatment is widely applied in the treatment of
water; ozone either alone or in combinations (O,-UV or O,-H,0,)
is used for treating industrial effluents [60]. Chromophore groups
are accountable for color which can be fragmented by ozone either
directly or indirectly through the formation of smaller fragments [61].
The only disadvantage is the short shelf life (20 min). Photochemical
oxidation is the traditional technique used for industrial textile effluent
treatment [62]. UV light activates the degradation of H,O, into
hydroxyl radicals which may attack and release hydrogen atoms from
organic molecules capable of the oxidizing organic compound. The
formation of byproducts is a major drawback [39,63].

NaOCl acts on the amino group of the dye molecule by the CI” which
starts and speeds up azo bond cleavage [64]. NaOCl, when added to
effluent may remove residual colors effectively. Moreover, this method
is not favored much as it has been observed to lead to the generation of
toxic chlorinated compounds which are dangerous for the environment
as well as human health [65]. An electrochemical method in current
years has been a growing interest in wastewater treatment. This type of
method has been effectively functional in the detoxification of textile
wastewater [66]. Electrochemical reactions are mainly used in sulfur
and vat dyeing. Electrochemical oxidation leads to the generation of
hypochlorite or hydroxyl radical. These electrogenerated species are
used to degrade dyes present in wastewater. However, the electricity
price used is high compared to the chemicals cost [18].

4.3. Biological Method

In the last few years, awareness among the scientific community
about biological techniques has increased tremendously. These
techniques have several benefits over conventional techniques
such as low cost, environment-friendly, safe operation, and
less sludge production. Bioremediation is now considered an
upcoming treatment option for dye removal in diverse conditions.
The bioremediation method can use natural and recombinant
microorganisms to degrade toxic materials because of flexibility
in operating conditions and design. Flexibility in this technique is
understood by the fact that they could be employed ex situ (off-site)
or in situ (on-site) and even plants can be used (phytoremediation).
Biodegradation could be defined as the biologically facilitated dye
molecule breakdown into several by-products by the action of a
variety of enzymes. It is a process that is energy dependent [67].
Dye biodegradation results in decolorization and the breakdown of
the dye molecules into smaller fragments. Diverse microbes such
as bacteria, fungi, and algae are employed for the decolorization
and degradation of synthetic dyes. Microbes have various
capabilities for decolorizing a variety of dyes. Some groups of
microorganisms have specific advantages over others in synthetic
dyes biodegradation. The bioremediation of dyes effectiveness is
subject to the activity and adaptability of the microbes [38].

4.3.1. Fungi

Fungi are most effective in breaking down or sometimes completing
the mineralization of synthetic dyes [68]. These degradation
properties are attributed to the presence of a powerful extracellular
and intracellular enzyme system comprising laccase, manganese
peroxidase, and lignin peroxidase, robust morphology, and various
metabolic activity [69]. The mycelia of fungal species have an
advantage over unicellular organisms that they solubilize the
insoluble substance by enzymes. They have a high cell-to-surface
ratio which helps them to have greater enzymatic and physical
contact with pollutants. Extra-cellular fungal enzymes are also
advantageous in tolerating high toxicants concentration [67]. Fungi
initiate the process by adsorption of dye onto hyphae, followed by
the breakdown of chemical bonds by enzymes [70]. However, fungi
application for the removal of the dye from textile wastewater has
some inherent drawbacks such as a long growth cycle and the need
for nitrogen limiting conditions [71]. Gill et al. [72] reported Congo
red decolorization by Pha. chrysosporium and Dichomitus squalens.
Svobodova et al. [73] have reported maximum decolorization
of Reactive Orange 16 up to 80% by fungal strain Irpex lacteus.
Jayasinghe et al. [74] have reported Ganoderma lucidum, Pycnoporus
cinnabarinus, Pleurotus pulmonarius, Stereum ostrea, and Trametes
suaveolens, for their ability to decolorize Congo red (100 mg/L).

In a report, fungal species Fusarium oxysporum, Penicillium
lanosum, and Ganoderma resinaceum was reported for Blue 21
dye decolorization [75]. Synthetic dye amaranth was reported
to be degraded by Bjerkandera adusta [76]. White rot fungus
Armillaria spp. was confirmed for degrading azo, anthraquinone,
and triphenylmethane dyes. [77]. Noval species of Alternaria
alternata was able to decolorize Congo red (600 mg/L) within 48 h of
incubation [78]. Ganoderma spp. has also been reported to decolorize
Reactive Orange 16 [79]. Chen et al. [80] reported Coriolopsis
spp. for decolorizing triphenylmethane dyes. In a report, the novel
fungal strain Absidia spinosa was reported for biotransformation of
Cresol Red up to 65% [81]. Barapatre et al. [82] reported Aspergillus
flavus for biodegradation of Malachite Green in which intermediate
N-demethylated and N-oxidized metabolites were identified [Figure 1].
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Figure 1: Biodegradation pathway of malachite green using Aspergillus flavus. Source: Adapted with permission from Barapatre et al. [82].

Fungal strain Aspergillus bombycis was reported for having the ability
to degrade Reactive Red 31 [83]. Asses et al. [84] reported Aspergillus
niger having the ability to decolorize Congo red (200 mg/L) within
6 days of incubation [Figure 2]. Oudemansiella canarii, the white rot
fungi, was reported for degrading Congo Red dye [85]. In another
report, Aspergillus terreus was reported for degrading Direct Blue-
1 [86]. Krishnan er al. [87] reported Fusarium equiseti for the
degradation of methylene blue dye.

