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ABSTRACT

An array of industrial dyes most often azo dyes (–N=N–) deployed for different staining purposes, consequently 
impacting the environment significantly. The increasing pace of dye production often produces enormous wastewater 
from textile processing. After processing steps, dyes concentration remains left in expelled wastewater, consequently 
causing water pollution, and triggers negative toxicological impacts. However, remediation or decolorization is 
necessitating minimizing its negative consequences. Improper treatment of dye-containing waste waters triggers 
pollution of soil, water bodies, and so on. Numerous biological, physical, and chemical approaches for dye 
degradation and wastewater decolorization have been established. However, the high cost and practical feasibility of 
such methodologies remain obstacles in dye-containing wastewater. Microbial-assisted remediation is predominantly 
resilient to transforming dye compounds and reducing toxicity from water matrices in the ability to cope and provide 
cost-effective and efficient solutions. To cover the literature gap, and highlighting recent update information on 
dye remediation, we outlined different azo dyes, and their remediation deploying different physicochemical and 
microbial-mediated systems. In addition, recent advances in dye degradation, together with concluding remarks and 
future perspectives, have been pointed out.

1. INTRODUCTION

Water is a key resource to sustain life on earth. Better access to clean 
water, sanitation services, and water management create tremendous 
strategies for the economic growth of the country. Water pollution due 
to various effluents is a cause of concern worldwide. There is a rising 
demand for adopting practices to minimize water pollution. Among 
all industries, the textile industry is one of the leading contributors to 
pollution by liquid effluents and the reason is the use of high quantities 
of water in the process of dyeing [1]. One of such industrial waste 
that is considered as hazardous pollutant is dye. Dye is an organic 
(natural or synthetic chemical), colored compound which has an 
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affinity towards the substrate to which it is being applied by giving 
it an everlasting color. These have been applied to products such as 
paint [2], plastic [3], textile [4] printing ink [5], pharmaceuticals [6], 
cosmetics [7], photographic, and paper [8]. According to estimates, 
more than 10,000 dyes and pigments are put to industrial use and over 
7 × 105 tons of synthetic dyes are annually produced across the world 
and 10% of which is released into the water [9].

Azo dyes are most extensively used in the textile industry 
(60–70%) [10]. These have nitrogen-nitrogen (N=N) in their chemical 
structure. The azo group is generally connected to naphthalene and 
benzene rings and could also be attached to enolizable aliphatic groups 
or aromatic heterocyclic. These attached side groups to the ring are 
necessary for the dye to impart the color, with a variety of shades and 
intensity of color [11]. Azo dyes and their degradation products have 
been proven toxic and mutagenic to aquatic animals and humans [12]. 
The dyeing and dye industries do not take precautionary measures 
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as per the legislation and freely release these toxic chemicals into 
the environmental sink. Color is one of the obvious water pollution 
indicators and is usually the first recognized contaminant [13]. 
The dye presence in water bodies interferes with the penetration of 
sunlight [14] and adversely affects the aquatic ecosystem. Some of the 
azo dyes are mutagenic and very toxic to living organisms [15]. Their 
discharge in water bodies could result in serious health issues and can 
have chronic and acute effects on aquatic life [16].

Several factors, including the type of dye, wastewater composition, 
environmental fate, and operation and handling costs of generated 
waste products, determine the economic and technical feasibility 
of each single dye removal technique. Different physicochemical 
methods such as membrane filtration, flocculation or coagulation, 
ion exchange (Dotto et al., 2012), adsorption, electrolysis, activated 
carbon, Fenton’s reagent, ozonation, and advanced oxidation process 
are utilized by industries to remove dye from the effluents. Such 
methods are often very costly, less efficient, and inapplicable to a wide 
dyes variety [17]. Moreover, these methods generate concentrated 
sludge which creates a disposal problem [18].

Bioremediation or utilization of microbial-based techniques to deal with 
pollution is a key area of research in the field of environmental sciences 
where naturally developed or acclimatized microbes are used to transform 
various toxic chemical compounds into less toxic forms. In the process 
of biological treatment, microorganisms follow two methods: adsorption 
on microbial biomass and dye biodegradation by the microbial cells [19]. 
Adsorption of dye may be on live cells of microbes or dead cells of 
microbes and this type of adsorption on biomaterial is also known as 
biosorption, where the dye original structure remains untouched, that 
is, not fragmented. On the hand in biodegradation, the structure of the 
original dye is fragmented or broken by microorganisms, thus achieving 
complete mineralization in certain cases, that is, conversion to some 
inorganic salts, CO2 and H2O. On studying the mechanism involved in 
the two processes (biosorption and biodegradation), biodegradation was 
more convincing. The process of biosorption does not remove or destroy 
the dye, instead entraps the dye in biomatrix (microbial cells). Dumping 
of these microbial cells having absorbed dye itself is a roadblock in 
their projected role in the bio-cleaning of colored water [20]. Thus, 
because of the disposal of adsorbed biomass, biosorption might 
not be the pragmatic approach for treating colored effluent from 
industries [21]. The effectiveness of microbial decolorization depends 
on the activity and adaptability of the selected microorganisms. 
Several microbiomes, including bacteria, fungi, and algae, are 
capable of biodegrading azo dyes, among which bacteria represent a most 
promising tool for the removal of the azo dye from textile effluents [22]. 
The environmentally friendly and efficient technologies development to 
decrease the content of dye in wastewater is of utmost important. An 
insight into the present review detailed the role of microbial systems in 
the bioremediation of environmental pollutants, their mechanism, and 
factors affecting biodegradation.

2. CLASSIFICATION OF DYES

The society of dyers and colorists (TDC) and the American Association 
of Textile Chemists and Colorists had classified the dyes based on 
their color, structure, and application method which are revised every 
3 months since 1924. A C.I. (Color index number) generic name was 
given to each dye based on the color as well as its application and 
characteristics. Dyes based on their origin are classified into two types, 
namely, natural and synthetic.

2.1. Natural Dye
The dyes obtained from natural sources are called natural dyes. 
They are mostly applied to textiles using mordants. These mordants 
are metallic salts that have a high affinity for fiber as well as any 
coloring matter. These metallic mordants after mixing with dye in 
fiber form an insoluble precipitate, leading to both dye and mordant 
getting fixed [23]. On the basis of the chemical constitution, a 
natural dye can further be classified namely, indigoid dyes, alpha-
hydroxynaphthoquinones, flavones, dihydropyrans, anthocyanidins, 
and carotenoids. Indigoid dye’s most common examples are indigo 
and Tyrian purple [24]. This dye type is obtained from the leaves of 
a wood plant as it possesses indigo as the key component in dyeing. 
Oppositely, alpha-hydroxy-naphthoquinones is a lawsone also known 
as Heena. It is mainly cultivated in Egypt and India. This dye type 
is also found in the unripe walnuts shell which gives orange color 
shades [25]. Flavones are colorless organic compounds. In general, 
natural yellows are derivatives of methoxy and hydroxyl substituted 
isoflavones and flavones. Weld (containing luteolin pigment) is a 
common example, which gives bright and fast colors to silk and 
wool [26]. Dihydropyrans are similar in chemical structure to flavones. 
Some examples are hematin and its leuco form, hematoxylin. These 
categories of natural dyes give dark shades to wool, silk, and cotton. 
Some of the common sources of these dyes are brazilwood, sappan 
wood, and logwood. Another dye, anthocyanidins, naturally possesses 
orange dye for cotton, and these are extracted from Bignonia chica 
leaves. Carotene is derivative of orange pigment found in carrots. 
Carotenoids owe their color to the conjugated double bonds which 
are present in their structure. Annatto and saffron are examples of 
carotenoids [27].

2.2. Synthetic Dyes
Synthetic dyes are man-made petrochemicals that may consist of lead, 
mercury, copper, sodium chloride, toluene, chromium, and benzene. 
Synthetic dyes have a brighter and wider range of colors, longer 
color permanence, and are easier, faster, and cheaper to produce in 
comparison with natural dyes. There are over 10,000 different types 
of synthetic dyes. Synthetic dyes are categorized on the basis of 
their chemical composition and the method of their application in 
the dyeing process. Although natural dyes are important from the 
chemical and historical point of view, these dyes are very expensive, 
need purification, and do not bind well because they lack the chemical 
grouping required to react with the binding sites of a fabric. Therefore, 
for dyeing applications, synthetic colors are utilized in place of 
natural dyes. This is because synthetic dyes are generally purer, less 
expensive, and their colors bind faster to the fabric [28]. Synthetic 
dyes are classified into three categories including anionic, non-ionic 
acid, and azo dyes. Anionic synthetic dyes include acid and whereas 
non-ionic dyes are basic, dyes are also known as cationic. On the other 
hand, dyes can be classified based on their chemical structure into 
anthraquinone dyes and azo dyes [29].