4.3.2. Bacteria

Dyes decolorization through bacteria is faster than fungal decolorization
as bacteria take less time to grow [88]. Bacterial cells represent a
promising and inexpensive tool for the several azo dyes removal from
the textile dye effluents. Bacteria have many advantages as compared
to filamentous fungi such as higher hydraulic retention time, faster
growth rate, and could be efficient in treating high strength organic
wastewaters [89]. In general, the azo dyes decolorization occurs under
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Figure 2: Decolorization of Congo red through Aspergillus niger. Source: Adapted with permission from Asses et al. [84].

conventional anaerobic, facultatively anaerobic, and aerobic conditions
by different bacterial groups [90]. A bacteria like Pseudomonas spp.
could decolorize Reactive Orange 16 (100 mg/L) to 98% within 24 h of
incubation [91]. Park ef al. [92] reported decolorization of Congo red
(1 g/L) by Staphylococcus spp. up to 96%. In a report, Pseudomonas
spp. SUK1 could decolorize methyl orange dye (300 mg/L) within 6 h
of incubation [93]. On the other hand, strain Kocuria rosea exhibited
complete decolorization [94]. In another study, Nocardiopsis alba
could decolorize Reactive Orange 16-95% (1000 mg/L) dye within
24 h of incubation [95]. Ghanem et al. [96] reported decolorization

of methyl orange (38 ug/ml 10 pg/ml, 36 ug/ml, 32 ug/ml, and
40 ug/ml) by Acinetobacter baumannii, Cytophaga columnaris,
Corynebacterium  spp., Escherichia coli, and Pseudomonas
Sfluorescence up to 76, 20, 72, 64, and 80%, respectively.

A study by Shah et al. [97
methyl orange (2.9 mg/L) by Bacillus spp. complete methyl orange
decolorization has also been reported for a much higher concentration
of dye (50-200 mg/L) by several researchers. In a finding by Cui et al.
[98] reported 100% decolorization of Methyl orange (100 mg/L) dye

] showed complete decolorization of
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by Klebsiella spp. strain Y3. Ng et al. [99] reported decolorization up
to 96% for 200 mg/L of Methyl orange by Shewanella xiamenensis.
Marine bacteria 4. baumannii could decolorize Congo red (100 mg/L)
to 99.1% within 30 h and 5 days of incubation under optimized
conditions [100]. Mycobacterium could decolorize Reactive Orange
16 (250 mg/L and 100 mg/L) to 96% within 24 h [101]. Bacillus
cereus, Ochrobactrum spp., and Achromobacter xylosoxidans could
decolorize Congo red (25 mg/L) 93%, 62%, and 94%, respectively
[102]. Bacterium Alishewanella spp. was reported for azo dyes
degradation [103]. Mani et al. [104] reported Shewanella oneidensis
for decolorization of acid orange 7 [Figure 3]. Lysinibacillus fusiformis
was reported for degrading methyl red [105]. Saha and Rao [106]
studied the degradation of Reactive Orange 16 up to 89% by Bacillus
flexus. In a report, halo-alkaliphilic bacterium Nesterenkonia
lacusekhoensis was reported for decolorization of Reactive Red-35
dye [107]. Akansha et al. [108] reported Bacillus stratosphericus for
biodegradation of reactive orange 16 [Figure 4].

4.3.3. Yeast

Yeast can grow fast and withstand adverse environmental
conditions [109]. Trichosporon beigelu was capable to decolorize
Navy blue HER, Golden Yellow 4BD, Red HE7B, Green HE 4BD,
Orange HE2R, and Malachite green [22] whereas Candida krusei was
able to decolorize Reactive Brilliant Red K-2BP, Acid Mordant Yellow
Reactive, Weak Acid Brilliant Red B, Reactive Black KN-B, Reactive
Brilliant Blue X-BR, Acid Mordant Light Blue B Reactive, Acid

Mordant Red S-80, and Reactive Turquoise Blue KN-G [109]. Yeast
C. krusei, isolated from textile wastewater, was reported for degrading
Basic Violet 3 by 74% [110]. About 90% Acid Red B decolorization
under aerobic conditions was reported by Pichia spp. [111]. In a report,
Acid Brilliant Scarlet GR was detoxified by Candida tropicalis [112].
Tan et al. [113] reported Magnusiomyces ingens for degrading Acid
Red B. In a report, Acid Red B was degraded by C. tropicalis [114].
Tan et al. [115] reported salt tolerant Scheffersomyces spartinae for the
detoxification of Acid Scarlet 3R under anaerobic conditions. A recent
study had reported complete decolorization of Reactive Orange 16
by Pichia kudriarzenii [116]. Cyberlindnera samutprakarnensis, the
salt tolerant yeast, was reported for decolorization of Acid Red B
by 97% within 18 h of incubation [117]. In a report, Galactomyces
geotrichum was reported for degrading Acid Scarlet GR under aerobic
conditions [118]. Similarly, halotolerant, Sterigmatomyces halophilus
was reported for complete detoxification of Reactive Black 5 within
24 h of incubation [119]. In another report, C. tropicalis was reported
for the Acid Red B degradation [120].

4.3.4. Algae

Some microbial groups have not been studied extensively for their
degradation abilities concerning pollutants such as synthetic dyes
and xenobiotics. Cyanobacteria (blue-green algae) have distributed
ubiquitously, but there is scant information about their ecosystem
functioning role, including recalcitrant compounds degradation
such as dyestuffs and dye [121]. Chroococcus minutus, Gloeocapsa

Acid Orange 7

|

9
HzNOﬁ—OH
o)

4-Aminobenzenesulfonic acid

-

O‘M

2-Aminonaphthalen-1-ol

Auto-oxidation l 0,

0O

T

-Amlnonaphthalene -1,4-dione
(0}

)J\ 02

O‘“

2-Methoxynaphtha|ene-1 ,4-dione

4-(Methylthio)naphthalene-1,2-dione

Figure 3: Acid Orange 7 biodegradation pathways by Shewanella oneidensis. Source: Adapted with permission from Mani ez al. [104].
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Figure 4: Biodegradation pathway of Reactive Orange 16 through Bacillus stratosphericus. Source: Adapted with permission from Akansha et al. [108].

pleurocapsoides, and Phormidium ceylanicum are some of the algae
reported on dye decolorization [122]. In a report, detoxification of
monoazo and diazo dye was reported by the Nitzschia perminuta and
Scenedesmus bijugatus [123]. Khataee et al. [124] reported Chara spp.,
the macroalgae for the detoxification of Malachite Green solution. In
a report, from a thermal spring environment, Methylene Blue and
Malachite Green were removed by Chlorella spp. and Chlamydomonas
spp. [125]. In another report, Orange G Dye was detoxified by the

microalgae Acutodesmus obliquues [126]. Chia et al. [127] reported
Scenedesmus quadricauda for the degradation of Indigo Blue dye.
Congo red dye detoxification was reported by green algae Chlorella
spp., Chlorella Haematococcus  spp., Scenedesmus
officinalis, Scenedesmus obliquuss, and S. quadricauda [128]. In
similar report, Methylene Blue and Malachite Green were decolorized
by the Desmodesmus spp. [129]. C. vulgaris was reported for Indigo
Blue dye [130].

vulgaris,
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4.3.5. Microbial consortium

In various studies, microbial consortia have shown greater effectiveness
as compared to pure strains [21]. The mixed microbial population
has shown greater efficiency of synthetic dyes decolorization than
pure culture because of synergistic metabolic activities of microbial
communities [131]. Each strain in the consortium may target different
sites in the dye molecules or may utilize degraded metabolites generated

Table 1: Dye remediation using microbial consortium.
Consortium

Bacillus vallismortis, B. cereus, B. pumilus, B. subtilis, and B. megaterium

Brevibacillus laterosporus and Galactomyces geotrichum

Klebsiella, Buttiauxella, and Bacillus

Citrobacter freundii, Moraxella osloensis, and Pseudomonas aeruginosa
Provedencia rettgeri, and Pseudomonas spp.

Escherichia coli, Salmonella spp., Staphylococcus aureus, Proteus spp.,
Pseudomonas spp., and B. subtilis

Bacillus spp., B. subtilis, B. cereus, B. mycoides, Micrococcus spp., and
Pseudomonas spp.

Pseudomonas stutzeri and Acinetobacter baumannii

Aeromonas spp., Bacillus spp., Neisseria spp., and Vibrio spp.

Barnettozyma californica, Sterigmatomyces halophilus, and Yarrowia spp.
Zobellella, Rheinheimera, and Marinobacterium

Scenedesmus obliquus, and Oscillatoria spp.

Bacillus odyssey, Morganella morganii and Proteus spp.

Providencia spp. and Pseudomonas aeuroginosa

Anoxybacillus spp., Clostridium spp., and Bacillus spp.

B. subtilis, B. subtilis, and B. cereus

Bacillus flexus, Proteus mirabilis, and Pseudomonas aeruginosa

Lysinibacillus spp., Bacillus spp., Bacillus spp., Bacillus spp., Bacillus spp., and
Ochrobacterium spp.

Galactomyces geotrichum and Bacillus spp.

B. cereus, Pseudomonas putida, Pseudomonas fluorescence, and
Stenotrophomonas acidaminiphila

Aeromonas caviae, Proteus mirabilis, and Rhodococcus globerulus
Enterobacter dissolvens and Pseudomonas aeruginosa

Stenotrophomonas rhizophila, Sphingomnas echinoides, Pseudarthrobacter
oxydans, and Gordonia westfalica

Pseudomonas aeroginosa, Stenotrophomonas maltophila, and Proteus mirabilis
Aspergillus ochraceus and Pseudomonas spp.
Pseudomonas aeruginosa and Bacillus circulans

Pseudomonas aeruginosa, Rhodobacter sphaeroides, Proteus mirabilis, and
Bacillus circulance

Enterococcus faecalis and Klebsiella variicola

Alcaligenes faecalis, Sphingomonas spp., B. subtilis, Bacillus thuringiensis, and
Enterobacter cancerogenus

Anoxybacillus pushchinoensis, A. kamchatkensis, and Anoxybacillus flavithermus

Dichotomomyces cejpii and Phoma tropica

Bacillus spp., Stenotrophomonas spp., Pseudomonas spp., and Alcaligenes spp.
Pseudomonas aeruginosa, Enterobacter spp., and Serratia marcescens

Penicillium spp. and Sphingomonas xenophaga

by one strain followed by degradation by another strain [132]. Thus,
using mixed microbial cultures dyes, biodegradation could be
improved due to the synergistic effect [133]. Consortium development
which can survive in the effluent by utilizing the components as
a source of carbon, nitrogen, and energy would render the whole
technique economically friendly [21]. Different microbial consortiums
were reported for the remediation of various dyes [Table 1]. Tony et al.

Dye

Blue BCC, Ranocid fast blue, Bordeaux,
Congo red

Golden yellow HER
Methyl red

Mordant black 17
Reactive Orange 16
Congo red

Green dye, red dye, black dye, and yellow
dye

Congo red and gentian violet

Novacron brilliant blue fn-r, bezema yellow
s8-g, novacron super black G

Remazol brilliant blue R

Direct blue B, acid violet 7, acid black ATT
Reactive orange 122, reactive red 194

Red HE3B

Red HE3B

Direct Black G

Mixture of azo dyes

Indanthrene blue RS

Reactive violet 5R

Brilliant blue G
Acid red 88

Acid Orange 7
Acid maroon V

Reactive black-5

Direct black 22
Rubine GFL
Reactive Black 5
Remazol black-B

Reactive red 198
Direct blue-15

Reactive black 5

Congo red, methyl red, reactive blue

Procion red H-3B
Reactive red 120
Reactive brilliant red X-3B

References
Patil et al. [135]

Waghmode et al. [136]
Cui et al. [137]
Karunya et al. [138]
Lade et al. [139]
Holey [140]

Mahmood et al. [141]

Kuppusamy et al. [142]
Karim et al. [143]

Ali et al. [144]

Guo et al. [145]
El-Sheekh et al. [146]
Phugare et al. [147]
Phugare et al. [147]

Chen et al. [148]
Thiruppathi et al. [149]
Kumar and Mohanty [150]
Jain et al. [151]

Jadhav et al. [152]
Khehra et al. [153]

Joshi et al. [154]
Patel et al. [155]
Eskandari et al. [156]

Mohana et al. [157]
Lade et al. [158]
Dafale et al. [159]
Dafale et al. [160]

Eslami ez al. [161]
Kumar ef al. [162]

Deive et al. [163]

Krishnamoorthy ez al.
[164]

Shah and Bera [165]
Manogaran et al. [166]
Gou et al. [167]

B. cereus: Bacillus cereus, B. pumilus: Bacillus pumilus, B. subtilis: Bacillus subtilis, B. megaterium: Bacillus megaterium.
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[134] showed 50-60% of biodegradation of dyes including Congo red,
Bordeaux, Blue BCC, and Ranocid Fast Blue by bacterial consortium
of Bacillus cereus, B. megaterium, B. pumilus, B. vallismortis, and
B. subtilis. In a report, bacterial consortium of Bacillus odysseyi,
Morganella morganii, and Proteus spp. was reported for textile dyes
decolorization [135].