Azo dyes are characterized by being strong, having good all-around 
properties, and being less expensive. This dye has at least one azo bond 
(-N=N-), along with one or more aromatic structures. Azo dyes are 
intended to transport resistance and high photolytic stability toward 
major oxidizing agents. They have wide variety of applications in 
textile, food making, and cosmetic industries [3]. After azo dyes, 
anthraquinone dyes are widely used textile dyes [30]. Anthraquinone 
dyes have a wide color range and it almost covers the whole visible 
light spectrum. Dyes based on anthraquinone are the most resistant 
to degradation because of their fused aromatic structures, which 
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retain the color for a duration [31]. Acid dyes are soluble in water 
and is used for silk, wool, nylon, modified acrylics, leather, paper, 
ink-jet printing, cosmetics, and food. The principal chemical classes 
of acid dyes are azo (including premetallized), anthraquinone, azine, 
triphenylmethane, nitro, nitroso, and xanthene [32]. Metal complex 
dyes consist of dyestuff and metal (usually chrome such as chromium, 
cobalt, nickel, and copper) and are being used since the 1940s. On 
the other hand, direct dyes are compounds of poly azo having some 
phthalocyanines, oxazines, and stilbenes. These dyes types are the 
anionic dye having water-soluble properties. They are utilized in dying 
rayon, cotton, nylon, leather, and paper [33]. Basic dyes are utilized 
on polyacrylonitrile, paper, cation dyeable polyethylene terephthalate 
modified polyesters, modified nylons, and in medicines. Dyes yield 
colored cations in a solution and they are known as cationic dyes. 
The chemical structure of basic dyes encompasses triarylmethane, 
aromatic methane, xanthene, thiazine, hemicyanine, oxazine, cyanine, 
and acridine [32,33].

Another dye, reactive dye is mainly used for dyeing cotton, silk, 
wool, nylon, and leather. This class of dyes makes a covalent bond 
with the fiber. It is so tightly fixed that they cannot be removed even 
in hash conditions [34]. Sulfur dyes have a complex structure and it 
contains sulfur. This class of dyes is economically friendly as they 
are low priced and has good wash fastness properties. These dyes are 
not brightly colored and are used for dyeing cotton, rayon, polyamide 
fibers, paper, leather, silk, and wood [33]. Vat dyes are fast dyes and 
are used for coloring cellulosic fiber, mainly cotton fiber. These dyes 
belong to the chemical class comprising indigoids and anthraquinone 
derivatives (including polycyclic quinones) [32]. Disperse dyes are 
primarily used on polyester and to a lesser amount on nylon, acrylic 
fibers, cellulose, and cellulose acetate. They are insoluble in water and 
non-ionic in nature. Disperse dyes molecule is based on azobenzene 
or anthraquinone molecules having nitro, hydroxyl, and amine groups 
attached [32,33].

3. DYES: ENVIRONMENTAL CONCERN

Wastewater released from the textile industry has many substances 
which are polluting in nature, like organochloride-based pesticides, and 
heavy metals [35]. Synthetic dyes are modeled in such a manner that 
they are recalcitrant and resist fading on treatment with water, soap, 
sweat, light, or any type of oxidizing agent [18]. The textile industry is 
the main producer of wastewater because water is the key component 
in the process of dyeing [36]. It had been estimated that 100  L of 
water was being used for the processing of 1 kg of textile materials. 
Every year all around the world almost 280,000 tons of textile dyes get 
discharged into industrial wastewater [37]. The appearance of color 
in the effluent is the leading sign that water has been polluted and 
the release of this colored effluent affects negatively the main water 
stream [38]. These water streams, when utilized in agriculture, have an 
adverse impact on the environment which, in turn, affects the health of 
living organisms [39]. These colored effluents when mixed with water 
bodies reduce the light penetration capacity of the water body and thus 
have a negative impact on aquatic flora and fauna by affecting the 
food chain. Even at a 1 mg/L concentration some of the dyes could be 
observed in water [40]. Dye-containing effluent also has been shown 
to increase the contaminated water’s biochemical oxygen demand 
[41]. Out of all the known dyes, azo dyes are the major group of 
synthetic dyes and are extensively used [42]. Textile effluent has been 
characterized by the presence of undefined organic pollutants, dyes, 
increased COD (organic compounds), and high conductivity due to a 
high amount of dissolved salt, sulfide, halogen, and heavy metals [43]. 

Maximum dyes pose health risks to all kinds of life forms because of 
their non-biodegradable nature.

Azo dyes have been known as potential health hazards. Several azo 
dyes have also been the cause of DNA damage which leads to malignant 
tumors [44]. When these compounds contacted the body of humans 
through skin or injection and ingestion, they are metabolized inside the 
mammalian liver and gastrointestinal tract by the azoreductases and 
converted into aromatic amines and free radicals. Azo dyes are known 
as relatively persistent pollutants as they are not easily degraded under 
aerobic conditions. Under limited oxygen conditions, these dyes could 
be reduced by intestinal bacteria and other microbes to colorless 
amines. The converted amines are toxic, mutagenic, and carcinogenic 
to humans and animals [40,45].

4. METHODS OF REMEDIATION OF DYES

Dye could be removed by three methods namely, physical, chemical, 
and biological. The conventional treatment methods, that is, physical 
and chemical have been ineffective in dealing with effluents 
containing synthetic dyes which are highly unstable chemical 
pollutants. There have been remarkable achievements in the use of 
biotechnological methods in recent years. Chemical and physical 
methods are used for the decolorization of colored effluent and were 
subjective to physiochemical factors such as dye interaction, particle 
size, temperature, sorbent surface area, pH, and contact time [46]. 
On the other hand, the biological method uses microbial cells for the 
bioremediation of dye.

4.1. Physical Method
There are several physical methods through which dye is biodegraded 
such as adsorption, membrane filters, coagulation/flocculation, ion 
exchange, and radiation. Adsorption is an effective and attractive 
method for dye elimination from wastewater, particularly if the 
adsorbent is not expensive and commonly available [47]. Activated 
carbon is mainly utilized for dye removal with great success due to its 
higher adsorption capacity [48]. The cellular structure of peat makes it 
a perfect choice as an adsorbent. It can adsorb polar organic compounds 
and transition metals from colored effluents. Unlike activated carbon, 
it requires no activation and is less expensive [49,50]. Wood chips 
have high-quality adsorption capabilities for acid dyes, although 
because of their hardness and longer contact times are required [51]. 
Many low-priced adsorbents have been studied on fly ash for dye 
adsorption [52]. Its adsorption ability depends on various properties of 
the adsorbent: Porous chemical structure, porous structure, and surface 
area [53]. Silica gel could be considered effective for removing basic 
dyes. However, side reactions such as air binding and air fouling with 
particulate matter prevent it from becoming effective for commercial 
use [18].

Membrane filter methods have several applications by improving the 
finished product quality, increasing the amount of yield generation, 
saving raw materials, or recovery of products from waste [54]. This 
method has some special features which are not found in other 
methods, namely, resistance to temperature, an adverse microbial 
attack, and chemical environment [18]. Concentrated sludge 
production is the main disadvantage. Ion exchange resins were used 
to decolorize the textile wastewater and to reduce the COD [55]. 
Most of the dyes are either anionic or cationic in nature; therefore, it 
was possible to remove them through ion exchange resins. These are 
not utilized extensively for the treatment of colored effluents, mainly 
because they couldn’t accommodate a wide spectrum of dyes. The 
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whole process is possible only in the presence of organic solvents 
during regeneration time [18].

Coagulation/flocculation is the only cost-effective method used for the 
removal of color from the effluent. The primary wastewater treatment 
method proceeds with coagulation and flocculation by removing 
colloidal particles of turbidity, color, and bacteria. Coagulants such as 
Fe (III) or Al (III) salts are used in high concentrations for initiating 
precipitation and settling along with it [56]. Generation of the huge 
toxic sludge and disposal amount has been the major drawback of this 
method. Radiation, in general, is the emission of any rays or particles 
from a source. Radiation is classified into two main categories: Ionizing 
radiation and non-ionizing [57]. The rate of reaction was monitored by 
radiation dose and the amount of oxygen present in the solution. It is 
a proven effective method for the removal of the dye at the same time 
toxic organic compounds. Almost 90% of the color has been removed 
from the effluent. The whole process of radiation is very expensive 
which makes it less feasible for use. Finally, the drawbacks of all such 
processes have been mainly due to low efficiency, high cost, problems 
in the disposal, and limited versatility. Thus, most of the chemical 
and physical methods for the treatment of colored wastewater are not 
widely used in textile industry sites or plants [37].