The consortium of Brevibacillus laterosporus and G. geotrichum
was reported for Golden Yellow HER decolorization [136]. In
another report consortium, bacterial strains Klebsiella, Buttiauxella,
and Bacillus were reported for the removal of Methyl Red under
aerobic conditions [137]. Karunya et al. [138] developed a
microbial consortium of Citrobacter freundii, Moraxella osloensis,
Pseudomonas aeruginosa, and P. aeruginosa which helps in the
Mordant Black 17 decolorization. Lade et al. [139] used microbial
consortium consisting of Provedencia rettgeri and Pseudomonas
spp. for decolorization of Reactive Orange 16. The consortium could
decolorize 1110 mg/L of Reactive Orange 16 by about 99%. Another
study by Holey [140] reported a where consortium which comprised
E. coli, Salmonella spp., Staphylococcus aureus, Proteus spp.,
Pseudomonas spp., and B. subtilis and had the ability to decolorize
Congo Red (10 mg/L) up to 98% within 96 h of incubation. In
another study, the results indicated that the consortium ability to
decolorize the green, red, yellow, and black dyes was higher as
compared to single strains application (Bacillus spp., B. subtilis,
B. cereus, B. mycoides, Micrococcus spp., and Pseudomonas spp.).
The consortium was capable to decolorize green (84%), red (84%),
yellow (85%), black (85%), and mixed dyes (82%) within 24 h while
individual strain required 72h [141].

In an investigation, bacterial consortium of novel and indigenous
strains, namely, Pseudomonas stutzeri and A. baumannii was
reported for textile dyes decolorization [142]. In case of monoculture
(Aeromonas spp., Bacillus spp. Neisseria spp., and Vibrio spp.),
percentage of decolorization varies from no visible decolorization
to highest 90% decolorization (Novacron Brilliant Blue FN-R)
whereas the percentage decolorization of bacterial consortium varies
from 65% (Benzema Yellow S8-G) to 90% (Novacron Super Black
G and Novacron Brilliant Blue FN-R) [143]. Reactive azo dyes
were also reported to be degraded by the consortium of yeast, that
is, Barnettozyma californica, S. halophilus, and Yarrowia spp. [144].
Guo et al. [145] showed the detoxification of Acid Black ATT, Direct
Blue B, and Acid Violet 7 by the consortium containing halotolerant
microbes, namely, Zobellella, Rheinheimera, and Marinobacterium.
Consortium of cyanobacteria and green algae, that is, S. obliquus and
Oscillatoria spp. was reported for degradation of azo dyes including
Reactive Orange 122 and Reactive Red 194 [146].

5. MECHANISM OF DYE BIODEGRADATION

The plant and microbial systems possess efficient enzymatic systems
which could be used for bioremediation. Therefore, it is important to
find the mechanism of biotransformation followed by the organism
and probable enzymes which are involved in biochemical complex
reactions. The enzymatic treatment methods positively affect the
environment as they pose a low chance of biological contamination.
Enzymes of both bacterial as well as fungal origin such as lignin
peroxidase, laccase, and manganese peroxidase have the capacity
to metabolize xenobiotic compounds [168]. Peroxidase enzyme
purified from plant species which includes Saccharum spontaneum
and Ipomoea palmata is used for efficient decolorization of various
textile dyes [169]. Enzymes like horseradish peroxidase have been

immobilized and utilized for the treatment of effluents of textile mills
and paper industries [170].

Laccase belongs to the multicopper oxidases group which has
low substrate specificity and is highly capable of degrading the
spectrum of xenobiotic compounds and aromatic as well as non-
aromatic substrates [171]. These catalysts have good bioremediation
potential at the same time. It does not require available oxygen as
an electron acceptor, which makes them highly applicable in many
biotechnological processes [172]. Enzymes can degrade phenolic
compounds and aromatic azo compounds. Cu®* is used as mediator to
oxidize aromatic amines. First prokaryotic laccase has been reported
by Azospirillum lipoferum [173]. Laccase basically catalyzes azo dyes
decolorization by non-specific free radical without the mutagenetic
and toxic aromatic amines formation. Pseudomonas syringae and
Pedomicrobium spp. have shown laccase like activity [174]. Reports
are available for purified laccase enzyme extracted from Bacillus spp.
and Pseudomonas desmolyticum that can decolorize several textile
dyes efficiently [175,176]. Fungal strain Podoscypha eleganscan
decolorize five azo dyes (Congo Red, Direct Blue 15, Orange G, Rose
Bengal, and Direct Yellow) efficiently [171]. Similarly, fungal strains
of Aspergillus oryzae, Trametes versicolor, and Paraconiothyrium
variable can decolorize azo dyes through the laccase enzyme
production [177].

Azoreductase also known as azobenzene reductase is a reducing
enzyme. These catalysts can degrade azo dye into colorless amines
through the process of reductive cleavage. The whole process
requires NADH or FADH [178] which acts as an electron donor in
a redox reaction [45]. Bio-treatment of azo dye containing effluent
and microbial azoreductase has been observed to play a major role.
Sometimes, under unfavorable environmental conditions, few usual
cellular enzymes might get converted into dye degrading enzyme
example flavin reductase produced by E. coli acts as azoreductase [179].
Microbes such as B. subtilis, Pseudomonas spp., and S. aureus have
been found to decolorize azo dyes (Methyl Red, Disperse Blue, and
Acid yellow) through the production of azoreductase [180-182].
Agrawal et al. [183] reported Providencia spp. for degrading Acid
Black 210 through the production of azoreductase [Figure 5].

Peroxidase is related to the group of oxidoreductases, especially which
act on peroxide acting as the electron acceptor. Knowledge of such
factors will influence the degradation activity which will facilitate the
bioreactor development for bioremediation of industrial waste. The
fungus’s efficiency to degrade azo dyes is related to the exo-enzymes
formation such as peroxidases and phenol oxidases. Peroxidases can
catalyze the breakdown of hydrogen peroxide into water and molecular
oxygen [184]. These enzymes have a heme group attached to the active
site [185]. Both manganese peroxidases and lignin have the same
reaction mechanism (catalytic enzyme causes oxidation of H,0, to an
oxidized state). Basically, lignin peroxidases help in the oxidation of non-
phenolic aromatic compounds whereas manganese peroxidases oxidize
Mn?" to Mn*" and this Mn*" is responsible for the oxidation of numerous
phenolic compounds [186]. The first peroxidase was obtained from
Phanerochaete chrysosporium [187]. Various microorganisms involved
in dye decolorization with peroxidases activity include Rhodococcus
jostii [188], I lacteus [189], Thermomonospora curvata [190], B.
subtilis [191], Enterobacter ignolyticus [192].