4.2. Chemical Method
In the chemical method, various types of chemical reagents and 
treatments are applied to degrade the dyes such as ozone treatment, 
Fenton’s reagent, photochemical oxidation, sodium hypochlorite 
(NaOCl), and electrochemical. Fenton’s reagent is an effective 
decolorization chemical method of the textile wastewater which is 
unaffected to a biological method or is toxic to living biomass but not 
useful in reducing its COD if not combined with one more process 
such as coagulation [58]. In the acidic mixture, iron (II) acts as a 
catalyst which when acts on hydrogen peroxide, immediately leads 
to the formation of hydroxide radicals. These hydroxide radicals help 
in decolorizing dye wastes. This method can act on both insoluble 
and soluble dyes. Sludge generation is the major disadvantage of this 
process [59]. Ozone treatment is widely applied in the treatment of 
water; ozone either alone or in combinations (O3-UV or O3-H2O2) 
is used for treating industrial effluents [60]. Chromophore groups 
are accountable for color which can be fragmented by ozone either 
directly or indirectly through the formation of smaller fragments [61]. 
The only disadvantage is the short shelf life (20 min). Photochemical 
oxidation is the traditional technique used for industrial textile effluent 
treatment [62]. UV light activates the degradation of H2O2 into 
hydroxyl radicals which may attack and release hydrogen atoms from 
organic molecules capable of the oxidizing organic compound. The 
formation of byproducts is a major drawback [39,63].

NaOCl acts on the amino group of the dye molecule by the Cl− which 
starts and speeds up azo bond cleavage [64]. NaOCl, when added to 
effluent may remove residual colors effectively. Moreover, this method 
is not favored much as it has been observed to lead to the generation of 
toxic chlorinated compounds which are dangerous for the environment 
as well as human health [65]. An electrochemical method in current 
years has been a growing interest in wastewater treatment. This type of 
method has been effectively functional in the detoxification of textile 
wastewater [66]. Electrochemical reactions are mainly used in sulfur 
and vat dyeing. Electrochemical oxidation leads to the generation of 
hypochlorite or hydroxyl radical. These electrogenerated species are 
used to degrade dyes present in wastewater. However, the electricity 
price used is high compared to the chemicals cost [18].

4.3. Biological Method
In the last few years, awareness among the scientific community 
about biological techniques has increased tremendously. These 
techniques have several benefits over conventional techniques 
such as low cost, environment-friendly, safe operation, and 
less sludge production. Bioremediation is now considered an 
upcoming treatment option for dye removal in diverse conditions. 
The bioremediation method can use natural and recombinant 
microorganisms to degrade toxic materials because of flexibility 
in operating conditions and design. Flexibility in this technique is 
understood by the fact that they could be employed ex situ (off-site) 
or in situ (on-site) and even plants can be used (phytoremediation). 
Biodegradation could be defined as the biologically facilitated dye 
molecule breakdown into several by-products by the action of a 
variety of enzymes. It is a process that is energy dependent [67]. 
Dye biodegradation results in decolorization and the breakdown of 
the dye molecules into smaller fragments. Diverse microbes such 
as bacteria, fungi, and algae are employed for the decolorization 
and degradation of synthetic dyes. Microbes have various 
capabilities for decolorizing a variety of dyes. Some groups of 
microorganisms have specific advantages over others in synthetic 
dyes biodegradation. The bioremediation of dyes effectiveness is 
subject to the activity and adaptability of the microbes [38].

4.3.1. Fungi
Fungi are most effective in breaking down or sometimes completing 
the mineralization of synthetic dyes [68]. These degradation 
properties are attributed to the presence of a powerful extracellular 
and intracellular enzyme system comprising laccase, manganese 
peroxidase, and lignin peroxidase, robust morphology, and various 
metabolic activity [69]. The mycelia of fungal species have an 
advantage over unicellular organisms that they solubilize the 
insoluble substance by enzymes. They have a high cell-to-surface 
ratio which helps them to have greater enzymatic and physical 
contact with pollutants. Extra-cellular fungal enzymes are also 
advantageous in tolerating high toxicants concentration [67]. Fungi 
initiate the process by adsorption of dye onto hyphae, followed by 
the breakdown of chemical bonds by enzymes [70]. However, fungi 
application for the removal of the dye from textile wastewater has 
some inherent drawbacks such as a long growth cycle and the need 
for nitrogen limiting conditions [71]. Gill et al. [72] reported Congo 
red decolorization by Pha. chrysosporium and Dichomitus squalens. 
Svobodová et al. [73] have reported maximum decolorization 
of Reactive Orange 16 up to 80% by fungal strain Irpex lacteus. 
Jayasinghe et al. [74] have reported Ganoderma lucidum, Pycnoporus 
cinnabarinus, Pleurotus pulmonarius, Stereum ostrea, and Trametes 
suaveolens, for their ability to decolorize Congo red (100 mg/L).

In a report, fungal species Fusarium oxysporum, Penicillium 
lanosum, and Ganoderma resinaceum was reported for Blue 21 
dye decolorization [75]. Synthetic dye amaranth was reported 
to be degraded by Bjerkandera adusta [76]. White rot fungus 
Armillaria spp. was confirmed for degrading azo, anthraquinone, 
and triphenylmethane dyes. [77]. Noval species of Alternaria 
alternata was able to decolorize Congo red (600 mg/L) within 48 h of 
incubation [78]. Ganoderma spp. has also been reported to decolorize 
Reactive Orange 16 [79]. Chen et al. [80] reported Coriolopsis 
spp. for decolorizing triphenylmethane dyes. In a report, the novel 
fungal strain Absidia spinosa was reported for biotransformation of 
Cresol Red up to 65% [81]. Barapatre et al. [82] reported Aspergillus 
flavus for biodegradation of Malachite Green in which intermediate 
N-demethylated and N-oxidized metabolites were identified [Figure 1]. 
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Figure 1: Biodegradation pathway of malachite green using Aspergillus flavus. Source: Adapted with permission from Barapatre et al. [82].

Fungal strain Aspergillus bombycis was reported for having the ability 
to degrade Reactive Red 31 [83]. Asses et al. [84] reported Aspergillus 
niger having the ability to decolorize Congo red (200 mg/L) within 
6 days of incubation [Figure 2]. Oudemansiella canarii, the white rot 
fungi, was reported for degrading Congo Red dye [85]. In another 
report, Aspergillus terreus was reported for degrading Direct Blue-
1 [86]. Krishnan et al. [87] reported Fusarium equiseti for the 
degradation of methylene blue dye.

4.3.2. Bacteria
Dyes decolorization through bacteria is faster than fungal decolorization 
as bacteria take less time to grow [88]. Bacterial cells represent a 
promising and inexpensive tool for the several azo dyes removal from 
the textile dye effluents. Bacteria have many advantages as compared 
to filamentous fungi such as higher hydraulic retention time, faster 
growth rate, and could be efficient in treating high strength organic 
wastewaters [89]. In general, the azo dyes decolorization occurs under 
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conventional anaerobic, facultatively anaerobic, and aerobic conditions 
by different bacterial groups [90]. A bacteria like Pseudomonas spp. 
could decolorize Reactive Orange 16 (100 mg/L) to 98% within 24 h of 
incubation [91]. Park et al. [92] reported decolorization of Congo red 
(1 g/L) by Staphylococcus spp. up to 96%. In a report, Pseudomonas 
spp. SUK1 could decolorize methyl orange dye (300 mg/L) within 6 h 
of incubation [93]. On the other hand, strain Kocuria rosea exhibited 
complete decolorization [94]. In another study, Nocardiopsis alba 
could decolorize Reactive Orange 16–95% (1000  mg/L) dye within 
24 h of incubation [95]. Ghanem et al. [96] reported decolorization 

of methyl orange (38  µg/ml 10  µg/ml, 36  µg/ml, 32  µg/ml, and 
40  µg/ml) by Acinetobacter baumannii, Cytophaga columnaris, 
Corynebacterium spp., Escherichia coli, and Pseudomonas 
fluorescence up to 76, 20, 72, 64, and 80%, respectively.

A study by Shah et al. [97] showed complete decolorization of 
methyl orange (2.9 mg/L) by Bacillus spp. complete methyl orange 
decolorization has also been reported for a much higher concentration 
of dye (50–200 mg/L) by several researchers. In a finding by Cui et al. 
[98] reported 100% decolorization of Methyl orange (100 mg/L) dye 

Figure 2: Decolorization of Congo red through Aspergillus niger. Source: Adapted with permission from Asses et al. [84].
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by Klebsiella spp. strain Y3. Ng et al. [99] reported decolorization up 
to 96% for 200 mg/L of Methyl orange by Shewanella xiamenensis. 
Marine bacteria A. baumannii could decolorize Congo red (100 mg/L) 
to 99.1% within 30  h and 5  days of incubation under optimized 
conditions [100]. Mycobacterium could decolorize Reactive Orange 
16  (250  mg/L and 100  mg/L) to 96% within 24  h [101]. Bacillus 
cereus, Ochrobactrum spp., and Achromobacter xylosoxidans could 
decolorize Congo red (25 mg/L) 93%, 62%, and 94%, respectively 
[102]. Bacterium Alishewanella spp. was reported for azo dyes 
degradation [103]. Mani et al. [104] reported Shewanella oneidensis 
for decolorization of acid orange 7 [Figure 3]. Lysinibacillus fusiformis 
was reported for degrading methyl red [105]. Saha and Rao [106] 
studied the degradation of Reactive Orange 16 up to 89% by Bacillus 
flexus. In a report, halo-alkaliphilic bacterium Nesterenkonia 
lacusekhoensis was reported for decolorization of Reactive Red-35 
dye [107]. Akansha et al. [108] reported Bacillus stratosphericus for 
biodegradation of reactive orange 16 [Figure 4].

4.3.3. Yeast
Yeast can grow fast and withstand adverse environmental 
conditions [109]. Trichosporon beigelu was capable to decolorize 
Navy blue HER, Golden Yellow 4BD, Red HE7B, Green HE 4BD, 
Orange HE2R, and Malachite green [22] whereas Candida krusei was 
able to decolorize Reactive Brilliant Red K-2BP, Acid Mordant Yellow 
Reactive, Weak Acid Brilliant Red B, Reactive Black KN-B, Reactive 
Brilliant Blue X-BR, Acid Mordant Light Blue B Reactive, Acid 

Mordant Red S-80, and Reactive Turquoise Blue KN-G [109]. Yeast 
C. krusei, isolated from textile wastewater, was reported for degrading 
Basic Violet 3 by 74% [110]. About 90% Acid Red B decolorization 
under aerobic conditions was reported by Pichia spp. [111]. In a report, 
Acid Brilliant Scarlet GR was detoxified by Candida tropicalis [112]. 
Tan et al. [113] reported Magnusiomyces ingens for degrading Acid 
Red B. In a report, Acid Red B was degraded by C. tropicalis [114]. 
Tan et al. [115] reported salt tolerant Scheffersomyces spartinae for the 
detoxification of Acid Scarlet 3R under anaerobic conditions. A recent 
study had reported complete decolorization of Reactive Orange 16 
by Pichia kudriarzenii [116]. Cyberlindnera samutprakarnensis, the 
salt tolerant yeast, was reported for decolorization of Acid Red B 
by 97% within 18 h of incubation [117]. In a report, Galactomyces 
geotrichum was reported for degrading Acid Scarlet GR under aerobic 
conditions [118]. Similarly, halotolerant, Sterigmatomyces halophilus 
was reported for complete detoxification of Reactive Black 5 within 
24 h of incubation [119]. In another report, C. tropicalis was reported 
for the Acid Red B degradation [120].

4.3.4. Algae
Some microbial groups have not been studied extensively for their 
degradation abilities concerning pollutants such as synthetic dyes 
and xenobiotics. Cyanobacteria (blue-green algae) have distributed 
ubiquitously, but there is scant information about their ecosystem 
functioning role, including recalcitrant compounds degradation 
such as dyestuffs and dye [121]. Chroococcus minutus, Gloeocapsa 

Figure 3: Acid Orange 7 biodegradation pathways by Shewanella oneidensis. Source: Adapted with permission from Mani et al. [104].
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Figure 4: Biodegradation pathway of Reactive Orange 16 through Bacillus stratosphericus. Source: Adapted with permission from Akansha et al. [108].

pleurocapsoides, and Phormidium ceylanicum are some of the algae 
reported on dye decolorization [122]. In a report, detoxification of 
monoazo and diazo dye was reported by the Nitzschia perminuta and 
Scenedesmus bijugatus [123]. Khataee et al. [124] reported Chara spp., 
the macroalgae for the detoxification of Malachite Green solution. In 
a report, from a thermal spring environment, Methylene Blue and 
Malachite Green were removed by Chlorella spp. and Chlamydomonas 
spp. [125]. In another report, Orange G Dye was detoxified by the 

microalgae Acutodesmus obliquues [126]. Chia et al. [127] reported 
Scenedesmus quadricauda for the degradation of Indigo Blue dye. 
Congo red dye detoxification was reported by green algae Chlorella 
spp., Chlorella vulgaris, Haematococcus spp., Scenedesmus 
officinalis, Scenedesmus obliquuss, and S. quadricauda [128]. In 
similar report, Methylene Blue and Malachite Green were decolorized 
by the Desmodesmus spp. [129]. C. vulgaris was reported for Indigo 
Blue dye [130].
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4.3.5. Microbial consortium
In various studies, microbial consortia have shown greater effectiveness 
as compared to pure strains [21]. The mixed microbial population 
has shown greater efficiency of synthetic dyes decolorization than 
pure culture because of synergistic metabolic activities of microbial 
communities [131]. Each strain in the consortium may target different 
sites in the dye molecules or may utilize degraded metabolites generated 

by one strain followed by degradation by another strain [132]. Thus, 
using mixed microbial cultures dyes, biodegradation could be 
improved due to the synergistic effect [133]. Consortium development 
which can survive in the effluent by utilizing the components as 
a source of carbon, nitrogen, and energy would render the whole 
technique economically friendly [21]. Different microbial consortiums 
were reported for the remediation of various dyes [Table 1]. Tony et al. 

Table 1: Dye remediation using microbial consortium.

Consortium Dye References 

Bacillus vallismortis, B. cereus, B. pumilus, B. subtilis, and B. megaterium Blue BCC, Ranocid fast blue, Bordeaux, 
Congo red

Patil et al. [135]

Brevibacillus laterosporus and Galactomyces geotrichum Golden yellow HER Waghmode et al. [136]

Klebsiella, Buttiauxella, and Bacillus Methyl red Cui et al. [137]

Citrobacter freundii, Moraxella osloensis, and Pseudomonas aeruginosa Mordant black 17 Karunya et al. [138]

Provedencia rettgeri, and Pseudomonas spp. Reactive Orange 16 Lade et al. [139]

Escherichia coli, Salmonella spp., Staphylococcus aureus, Proteus spp., 
Pseudomonas spp., and B. subtilis

Congo red Holey [140]

Bacillus spp., B. subtilis, B. cereus, B. mycoides, Micrococcus spp., and 
Pseudomonas spp.

Green dye, red dye, black dye, and yellow 
dye

Mahmood et al. [141]

Pseudomonas stutzeri and Acinetobacter baumannii Congo red and gentian violet Kuppusamy et al. [142]

Aeromonas spp., Bacillus spp., Neisseria spp., and Vibrio spp. Novacron brilliant blue fn‑r, bezema yellow 
s8‑g, novacron super black G

Karim et al. [143]

Barnettozyma californica, Sterigmatomyces halophilus, and Yarrowia spp. Remazol brilliant blue R Ali et al. [144]

Zobellella, Rheinheimera, and Marinobacterium Direct blue B, acid violet 7, acid black ATT Guo et al. [145]

Scenedesmus obliquus, and Oscillatoria spp. Reactive orange 122, reactive red 194 El‑Sheekh et al. [146]

Bacillus odyssey, Morganella morganii and Proteus spp. Red HE3B Phugare et al. [147]

Providencia spp. and Pseudomonas aeuroginosa Red HE3B Phugare et al. [147]

Anoxybacillus spp., Clostridium spp., and Bacillus spp. Direct Black G Chen et al. [148]

B. subtilis, B. subtilis, and B. cereus Mixture of azo dyes Thiruppathi et al. [149]

Bacillus flexus, Proteus mirabilis, and Pseudomonas aeruginosa Indanthrene blue RS Kumar and Mohanty [150]

Lysinibacillus spp., Bacillus spp., Bacillus spp., Bacillus spp., Bacillus spp., and 
Ochrobacterium spp.

Reactive violet 5R Jain et al. [151]

Galactomyces geotrichum and Bacillus spp. Brilliant blue G Jadhav et al. [152]

B. cereus, Pseudomonas putida, Pseudomonas fluorescence, and 
Stenotrophomonas acidaminiphila

Acid red 88 Khehra et al. [153]

Aeromonas caviae, Proteus mirabilis, and Rhodococcus globerulus Acid Orange 7 Joshi et al. [154]

Enterobacter dissolvens and Pseudomonas aeruginosa Acid maroon V Patel et al. [155]

Stenotrophomonas rhizophila, Sphingomnas echinoides, Pseudarthrobacter 
oxydans, and Gordonia westfalica

Reactive black‑5 Eskandari et al. [156]

Pseudomonas aeroginosa, Stenotrophomonas maltophila, and Proteus mirabilis Direct black 22 Mohana et al. [157]

Aspergillus ochraceus and Pseudomonas spp. Rubine GFL Lade et al. [158]

Pseudomonas aeruginosa and Bacillus circulans Reactive Black 5 Dafale et al. [159]

Pseudomonas aeruginosa, Rhodobacter sphaeroides, Proteus mirabilis, and 
Bacillus circulance

Remazol black‑B Dafale et al. [160]

Enterococcus faecalis and Klebsiella variicola Reactive red 198 Eslami et al. [161]