6. FACTORS AFFECTING BIOREMEDIATION

The whole ecosystem consists of a dynamic environment with various
abiotic factors such as temperature, metals, salts, pH, and the presence
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Figure 5: Azoreductase-mediated biodegradation of azo dye acid black 210 through Providencia sp. Source: Adapted with permission from Agrawal et al. [183].

of oxygen. Microbes play a key role in the carbon, nitrogen, and sulfur
cycle and are greatly influenced by any change in these factors thus,
affecting the decomposition process [Table 2]. Thus, it is very important
to analyze the effect of these parameters on xenobiotics degradation.
Knowledge of these factors which play a pivotal role in degradation
activity will likely facilitate the development of bioreactors for the
bioremediation of industrial waste.

6.1. pH

In general, effective decolorization or degradation of dyes using
bacteria takes place at basic or neutral pH, while yeast and fungi at
neutral or acidic pH [67]. At pH below 4, H" ions compete effectively

with cations of dye, causing a reduction in efficiency of color removal,
while at pH higher above this point charge, the biomass surface
gets negatively charged, which attracts the dye positively charged
cations through electrostatic force of attraction [193]. The study on
27 different dyes by 21 various basidiomycetes reveals that optimum
pH was found to be in the 3-5 range for dye decolorization [194].
A study demonstrated Enterobacter spp. decolorizes Reactive Black 5
atpH 7.0[195]. The study revealed that decolorization and degradations
of Scarlet R by Proteus vulgarius and Micrococcus glutamicus
occurred in the range of pH 7-8 with optimum pH 7 [90]. In a study,
bacterial mixtures consisting of total of six bacterial species, namely,
Bacillus spp. (four strain), Lysinibacillus spp., and Ochrobacterium
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Table 2: Factors affecting the microbes mediated remediation of dyes.

Microbes

Acinetobacter baumannii
Acinetobacter spp.
Aeromonas hydrophila
Aeromonas veronii
Alcaligenes aquatilis
Alcaligenes faecalis
Anoxybacillus spp.
Aspergillus flavus
Aspergillus niger
Bacillus algicola
Bacillus cereus

Bacillus fusiformis
Bacillus spp.

Bacillus subtilis

Bacillus vallismortis
Bacillus vietnamensis
Bjerkandera adusta
Comamonas spp.
Coriolopsis gallica
Enterobacter hormaechei
Enterobacter hormaechei
Enterobacter spp.
Exiguobacterium spp.
Geotrichum candidum
Halomonas glaciei
Halomonas variabilis
Issatchenkia orientalis
Kocuria rosea
Lactobacillus paracase
Lysinibacillus fusiformis
Lysinibacillus sphaericus
Lysinibacillus spp.
Micrococcus luteus
Micrococcus yunnanensis
Moraxella osloensis
Nesterenkonia lacusekhoensis
Nesterenkonia lacusekhoensis
Ochrobacterium spp.
Ochrobactrum anthropic
Penicillium ochrochloron
Pichia kudriavzevii
Pseudomonas aeruginosa
Pseudomonas azoreducens
Pseudomonas putida
Pseudomonas spp.
Sphingomonas paucimobilis
Thiosphaera pantotropha
Trametes trogii

Trametes versicolor
Trichoderma harzianum
Trichosporon beigelii

Bacillus stratosphericus
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Dye

Reactive red
Reactive orange 16
Reactive Black 5
Methyl orange
Synazol red 6HBN

Novacron super black G

Direct black G
Reactive red 198
Crystal violet

Yellow azo dye

Novacron super black G

Acid orange 10
Reactive red 239
Reactive blue 160
Aniline blue
Malachite green
Lanaset grey G
Direct red 5B
Lanaset grey G
Reactive yellow 145
Reactive yellow 145
Reactive black 5
Navy blue HE2R
Reactive blue 5
Reactive red 2
Reactive red 2
Direct black 22
Methyl orange
Acid black

Methyl red
Drimaren red CL-5B
C.1. Remazol red
Direct orange 16
Methyl orange
Mordant black 17
Methyl red
Reactive violet 1
Reactive violet SR
Reactive black 5
Cotton blue

Acid red B

Direct orange 39
Reactive green
Orange II

Reactive red 195
Methyl red
Reactive yellow 145
Lanaset gray G
Lanaset gray G
Cresol red

Navy blue

Reactive orange 16

pH Temperature (°C)

7.0
7.0
7.0
7.0
7.0
8.0
72
4.0
5.5
8.0
8.0
9.0
10.0
7.0
6.0
6.0
6.5
6.0
7.0
7.0
7.0
7.0
8.1
8.1
7.0
6.8
6.0
8.0
7.0
8.0
7.0
7.0
11.5
11.5
7.0
7.0
6.5
5.0
7.0
7.0
8.0
8.0
9.0
7.0
5.0
5.0

7.0
7.0

37
40
35
32
37
37
55
3
30
25
37
37
30
35
70
37
40
40
45
37
37
37
30
30
30
30
32
30
30
30
37
30
37
30
35
30
27
37
30
25
33
60
30
30
40
30
45
45
25
37
35

Initial conc. of Static/Agitation

dye (mg/L)

500
500
100
1000

10

200
400

50

200
150
250
500

50
150
1100
150
100
100
200
50
120
1000
1000
500
50
100
100
100
250
100
100
100
50
200
200
400
50
100
50
500
100
100
750
100
150
150

50
150

Agitation
Static
Static
Static
Static
Static
Static
Agitation
Static
Static
Static
Agitation
Agitation
Static
Agitation
Agitation
Agitation
Agitation
Static
Static
Agitation
Static
Static
Agitation
Static
Agitation
Agitation
Agitation
Static
Static
Agitation
Static
Static
Agitation
Static
Static
Static
Agitation
Agitation
Static
Static
Static
Agitation
Static
Agitation
Agitation
Agitation
Static
Static
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spp. were reported for decolorization and removal of azo dye-Reactive
Violet SR at neutral pH i.e, 7.0 [151]. In another investigation, the
bacterium A. flavus sorted out from the effluent disposal area soil was
reported for degrading Reactive Red 198 effectively at low pH [196].