Alcaligenes faecalis, Sphingomonas spp., B. subtilis, Bacillus thuringiensis, and 
Enterobacter cancerogenus

Direct blue‑15 Kumar et al. [162]

Anoxybacillus pushchinoensis, A. kamchatkensis, and Anoxybacillus flavithermus Reactive black 5 Deive et al. [163]

Dichotomomyces cejpii and Phoma tropica Congo red, methyl red, reactive blue Krishnamoorthy et al. 
[164]

Bacillus spp., Stenotrophomonas spp., Pseudomonas spp., and Alcaligenes spp. Procion red H‑3B Shah and Bera [165]

Pseudomonas aeruginosa, Enterobacter spp., and Serratia marcescens Reactive red 120 Manogaran et al. [166]

Penicillium spp. and Sphingomonas xenophaga Reactive brilliant red X‑3B Gou et al. [167]
B. cereus: Bacillus cereus, B. pumilus: Bacillus pumilus, B. subtilis: Bacillus subtilis, B. megaterium: Bacillus megaterium.
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[134] showed 50–60% of biodegradation of dyes including Congo red, 
Bordeaux, Blue BCC, and Ranocid Fast Blue by bacterial consortium 
of Bacillus cereus, B. megaterium, B. pumilus, B. vallismortis, and 
B. subtilis. In a report, bacterial consortium of Bacillus odysseyi, 
Morganella morganii, and Proteus spp. was reported for textile dyes 
decolorization [135].

The consortium of Brevibacillus laterosporus and G. geotrichum 
was reported for Golden Yellow HER decolorization [136]. In 
another report consortium, bacterial strains Klebsiella, Buttiauxella, 
and Bacillus were reported for the removal of Methyl Red under 
aerobic conditions [137]. Karunya et al. [138] developed a 
microbial consortium of Citrobacter freundii, Moraxella osloensis, 
Pseudomonas aeruginosa, and P. aeruginosa which helps in the 
Mordant Black 17 decolorization. Lade et al. [139] used microbial 
consortium consisting of Provedencia rettgeri and Pseudomonas 
spp. for decolorization of Reactive Orange 16. The consortium could 
decolorize 1110 mg/L of Reactive Orange 16 by about 99%. Another 
study by Holey [140] reported a where consortium which comprised 
E. coli, Salmonella spp., Staphylococcus aureus, Proteus spp., 
Pseudomonas spp., and B. subtilis and had the ability to decolorize 
Congo Red (10  mg/L) up to 98% within 96  h of incubation. In 
another study, the results indicated that the consortium ability to 
decolorize the green, red, yellow, and black dyes was higher as 
compared to single strains application (Bacillus spp., B. subtilis, 
B. cereus, B. mycoides, Micrococcus spp., and Pseudomonas spp.). 
The consortium was capable to decolorize green (84%), red (84%), 
yellow (85%), black (85%), and mixed dyes (82%) within 24 h while 
individual strain required 72 h [141].

In an investigation, bacterial consortium of novel and indigenous 
strains, namely, Pseudomonas stutzeri and A. baumannii was 
reported for textile dyes decolorization [142]. In case of monoculture 
(Aeromonas spp., Bacillus spp. Neisseria spp., and Vibrio spp.), 
percentage of decolorization varies from no visible decolorization 
to highest 90% decolorization (Novacron Brilliant Blue FN-R) 
whereas the percentage decolorization of bacterial consortium varies 
from 65% (Benzema Yellow S8-G) to 90% (Novacron Super Black 
G and Novacron Brilliant Blue FN-R) [143]. Reactive azo dyes 
were also reported to be degraded by the consortium of yeast, that 
is, Barnettozyma californica, S. halophilus, and Yarrowia spp. [144]. 
Guo et al. [145] showed the detoxification of Acid Black ATT, Direct 
Blue B, and Acid Violet 7 by the consortium containing halotolerant 
microbes, namely, Zobellella, Rheinheimera, and Marinobacterium. 
Consortium of cyanobacteria and green algae, that is, S. obliquus and 
Oscillatoria spp. was reported for degradation of azo dyes including 
Reactive Orange 122 and Reactive Red 194 [146].

5. MECHANISM OF DYE BIODEGRADATION

The plant and microbial systems possess efficient enzymatic systems 
which could be used for bioremediation. Therefore, it is important to 
find the mechanism of biotransformation followed by the organism 
and probable enzymes which are involved in biochemical complex 
reactions. The enzymatic treatment methods positively affect the 
environment as they pose a low chance of biological contamination. 
Enzymes of both bacterial as well as fungal origin such as lignin 
peroxidase, laccase, and manganese peroxidase have the capacity 
to metabolize xenobiotic compounds [168]. Peroxidase enzyme 
purified from plant species which includes Saccharum spontaneum 
and Ipomoea palmata is used for efficient decolorization of various 
textile dyes [169]. Enzymes like horseradish peroxidase have been 

immobilized and utilized for the treatment of effluents of textile mills 
and paper industries [170].

Laccase belongs to the multicopper oxidases group which has 
low substrate specificity and is highly capable of degrading the 
spectrum of xenobiotic compounds and aromatic as well as non-
aromatic substrates [171]. These catalysts have good bioremediation 
potential at the same time. It does not require available oxygen as 
an electron acceptor, which makes them highly applicable in many 
biotechnological processes [172]. Enzymes can degrade phenolic 
compounds and aromatic azo compounds. Cu2+ is used as mediator to 
oxidize aromatic amines. First prokaryotic laccase has been reported 
by Azospirillum lipoferum [173]. Laccase basically catalyzes azo dyes 
decolorization by non-specific free radical without the mutagenetic 
and toxic aromatic amines formation. Pseudomonas syringae and 
Pedomicrobium spp. have shown laccase like activity [174]. Reports 
are available for purified laccase enzyme extracted from Bacillus spp. 
and Pseudomonas desmolyticum that can decolorize several textile 
dyes efficiently [175,176]. Fungal strain Podoscypha eleganscan 
decolorize five azo dyes (Congo Red, Direct Blue 15, Orange G, Rose 
Bengal, and Direct Yellow) efficiently [171]. Similarly, fungal strains 
of Aspergillus oryzae, Trametes versicolor, and Paraconiothyrium 
variable can decolorize azo dyes through the laccase enzyme 
production [177].

Azoreductase also known as azobenzene reductase is a reducing 
enzyme. These catalysts can degrade azo dye into colorless amines 
through the process of reductive cleavage. The whole process 
requires NADH or FADH [178] which acts as an electron donor in 
a redox reaction [45]. Bio-treatment of azo dye containing effluent 
and microbial azoreductase has been observed to play a major role. 
Sometimes, under unfavorable environmental conditions, few usual 
cellular enzymes might get converted into dye degrading enzyme 
example flavin reductase produced by E. coli acts as azoreductase [179]. 
Microbes such as B. subtilis, Pseudomonas spp., and S. aureus have 
been found to decolorize azo dyes (Methyl Red, Disperse Blue, and 
Acid yellow) through the production of azoreductase [180-182]. 
Agrawal et al. [183] reported Providencia spp. for degrading Acid 
Black 210 through the production of azoreductase [Figure 5].

Peroxidase is related to the group of oxidoreductases, especially which 
act on peroxide acting as the electron acceptor. Knowledge of such 
factors will influence the degradation activity which will facilitate the 
bioreactor development for bioremediation of industrial waste. The 
fungus’s efficiency to degrade azo dyes is related to the exo-enzymes 
formation such as peroxidases and phenol oxidases. Peroxidases can 
catalyze the breakdown of hydrogen peroxide into water and molecular 
oxygen [184]. These enzymes have a heme group attached to the active 
site [185]. Both manganese peroxidases and lignin have the same 
reaction mechanism (catalytic enzyme causes oxidation of H2O2 to an 
oxidized state). Basically, lignin peroxidases help in the oxidation of non-
phenolic aromatic compounds whereas manganese peroxidases oxidize 
Mn2+ to Mn3+ and this Mn3+ is responsible for the oxidation of numerous 
phenolic compounds [186]. The first peroxidase was obtained from 
Phanerochaete chrysosporium [187]. Various microorganisms involved 
in dye decolorization with peroxidases activity include Rhodococcus 
jostii [188], I. lacteus [189], Thermomonospora curvata [190], B. 
subtilis [191], Enterobacter ignolyticus [192].

6. FACTORS AFFECTING BIOREMEDIATION

The whole ecosystem consists of a dynamic environment with various 
abiotic factors such as temperature, metals, salts, pH, and the presence 
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Figure 5: Azoreductase-mediated biodegradation of azo dye acid black 210 through Providencia sp. Source: Adapted with permission from Agrawal et al. [183].

of oxygen. Microbes play a key role in the carbon, nitrogen, and sulfur 
cycle and are greatly influenced by any change in these factors thus, 
affecting the decomposition process [Table 2]. Thus, it is very important 
to analyze the effect of these parameters on xenobiotics degradation. 
Knowledge of these factors which play a pivotal role in degradation 
activity will likely facilitate the development of bioreactors for the 
bioremediation of industrial waste.

6.1. pH
In general, effective decolorization or degradation of dyes using 
bacteria takes place at basic or neutral pH, while yeast and fungi at 
neutral or acidic pH [67]. At pH below 4, H+ ions compete effectively 

with cations of dye, causing a reduction in efficiency of color removal, 
while at pH higher above this point charge, the biomass surface 
gets negatively charged, which attracts the dye positively charged 
cations through electrostatic force of attraction [193]. The study on 
27 different dyes by 21 various basidiomycetes reveals that optimum 
pH was found to be in the 3–5 range for dye decolorization [194]. 
A study demonstrated Enterobacter spp. decolorizes Reactive Black 5 
at pH 7.0 [195]. The study revealed that decolorization and degradations 
of Scarlet R by Proteus vulgarius and Micrococcus glutamicus 
occurred in the range of pH 7–8 with optimum pH 7 [90]. In a study, 
bacterial mixtures consisting of total of six bacterial species, namely, 
Bacillus spp. (four strain), Lysinibacillus spp., and Ochrobacterium 
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Table 2: Factors affecting the microbes mediated remediation of dyes.

Microbes Dye pH Temperature (°C) Initial conc. of 
dye (mg/L)

Static/Agitation References 

Acinetobacter baumannii Reactive red 7.0 37 500 Agitation Unnikrishnan et al. [226]
Acinetobacter spp. Reactive orange 16 7.0 40 500 Static Meerbergen et al. [218]
Aeromonas hydrophila Reactive Black 5 7.0 35 100 Static El Bouraie and El Din [216]
Aeromonas veronii Methyl orange 7.0 32 1000 Static Mnif et al. [227]
Alcaligenes aquatilis Synazol red 6HBN 7.0 37 10 Static Ajaz et al. [219]
Alcaligenes faecalis Novacron super black G 8.0 37 200 Static Hossen et al. [203]
Anoxybacillus spp. Direct black G 7.2 55 400 Static Chen et al. [228]
Aspergillus flavus Reactive red 198 4.0 3 50 Agitation Esmaeili and Kalantari [196]
Aspergillus niger Crystal violet 5.5 30 ‑ Static Ali et al.[200]
Bacillus algicola Yellow azo dye 8.0 25 ‑ ‑ Chukowry et al. [217]
Bacillus cereus Novacron super black G 8.0 37 200 Static Hossen et al. [203]
Bacillus fusiformis Acid orange 10 9.0 37 150 Static Kolekar et al. [229]
Bacillus spp. Reactive red 239 10.0 30 250 Agitation Guadie et al. [201]
Bacillus subtilis Reactive blue 160 7.0 35  500 Agitation Barathi et al. [220]
Bacillus vallismortis Aniline blue 6.0 70 ‑ ‑ Zhang et al. [212]
Bacillus vietnamensis Malachite green ‑ 37 50  Static Kabeer et al. [230]
Bjerkandera adusta Lanaset grey G 6.0 40 150 Agitation Daâssi et al. [231]
Comamonas spp. Direct red 5B 6.5 40 1100 ‑ Jadhav et al. [232]
Coriolopsis gallica Lanaset grey G 6.0 45 150 Agitation Daâssi et al. [231]
Enterobacter hormaechei Reactive yellow 145 7.0 37 100 Agitation Thangaraj et al. [221]
Enterobacter hormaechei Reactive yellow 145 7.0 37 100 Agitation Thangaraj et al. [221]
Enterobacter spp. Reactive black 5 7.0 37 200 Static Wang et al. [195]
Exiguobacterium spp. Navy blue HE2R 7.0 30 50 Static Dhanve et al. [233]
Geotrichum candidum Reactive blue 5 ‑ 30 120 Agitation Kim et al. [234]
Halomonas glaciei Reactive red 2 8.1 30 1000 Static Balamurugan et al. [235]
Halomonas variabilis Reactive red 2 8.1 30 1000 Static Balamurugan et al. [235]
Issatchenkia orientalis Direct black 22 7.0 32 500 Agitation Jafari et al. [236]
Kocuria rosea Methyl orange 6.8 30 50 Static Parshetti et al. [94]
Lactobacillus paracase Acid black 6.0 30 100 Agitation Huang et al. [199]
Lysinibacillus fusiformis Methyl red ‑ 30 100 Agitation Sari and Simarani [105]
Lysinibacillus sphaericus Drimaren red CL‑5B 8.0 37  100  Agitation Srinivasan and Sadasivam [237]
Lysinibacillus spp. C.I. Remazol red 7.0 30 250 Static Saratale et al. [197]
Micrococcus luteus Direct orange 16 8.0 37 100 Static Singh et al. [215]
Micrococcus yunnanensis Methyl orange 7.0 30 100 Agitation Carolin et al. [205]
Moraxella osloensis Mordant black 17 7.0 35 100 Static Karunya et al.[214]
Nesterenkonia lacusekhoensis Methyl red 11.5 30 50 Static Bhattacharya et al. [238]
Nesterenkonia lacusekhoensis Reactive violet 1 11.5 27 200 Agitation Prabhakar et al. [239]
Ochrobacterium spp. Reactive violet 5R 7.0 37 200 Static Jain et al. [151]
Ochrobactrum anthropic Reactive black 5 7.0 30 400 Static Cheng et al. [240]
Penicillium ochrochloron Cotton blue 6.5 25 50 Static Shedbalkar et al. [209]
Pichia kudriavzevii Acid red B 5.0 33 100 Agitation Feng et al. [241]
Pseudomonas aeruginosa Direct orange 39 7.0 60 50 Agitation Jadhav et al. [225]
Pseudomonas azoreducens Reactive green 7.0 30 500 Static Meerbergen et al. [218]
Pseudomonas putida Orange II 8.0 30 100 Static Kumar et al. [242]
Pseudomonas spp. Reactive red 195 8.0 40 100 Static Khan et al. [198]
Sphingomonas paucimobilis Methyl red 9.0 30 750 Agitation Ayed et al. [211]
Thiosphaera pantotropha Reactive yellow 145 7.0 ‑ 100 Static Garg et al. [243]
Trametes trogii Lanaset gray G 5.0 45 150 Agitation Daâssi et al. [231]
Trametes versicolor Lanaset gray G 5.0 45 150 Agitation Daâssi et al. [231]
Trichoderma harzianum Cresol red ‑ 25 ‑ Agitation Nor et al. [244]
Trichosporon beigelii Navy blue 7.0 37 50 Static Saratale et al. [22]
Bacillus stratosphericus Reactive orange 16 7.0 35 150 Static Akansha et al.[108] 
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spp. were reported for decolorization and removal of azo dye-Reactive 
Violet 5R at neutral pH i.e, 7.0 [151]. In another investigation, the 
bacterium A. flavus sorted out from the effluent disposal area soil was 
reported for degrading Reactive Red 198 effectively at low pH [196].

Another report has reported bacterium Lysinibacillus spp. isolated 
from the textile industrial area which was degrading and decolorizing 
the toxic sulfonated azo dye C.I. Remazol Red at pH 7.0 [197]. In a 
study by Khan et al. [198], Reactive Red 195 dye was degraded by the 
bacterial consortium consisting of, Bacillus spp., Pseudomonas spp., 
and Ochrobactrum spp. at pH 8.0. In an investigation, the bacterium 
Lactobacillus paracase isolated form the deep sea sediments were 
reported for removal of Acid Black azo dye between the pH range 
from 5.0 to 7.0 [199]. In another study, the most effective pH 
for the Crystal Violet decolorization by the fungi A. niger was 
reported 5.5 [200]. Bacillus spp., isolated from an alkaline lake, 
was reported for degradation of Reactive Red 239 dye. The most 
efficient pH for dye degradation by the bacterium was 10 [201]. In 
another investigation, Enterobacter spp. was degrading Crystal Violet 
at pH  6.5 [202]. In a report, bacteria obtained from textile industry 
released effluent were identified as Alcaligenes faecalis, Bacillus spp., 
and B. cereus which were reported for biodegradation of Novacron 
Super Black G dye at pH 8.0 under static conditions [203]. Javadzadeh 
and Asoodeh [204] isolated Bacillus spp. from the gut of termite 
which was having indigo dye biodegrading properties. The bacterium 
was reported for biodegrading the dye at pH 8.0. In an investigation, 
the microbial species Micrococcus yunnanensis was reported for 
degrading Methyl Orange at pH 7 [205].