Another report has reported bacterium Lysinibacillus spp. isolated
from the textile industrial area which was degrading and decolorizing
the toxic sulfonated azo dye C.I. Remazol Red at pH 7.0 [197]. In a
study by Khan et al. [198], Reactive Red 195 dye was degraded by the
bacterial consortium consisting of, Bacillus spp., Pseudomonas spp.,
and Ochrobactrum spp. at pH 8.0. In an investigation, the bacterium
Lactobacillus paracase isolated form the deep sea sediments were
reported for removal of Acid Black azo dye between the pH range
from 5.0 to 7.0 [199]. In another study, the most effective pH
for the Crystal Violet decolorization by the fungi A. niger was
reported 5.5 [200]. Bacillus spp., isolated from an alkaline lake,
was reported for degradation of Reactive Red 239 dye. The most
efficient pH for dye degradation by the bacterium was 10 [201]. In
another investigation, Enterobacter spp. was degrading Crystal Violet
at pH 6.5 [202]. In a report, bacteria obtained from textile industry
released effluent were identified as Alcaligenes faecalis, Bacillus spp.,
and B. cereus which were reported for biodegradation of Novacron
Super Black G dye at pH 8.0 under static conditions [203]. Javadzadeh
and Asoodeh [204] isolated Bacillus spp. from the gut of termite
which was having indigo dye biodegrading properties. The bacterium
was reported for biodegrading the dye at pH 8.0. In an investigation,
the microbial species Micrococcus yunnanensis was reported for
degrading Methyl Orange at pH 7 [205].

6.2. Temperature

Temperature is a vital factor and plays an imperative role in the
environment during the process of biodegradation. The metabolic
activity of microorganisms is greatly affected by temperature. It
is commonly experiential that the decomposition process is faster
in summer as compared to winter as a warmer climate favors the
growth and multiplication of various microorganisms [206]. However,
the process is not the same after a certain temperature. Beyond this
optimum temperature, there is a reduction in growth, metabolic activity,
and deactivation of enzymes which ultimately lead to a decline in the
decolorization process [193]. Thus, various studies conclude that
biodegradation of dye by the microorganism is possible at ambient
temperature which is responsible for their metabolic activities and
reproduction [207]. Various microorganisms require different ambient
temperatures for growth, with most growing at a temperature range
of 25-35°C [208]. In a study by Shedbalkar ez al. [209], the ambient
temperature required to decolorize Cotton Blue by Penicillium
ochrochloron was found to be 25°C. Enterobacter spp. could
decolorize Reactive Black 5 at an optimum temperature of 37°C and
on further increasing the temperature to 42°C there was a drastic
decrease in decolorization activity [195]. In a study, Pseudomonas spp.
was reported for degrading Congo red dye along with textile industry
released effluent at 40°C temperature [210]. An isolate Sphingomonas
paucimobilis was reported for bioremoval of Methyl Red dye between
a broad range of temperatures i.e. 4-40°C [211]. In another report,
B. vallismortis isolated from the disposal site of the textile industry
was reported for degrading triphenylmethane dyes, including Aniline
blue, Malachite Green, and Brilliant Green at high temperature range
of 70°C [212].

A study has reported, Reactive Black-5 dye was reported to be
degraded by the halotolerant bacterial strain Pseudomonas spp. at a
temperature 25°C [213]. Similarly, the bacterium M. osloensis was

reportedly degrading Mordant Black 17 at 35°C temperature [214].
In a report, Direct Orange 16 was degraded at 37°C temperature by
bacterial isolate Micrococcus luteus [215]. Reactive Black 5 dye was
reported to be biodegraded by the Aeromonas hydrophila ate 35°C
temperature [216]. In a study, the bacterial strain Bacillus algicola was
reported for decolorizing red, yellow, and blue dye at temperatures
25°C, 35°C, and 45°C. The highest degradation was observed at
25°C temperature [217]. In a similar report, two bacterial strains,
namely, Acinetobacter and Klebsiella were decolorizing the azo
dyes, that is, diazo dye Reactive Green 19 and monoazo dye Reactive
Orange 16 at a temperature range of 20—40°C [218]. Ajaz et al. [219]
reported Alcaligenes aquatilis for decolorization of Synazol Red
6HBN dye at 37°C temperature in 4 days [Figure 6]. In a report, B.
subtilis was reported for decolorizing Reactive Blue 160 dye at 35°C
temperatures [220]. Enterobacter hormaechei isolated from textile
effluent was reported to degrade Reactive Yellow 145 and Reactive
Red 180 at a temperature 37°C [221].

6.3. Initial Dye Concentration

The impact on microbial insisted decolorization of the dye initial
concentration was investigated. Studies show that there is a lowering
in the efficiency of dye decolorization by microbes with an initial
concentration increase of dye. This is because the dye toxicity increases at
a higher concentration which inversely affects the growth of the microbial
cells [193]. A similar report was demonstrated by Parshetti et al. [222]
which indicated that higher concentration Malachite Green (100 mg/L)
was toxic to K. rosea. Jirasripongpun et al. [223] found that Reactive Red
195 at concentrations 50 and 100 mg/L had a lethal effect on Enterobacter
spp. and was not able to grow. A report on Congo red decolorization by
Bacillus spp. reported that the decolorization rate declined with the dye
concentration increase [224]. In a report, P. aeruginosa obtained from the
dyestuff contaminated sediments was reported for 93.06% decolorization
of Direct Orange 39 with 50 mg/L concentration within 45 + 5 min and
the maximum concentration degraded by the strain was 1.5 g L™ with
60% decolorization [225]. The consortium of Providencia spp. and
Pseudomonas aeuroginosa was reported for 100% bioremediation of dye
Red HE3B at 50 mg/Linitial concentration and as the dye concentration
rises to 200 mg/L and 250 mg/L the decolorization decreases to 85% and
70%, respectively [147].

A study reported Pseudomonas putida was decolorizing dye Orange
II at maximum up to 1000 mg/L initial concentration and maximum
decolorization was achieved at 100 mg/L concentration [242].
Shah ez al. [53] reported that as the concentration of methyl orange
was increased (3, 4, and 5 g/L), the incubation time required for
decolorization was varied from 66 to 90 h. In another report, Pichia
kudriavzevii was reported for degrading Acid Red B dye with
maximum initial concentration 400 mg/L within 40 h and maximum
decolorization was achieved with 100 mg/L initial concentration
within 40 h [241]. Saroj et al. [245] concluded, the fungal consortium
containing Penicillium oxalicum, A. niger, and A. flavus strains was
able to degrade three different azo dyes, namely, Direct Blue 15,
Direct Red 75, and Acid Red 183, with the initial concentration range
200-400 mg/L. All these three dyes were degraded at lower initial
concentrations by the fungal consortium. Bacterium Aeromonas
veronii sorted out from acclimated textile effluent was reported to
decolorize the azo dye up to 1000 mg/L initial concentration [227].

Reactive Blue 4, the anthraquinone dye, was degraded by the bacterial
granules up to 1000 mg/L initial concentration [246]. In a report,
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the entrance dye is processed enzymatically into several end products. First, the azo group of the dye is reduced which is followed by cleavage reaction to form

various end products. Second, the desulfonation and oxidative deamination results in synthesis of pyrrolo[1,2-a] pyrazine-1,4-dione derivative which can be used

as substrates in amino acid metabolism. The amino acid catabolism can synthesize pyruvate (3C compound) which can be converted into acetyl-CoA. The acetyl-

CoA undergoes Krebs cycle to produce NADH, and FADH, (substrates of electron transport chain). Moreover, dye desulfonation, oxidative deamination, and

carboxylation lead to produce phthalate derivatives, which can be transformed into different fatty acids and aldehydes. The phthalate, fatty acids, and aldehydes

can directly/indirectly enter into fatty acid oxidation reactions (-oxidation) to produce acetyl-CoA, NADH, and FADH,. Source: Adapted with permission from
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thermophilic microflora was reported for detoxification of azo-dye
Direct Black G with an initial concentration 600 mgL'[247]. In another
report, Reactive Black-5 dye decolorization through bacterial (Gordonia,
Pseudoarthrobacter,  Sphingomonas, — and  Stenotrophomonas)
consortium was tested with three different initial concentrations, that is,
25,50, and 100 mg/L. The best dye decolorization by the consortium of
bacterial strains was found at 50 mg/L initial concentration [156]. Amin
et al. [248] reported Bacillus spp. to detoxify the diazo dye at an initial
concentration of 100 mg/L. In a study, Ochrobactrum anthropic from
textile wastewater was reported for biodegradation of Reactive Black 5
at the initial concentration of 400 mg/L [240].

6.4. Sodium Chloride Concentration

Effluents from the textile industry contain various salts or metal
ions, acids, and alkalis as impurity in addition to dyes [67]. The salt

concentration varies from 15 to 20% and has been calculated in dye
industry wastewater. Thus, a microbial strain that can tolerate high
concentrations of salt facilitates the degradation of dye wastewater.
The biological treatment of the dye effluent containing various
components, and identification of salt tolerant microorganisms is
important. Rudakiya, Pawar [249] have shown the decolorization
efficacy of a bacterial strain using salt concentrations up to 10%. In
their study, the result come out to be that 6% salinity was effective
in promoting both cell biomass and degradation of Reactive Orange
16. A similar study was done on Shewanella marisflavi and S. algae
algae which were able to degrade single or mixed azo dyes at lower
concentrations of NaCl (2-3%). It has been concluded that a lower level
of salinity induces the activities of azoreductase, laccase, and NADH-
DCIP reductase enzymes [250]. Cui et al. [98] reported that Klebsiella
spp. was able to decolorize Methyl red, Orange I, Congo red, and
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Methyl orange efficiently over the salinity range (1-4%). In a study,
M. luteus bacterium was reported for the detoxification of the Direct
Orange 16 dye with 3% NaCl concentration in 6 h of incubation [215].
In another report, halotolerant S. marisflavi reported for decolorization
of Xylidine Ponceau 2R under the 20% concentration of NaCl [251].
Song et al. [252] reported a yeast Pichia occidentalis for the Acid Red
B dye biodegradation in 16 h with 30 g L' of NaCl. In another report,
Bacillus spp. was biodegrading 96% of sulfonated dye, that is, methyl
orange with 5-20g/L of sodium chloride concentration [253]. Salt
tolerant bacterium Halomonas was reported for the biodegradation of
Toluidine Red dye where the concentration of NaCl was 5% [254].
Zhuang et al. [255] reported Methyl Orange and Reactive Yellow 84
decolorization by the Shewanella indica and Oceanimonas smirnovii.
These strains were decolorizing the dye in the presence of NaCl (0—
70 g L™"). Similarly, A. baumannii was reported for the 87% and 90%
degradation of Reactive Black 5 and Reactive Blue 221, respectively,
with 5% NaCl concentration [256].

6.5. Agitation/Static Condition

There are conflicting reports on azo dye decolorization through
microbes under shaking/static conditions. According to studies, the
decolorization rate increases by shaking culture conditions while
other reports suggest static conditions. A higher rate of decolorization
was observed during shaking due to the easy transport of oxygen
and nutrients over static conditions [257,258]. On the other hand,
decolorization by Pseudomonas spp. under agitation showed no
decolorization while static culture conditions showed 96% Reactive
Red 2 decolorization [88]. Similarly, Direct Red 81 and Reactive
Red 120 decolorization by A. niger were more efficient under static
conditions [259]. The rate of enzymatic activity was higher in the
still condition [67]. Complete Navy Blue dye decolorization by
Trichosporon beigelii was observed under static conditions whereas
it declined to 30% under shaking conditions [22]. Another study
concluded K. rosea for 100% Methyl Orange decolorization under
the static conditions [94]. In a report, halophilic and halotolerant
Halomonas variabilis and Halomonas glaciei were reported for
degrading reactive textile dye in batch mode static condition [235].
Shah et al. [260] reported A. faecalis for degradation of Reactive
Orange 13 under static anoxic condition. In a study, white rot
fungi, that is, B. adusta, Coriolopsis gallica, Trametes trogii, and
T. versicolor were reported for decolorizing Lanaset Gray G dye
under the static conditions [231]. In agitation condition, Issatchenkia
orientalis was reported for the five azo dyes decolorization, that is,
Reactive Red 198, Reactive Orange 16, Direct Yellow 12, Direct Black
22, and Direct Blue 71 [236]. Nor et al. [244] reported Trichoderma
harzianum for degrading Cresol Red dye under agitation conditions. In
a study, Chaetomium globosum was tested for dye detoxification under
stirred and static conditions and the report concluded that fungi were
efficiently degraded the dye under agitation conditions in comparison
with static conditions [261]. Bhattacharya et al. [238] reported under
static conditions, halotolerant and alkalophilic N. lacusekhoensis was
efficiently detoxifying Methyl Red. Similarly, 4. baumannii from
the sea sediments was reported for Reactive Red dye degradation at
both agitation and static conditions [226]. In a comparative study,
L. fusiformis was experimented for azoreductase degradation under
both static and agitation conditions and results showed that under
agitation conditions, dye degradation was better [105]. In a study,
under static conditions, P. aeruginosa and Thiosphaera pantotropha
were reported for decolorization and Reactive Yellow 145 dye
detoxification [243].