6.2. Temperature
Temperature is a vital factor and plays an imperative role in the 
environment during the process of biodegradation. The metabolic 
activity of microorganisms is greatly affected by temperature. It 
is commonly experiential that the decomposition process is faster 
in summer as compared to winter as a warmer climate favors the 
growth and multiplication of various microorganisms [206]. However, 
the process is not the same after a certain temperature. Beyond this 
optimum temperature, there is a reduction in growth, metabolic activity, 
and deactivation of enzymes which ultimately lead to a decline in the 
decolorization process [193]. Thus, various studies conclude that 
biodegradation of dye by the microorganism is possible at ambient 
temperature which is responsible for their metabolic activities and 
reproduction [207]. Various microorganisms require different ambient 
temperatures for growth, with most growing at a temperature range 
of 25–35°C [208]. In a study by Shedbalkar et al. [209], the ambient 
temperature required to decolorize Cotton Blue by Penicillium 
ochrochloron was found to be 25°C. Enterobacter spp. could 
decolorize Reactive Black 5 at an optimum temperature of 37°C and 
on further increasing the temperature to 42°C there was a drastic 
decrease in decolorization activity [195]. In a study, Pseudomonas spp. 
was reported for degrading Congo red dye along with textile industry 
released effluent at 40°C temperature [210]. An isolate Sphingomonas 
paucimobilis was reported for bioremoval of Methyl Red dye between 
a broad range of temperatures i.e. 4–40°C [211]. In another report, 
B. vallismortis isolated from the disposal site of the textile industry 
was reported for degrading triphenylmethane dyes, including Aniline 
blue, Malachite Green, and Brilliant Green at high temperature range 
of 70°C [212].

A study has reported, Reactive Black-5 dye was reported to be 
degraded by the halotolerant bacterial strain Pseudomonas spp. at a 
temperature 25°C [213]. Similarly, the bacterium M. osloensis was 

reportedly degrading Mordant Black 17 at 35°C temperature [214]. 
In a report, Direct Orange 16 was degraded at 37°C temperature by 
bacterial isolate Micrococcus luteus [215]. Reactive Black 5 dye was 
reported to be biodegraded by the Aeromonas hydrophila ate 35°C 
temperature [216]. In a study, the bacterial strain Bacillus algicola was 
reported for decolorizing red, yellow, and blue dye at temperatures 
25°C, 35°C, and 45°C. The highest degradation was observed at 
25°C temperature [217]. In a similar report, two bacterial strains, 
namely, Acinetobacter and Klebsiella were decolorizing the azo 
dyes, that is, diazo dye Reactive Green 19 and monoazo dye Reactive 
Orange 16 at a temperature range of 20–40°C [218]. Ajaz et al. [219] 
reported Alcaligenes aquatilis for decolorization of Synazol Red 
6HBN dye at 37°C temperature in 4 days [Figure 6]. In a report, B. 
subtilis was reported for decolorizing Reactive Blue 160 dye at 35°C 
temperatures [220]. Enterobacter hormaechei isolated from textile 
effluent was reported to degrade Reactive Yellow 145 and Reactive 
Red 180 at a temperature 37°C [221].

6.3. Initial Dye Concentration
The impact on microbial insisted decolorization of the dye initial 
concentration was investigated. Studies show that there is a lowering 
in the efficiency of dye decolorization by microbes with an initial 
concentration increase of dye. This is because the dye toxicity increases at 
a higher concentration which inversely affects the growth of the microbial 
cells [193]. A similar report was demonstrated by Parshetti et al. [222] 
which indicated that higher concentration Malachite Green (100 mg/L) 
was toxic to K. rosea. Jirasripongpun et al. [223] found that Reactive Red 
195 at concentrations 50 and 100 mg/L had a lethal effect on Enterobacter 
spp. and was not able to grow. A report on Congo red decolorization by 
Bacillus spp. reported that the decolorization rate declined with the dye 
concentration increase [224]. In a report, P. aeruginosa obtained from the 
dyestuff contaminated sediments was reported for 93.06% decolorization 
of Direct Orange 39 with 50 mg/L concentration within 45 ± 5 min and 
the maximum concentration degraded by the strain was 1.5 g L−1 with 
60% decolorization [225]. The consortium of Providencia spp. and 
Pseudomonas aeuroginosa was reported for 100% bioremediation of dye 
Red HE3B at 50 mg/L initial concentration and as the dye concentration 
rises to 200 mg/L and 250 mg/L the decolorization decreases to 85% and 
70%, respectively [147].

A study reported Pseudomonas putida was decolorizing dye Orange 
II at maximum up to 1000 mg/L initial concentration and maximum 
decolorization was achieved at 100  mg/L concentration [242]. 
Shah et al. [53] reported that as the concentration of methyl orange 
was increased (3, 4, and 5  g/L), the incubation time required for 
decolorization was varied from 66 to 90 h. In another report, Pichia 
kudriavzevii was reported for degrading Acid Red B dye with 
maximum initial concentration 400 mg/L within 40 h and maximum 
decolorization was achieved with 100  mg/L initial concentration 
within 40 h [241]. Saroj et al. [245] concluded, the fungal consortium 
containing Penicillium oxalicum, A. niger, and A. flavus strains was 
able to degrade three different azo dyes, namely, Direct Blue 15, 
Direct Red 75, and Acid Red 183, with the initial concentration range 
200–400  mg/L. All these three dyes were degraded at lower initial 
concentrations by the fungal consortium. Bacterium Aeromonas 
veronii sorted out from acclimated textile effluent was reported to 
decolorize the azo dye up to 1000 mg/L initial concentration [227].

Reactive Blue 4, the anthraquinone dye, was degraded by the bacterial 
granules up to 1000  mg/L initial concentration [246]. In a report, 
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Figure 6: Biodegradation of Synazol Red HF 6BN dye Alcaligenes aquatilis. Synazol Red HF 6BN enters the cell of A. aquatilis through unknown process. After 
the entrance dye is processed enzymatically into several end products. First, the azo group of the dye is reduced which is followed by cleavage reaction to form 

various end products. Second, the desulfonation and oxidative deamination results in synthesis of pyrrolo[1,2-a] pyrazine-1,4-dione derivative which can be used 
as substrates in amino acid metabolism. The amino acid catabolism can synthesize pyruvate (3C compound) which can be converted into acetyl-CoA. The acetyl-

CoA undergoes Krebs cycle to produce NADH2 and FADH2 (substrates of electron transport chain). Moreover, dye desulfonation, oxidative deamination, and 
carboxylation lead to produce phthalate derivatives, which can be transformed into different fatty acids and aldehydes. The phthalate, fatty acids, and aldehydes 
can directly/indirectly enter into fatty acid oxidation reactions (β-oxidation) to produce acetyl-CoA, NADH2 and FADH2. Source: Adapted with permission from 

Ajaz et al. [219].

thermophilic microflora was reported for detoxification of azo-dye 
Direct Black G with an initial concentration 600 mgL−1 [247]. In another 
report, Reactive Black-5 dye decolorization through bacterial (Gordonia, 
Pseudoarthrobacter, Sphingomonas, and Stenotrophomonas) 
consortium was tested with three different initial concentrations, that is, 
25, 50, and 100 mg/L. The best dye decolorization by the consortium of 
bacterial strains was found at 50 mg/L initial concentration [156]. Amin 
et al. [248] reported Bacillus spp. to detoxify the diazo dye at an initial 
concentration of 100 mg/L. In a study, Ochrobactrum anthropic from 
textile wastewater was reported for biodegradation of Reactive Black 5 
at the initial concentration of 400 mg/L [240].

6.4. Sodium Chloride Concentration
Effluents from the textile industry contain various salts or metal 
ions, acids, and alkalis as impurity in addition to dyes [67]. The salt 

concentration varies from 15 to 20% and has been calculated in dye 
industry wastewater. Thus, a microbial strain that can tolerate high 
concentrations of salt facilitates the degradation of dye wastewater. 
The biological treatment of the dye effluent containing various 
components, and identification of salt tolerant microorganisms is 
important. Rudakiya, Pawar [249] have shown the decolorization 
efficacy of a bacterial strain using salt concentrations up to 10%. In 
their study, the result come out to be that 6% salinity was effective 
in promoting both cell biomass and degradation of Reactive Orange 
16. A similar study was done on Shewanella marisflavi and S. algae 
algae which were able to degrade single or mixed azo dyes at lower 
concentrations of NaCl (2–3%). It has been concluded that a lower level 
of salinity induces the activities of azoreductase, laccase, and NADH-
DCIP reductase enzymes [250]. Cui et al. [98] reported that Klebsiella 
spp. was able to decolorize Methyl red, Orange I, Congo red, and 
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Methyl orange efficiently over the salinity range (1–4%). In a study, 
M. luteus bacterium was reported for the detoxification of the Direct 
Orange 16 dye with 3% NaCl concentration in 6 h of incubation [215]. 
In another report, halotolerant S. marisflavi reported for decolorization 
of Xylidine Ponceau 2R under the 20% concentration of NaCl [251]. 
Song et al. [252] reported a yeast Pichia occidentalis for the Acid Red 
B dye biodegradation in 16 h with 30 g L−1 of NaCl. In another report, 
Bacillus spp. was biodegrading 96% of sulfonated dye, that is, methyl 
orange with 5–20 g/L of sodium chloride concentration [253]. Salt 
tolerant bacterium Halomonas was reported for the biodegradation of 
Toluidine Red dye where the concentration of NaCl was 5% [254]. 
Zhuang et al. [255] reported Methyl Orange and Reactive Yellow 84 
decolorization by the Shewanella indica and Oceanimonas smirnovii. 
These strains were decolorizing the dye in the presence of NaCl (0–
70 g L−1). Similarly, A. baumannii was reported for the 87% and 90% 
degradation of Reactive Black 5 and Reactive Blue 221, respectively, 
with 5% NaCl concentration [256].