6.6. Aerobic/Anaerobic Culture Conditions

Azo dyes are usually resistant to the attack of bacterial species under
aerobic conditions [4]. Anaerobic degradation of dye has been more
effective than aerobic, but the intermediates formed are carcinogenic
and toxic in nature and must be degraded before being discharged
to the main water stream [262]. Apart from few, all aromatic amines
produced after azo dyes decolorization has recalcitrant properties under
oxygen limiting condition [ 152]. However, the process when combined
shows much more efficient output as reported by many authors [262].
They reported that the dye degradation by bacteria under anaerobic
conditions is usually accompanied by the colorless aromatic amine
production which is easily metabolized under aerobic conditions.
The breakdown products are non-toxic in nature [139]. Bacterium
P aeruginosa was able to degrade, Navitan Fast Blue SSR, under
an aerobic condition in the presence of glucose. The organism was
also able to discolorate various other textile dyes [263]. Aerobic
bacteria consisting of B. cereus, B. megaterium, B. pumilus, B.
subtilis, and B. vallismortis were found to be efficient in decolorizing
microbial strains individually as well as the mixture of dyes. Almost
80-90% decolorization was noticed in four out of six azo dyes
(Congo red, Bordeaux, Blue BCC, and Ranocid fast blue) when
present in mixture [134]. In a study, thermophilic microbial strains
Anoxybacillus pushchinoensis, A. kamchatkensis, and A. flavithermus
blend were reported for detoxifying 80% of Reactive Black 5 in aerobic
conditions [163]. A comparative study has reported, microbial strain 4.
hydrophila was efficiently degrading the synthetic dye basic fuchsin,
Crystal violet, Solophenyl red 3BL, Polar brilliant red B, Safranin, and
Nigrosine under microaerophilic conditions in comparison to aerobic
conditions [264]. Aerobic detoxification of Acid Scarlet GR was
reported by a halotolerant yeast strain G. geotrichum [118]. A study
has reported efficient degradation of dye Acid Red 14 by microbial
strain Oerskovia paurometabola under anaerobic conditions [265]. In
another report, Pseudomonas spp. and Clostridium spp. were reported
to degrade the dye under aerobic conditions [266].

7. PHYTOTOXICITY AND MICROBIAL TOXICITY OF
DYES AND THEIR BIODEGRADATION PRODUCTS

It is essential to determine whether dye degradation leads to dye
detoxification. Microbial toxicity and phytotoxicity studies on dye and
its biodegraded metabolites can confirm this. In phytotoxicity studies,
experimental plant seeds are treated with the dye and its degraded
metabolites. Effect on germination percentage, length of root, and shoot
is measured, to compare with control (without dye and its biodegraded
metabolites). Results are enumerated to determine whether the degraded
metabolites are less toxic to growing seedlings than the dyes being
studied. Likewise, the antimicrobial activity (toxicity) of the dye being
studied can be compared with its degraded metabolites. Reactive Red
2 and its degraded metabolites were studied using Phaseolus mungo
and Sorghum vulgare as model plants by Kalyani et al. [88]. The result
observed concluded that the product formed after degradation was less
toxic than Reactive Red 2. A similar result was observed when Malachite
Green phytotoxicity and its degraded metabolites using P. mungo and
Triticum aestivum as a model plant was performed [222]. Phytotoxicity
study of Navy blue 2GL and its biodegraded product by Bacillus spp.
on Sorghum bicolor and Triticum aestivium have shown similar results
when compared with dye as control. There was 2-5% reduction in
growth (root and shoot length) in the presence of degraded products
than in distilled water [267]. The microbial toxicity study on Azobacter
vinelandii showed a growth inhibitory zone of 1.2 cm against dye while
no zone of inhibition was found around metabolites formed. The toxicity
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of crystal violet dye against E. coli was checked. The study reveals the
toxic nature of crystal violet, but the product formed after degradation
with Shewanella decolorationis NTOU1 was non-toxic to E. coli [268].

8. FUTURE PERSPECTIVES

The rampant industrialization has proliferated the huge amount of
effluent containing mixture of dyes, metals and other hazardous
materials. The degradation of dyes and other pollutants has hazardous
impact on the environment and its removal is one the urgent need.
The recent advancement have suggested microbial-based remediation
is an efficient method of the removal of dyes, but unfortunately
dye removal through the use of microbes still depends on the
environmental changes. In this regard, many reported have suggested
the proper oxygen transfer, operational stability, homogenization, less
operational time, and suitability in hybrid bioreactors. The studies have
provided the rationale for the application of microbial consortium of
different microbes including bacteria, fungi, and algae. The microbial
consortium has found to be more stress resistant with stability and
enhanced adaptability over the single inoculation. The genome
engineering of microbes may leads to the development of exceptionally
adaptive techniques of bioremediation for high degradation of dyes.
Hence, it is preferable to develop an alternative technology that could
upgrade the microbial-based removal of dyes.

9. CONCLUSION

In times, bioremediation through microbes is gaining much important
to because of its effectiveness, cost, and eco-friendly nature. Microbes
have been also known to remediate the textile released dyes. Dyes
and organic colored compounds are known to be hazardous pollutants
which are categorized under xenobiotics. These are known to
have several deleterious effects on aquatic and human life. Various
types of microbes are known to remediate the dyes including fungi,
bacteria, algae, and yeast. In the future, new microbial strains could be
researched and could be used as bioremediation.
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