6.5. Agitation/Static Condition
There are conflicting reports on azo dye decolorization through 
microbes under shaking/static conditions. According to studies, the 
decolorization rate increases by shaking culture conditions while 
other reports suggest static conditions. A higher rate of decolorization 
was observed during shaking due to the easy transport of oxygen 
and nutrients over static conditions [257,258]. On the other hand, 
decolorization by Pseudomonas spp. under agitation showed no 
decolorization while static culture conditions showed 96% Reactive 
Red 2 decolorization [88]. Similarly, Direct Red 81 and Reactive 
Red 120 decolorization by A. niger were more efficient under static 
conditions [259]. The rate of enzymatic activity was higher in the 
still condition [67]. Complete Navy Blue dye decolorization by 
Trichosporon beigelii was observed under static conditions whereas 
it declined to 30% under shaking conditions [22]. Another study 
concluded K. rosea for 100% Methyl Orange decolorization under 
the static conditions [94]. In a report, halophilic and halotolerant 
Halomonas variabilis and Halomonas glaciei were reported for 
degrading reactive textile dye in batch mode static condition [235]. 
Shah et al. [260] reported A. faecalis for degradation of Reactive 
Orange 13 under static anoxic condition. In a study, white rot 
fungi, that is, B. adusta, Coriolopsis gallica, Trametes trogii, and 
T. versicolor were reported for decolorizing Lanaset Gray G dye 
under the static conditions [231]. In agitation condition, Issatchenkia 
orientalis was reported for the five azo dyes decolorization, that is, 
Reactive Red 198, Reactive Orange 16, Direct Yellow 12, Direct Black 
22, and Direct Blue 71 [236]. Nor et al. [244] reported Trichoderma 
harzianum for degrading Cresol Red dye under agitation conditions. In 
a study, Chaetomium globosum was tested for dye detoxification under 
stirred and static conditions and the report concluded that fungi were 
efficiently degraded the dye under agitation conditions in comparison 
with static conditions [261]. Bhattacharya et al. [238] reported under 
static conditions, halotolerant and alkalophilic N. lacusekhoensis was 
efficiently detoxifying Methyl Red. Similarly, A. baumannii from 
the sea sediments was reported for Reactive Red dye degradation at 
both agitation and static conditions [226]. In a comparative study, 
L. fusiformis was experimented for azoreductase degradation under 
both static and agitation conditions and results showed that under 
agitation conditions, dye degradation was better [105]. In a study, 
under static conditions, P. aeruginosa and Thiosphaera pantotropha 
were reported for decolorization and Reactive Yellow 145 dye 
detoxification [243].

6.6. Aerobic/Anaerobic Culture Conditions
Azo dyes are usually resistant to the attack of bacterial species under 
aerobic conditions [4]. Anaerobic degradation of dye has been more 
effective than aerobic, but the intermediates formed are carcinogenic 
and toxic in nature and must be degraded before being discharged 
to the main water stream [262]. Apart from few, all aromatic amines 
produced after azo dyes decolorization has recalcitrant properties under 
oxygen limiting condition [152]. However, the process when combined 
shows much more efficient output as reported by many authors [262]. 
They reported that the dye degradation by bacteria under anaerobic 
conditions is usually accompanied by the colorless aromatic amine 
production which is easily metabolized under aerobic conditions. 
The breakdown products are non-toxic in nature [139]. Bacterium 
P. aeruginosa was able to degrade, Navitan Fast Blue SSR, under 
an aerobic condition in the presence of glucose. The organism was 
also able to discolorate various other textile dyes [263]. Aerobic 
bacteria consisting of B. cereus, B. megaterium, B. pumilus, B. 
subtilis, and B. vallismortis were found to be efficient in decolorizing 
microbial strains individually as well as the mixture of dyes. Almost 
80–90% decolorization was noticed in four out of six azo dyes 
(Congo red, Bordeaux, Blue BCC, and Ranocid fast blue) when 
present in mixture [134]. In a study, thermophilic microbial strains 
Anoxybacillus pushchinoensis, A. kamchatkensis, and A. flavithermus 
blend were reported for detoxifying 80% of Reactive Black 5 in aerobic 
conditions [163]. A comparative study has reported, microbial strain A. 
hydrophila was efficiently degrading the synthetic dye basic fuchsin, 
Crystal violet, Solophenyl red 3BL, Polar brilliant red B, Safranin, and 
Nigrosine under microaerophilic conditions in comparison to aerobic 
conditions [264]. Aerobic detoxification of Acid Scarlet GR was 
reported by a halotolerant yeast strain G. geotrichum [118]. A study 
has reported efficient degradation of dye Acid Red 14 by microbial 
strain Oerskovia paurometabola under anaerobic conditions [265]. In 
another report, Pseudomonas spp. and Clostridium spp. were reported 
to degrade the dye under aerobic conditions [266].

7. PHYTOTOXICITY AND MICROBIAL TOXICITY OF 
DYES AND THEIR BIODEGRADATION PRODUCTS

It is essential to determine whether dye degradation leads to dye 
detoxification. Microbial toxicity and phytotoxicity studies on dye and 
its biodegraded metabolites can confirm this. In phytotoxicity studies, 
experimental plant seeds are treated with the dye and its degraded 
metabolites. Effect on germination percentage, length of root, and shoot 
is measured, to compare with control (without dye and its biodegraded 
metabolites). Results are enumerated to determine whether the degraded 
metabolites are less toxic to growing seedlings than the dyes being 
studied. Likewise, the antimicrobial activity (toxicity) of the dye being 
studied can be compared with its degraded metabolites. Reactive Red 
2 and its degraded metabolites were studied using Phaseolus mungo 
and Sorghum vulgare as model plants by Kalyani et al. [88]. The result 
observed concluded that the product formed after degradation was less 
toxic than Reactive Red 2. A similar result was observed when Malachite 
Green phytotoxicity and its degraded metabolites using P. mungo and 
Triticum aestivum as a model plant was performed [222]. Phytotoxicity 
study of Navy blue 2GL and its biodegraded product by Bacillus spp. 
on Sorghum bicolor and Triticum aestivium have shown similar results 
when compared with dye as control. There was 2–5% reduction in 
growth (root and shoot length) in the presence of degraded products 
than in distilled water [267]. The microbial toxicity study on Azobacter 
vinelandii showed a growth inhibitory zone of 1.2 cm against dye while 
no zone of inhibition was found around metabolites formed. The toxicity 
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of crystal violet dye against E. coli was checked. The study reveals the 
toxic nature of crystal violet, but the product formed after degradation 
with Shewanella decolorationis NTOU1 was non-toxic to E. coli [268].

8. FUTURE PERSPECTIVES

The rampant industrialization has proliferated the huge amount of 
effluent containing mixture of dyes, metals and other hazardous 
materials. The degradation of dyes and other pollutants has hazardous 
impact on the environment and its removal is one the urgent need. 
The recent advancement have suggested microbial-based remediation 
is an efficient method of the removal of dyes, but unfortunately 
dye removal through the use of microbes still depends on the 
environmental changes. In this regard, many reported have suggested 
the proper oxygen transfer, operational stability, homogenization, less 
operational time, and suitability in hybrid bioreactors. The studies have 
provided the rationale for the application of microbial consortium of 
different microbes including bacteria, fungi, and algae. The microbial 
consortium has found to be more stress resistant with stability and 
enhanced adaptability over the single inoculation. The genome 
engineering of microbes may leads to the development of exceptionally 
adaptive techniques of bioremediation for high degradation of dyes.  
Hence, it is preferable to develop an alternative technology that could 
upgrade the microbial-based removal of dyes.

9. CONCLUSION

In times, bioremediation through microbes is gaining much important 
to because of its effectiveness, cost, and eco-friendly nature. Microbes 
have been also known to remediate the textile released dyes. Dyes 
and organic colored compounds are known to be hazardous pollutants 
which are categorized under xenobiotics. These are known to 
have several deleterious effects on aquatic and human life. Various 
types of microbes are known to remediate the dyes including fungi, 
bacteria, algae, and yeast. In the future, new microbial strains could be 
researched and could be used as bioremediation.
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