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ABSTRACT

Plastics have largely supplanted natural materials such as paper, wood, and metal due to its cost effectiveness, high 
flexibility, durability, non-degradability, and fire resistance. Plastic’s increased production, global distribution, and 
long-lasting nature eventually lead to environmental accumulation, posing serious concerns to the environment 
and biotic health. As a result, in this plastic age, developing appropriate metrics for plastic environmental cleanup 
could be a pressing concern. Thus, the capacity of biological systems to break down polymers has recently received 
more attention. It has been shown that different fungal strains consume these plastic polymers as their only source 
of carbon, converting them into eco-friendly carbon compounds. Various fungal strains, including Aspergillus 
nomius, Trichoderma viride, Cephalosporium sp., Stagonosporopsis citrulli, Colletotrichum fructicola, Diaporthe 
italiana, and others, have been found to successfully and efficiently degrade various plastic polymers. Mechanism of 
biodegradation includes following steps, that is, biodeterioration, biofragmentation, assimilation, and mineralization. 
This review mainly focuses on the numerous fungal strains isolated from various sites which engaged in plastic 
biodegradation, the biodegradation mechanism, and the various assessment methods used to analyze the extent of 
biodegradation process.

1. INTRODUCTION

Plastics are man-made, non-biodegradable composites which are of 
substantially petrochemical origin [1]. They come from plants like 
corn and sugarcane, as well as from natural gas and oil. About 4% 
of the petroleum produced worldwide is utilized to generate plastic, 
and an additional 4% is required to fuel the processes used to make 
plastic [2]. They are simply made up of hydrogen and carbon with 
some other organic and inorganic materials [3]. Plastics have become 
universal due to its dual nature as it is a widely used material as well 
as considered as an environmental contaminant [4]. In the past few 
decades plastic materials have covered each and every sector of human 
need. It has replaced the other material such as glass, wood, and metal 
that were used in varied applications, due to its distinct properties 
that have created the way for its use in enormous sectors [5]. Low-
density polyethylene (LDPE), high-density polyethylene (HDPE), 
polyethylene terephthalate (PET), polypropylene (PP), polystyrene 
(PS), polyvinyl chloride (PVC), polycarbonate (PC), and polyurethane 
(PU) are the most widely used polymers The commonly used plastics 
are LDPE, HDPE, PET, PP, PS, PVC, PC, PU, etc. [6,7] [Figure 1]. 
Widespread applications of plastic leads to large scale production which 
is creating an issue of their disposal and management [4]. Over the 
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course of at least 500 years, about 90% of all plastic created worldwide 
persists in the environment [8]. The health of the biotic community in 
both terrestrial and aquatic habitats could be severely threatened by 
plastic [9-11]. Both the incineration of plastic waste and the dumping 
of it in landfills produce significant amounts of CO2 and contribute 
to global warming [12]. Air, water, and soil pollution result from 
the environmental implications of dumping so much plastic into the 
environment [8]. In attempts to develop novel strategies for managing 
plastic waste, significant research expenditure has explored whether 
bacteria might utilize the commonly contaminated polymers. By doing 
so, they could provide a sustainable and eco-friendly alternative to 
the current extreme usage of plastic [4]. Biodegradation is the most 
beneficial approach for plastic degradation compared to other methods 
since it is non-polluting in nature. Multiple environmental parameters 
and numerous microbial strains are involved in biodegradation [13]. 
According to reports, the most effective technique to minimize 
plastic trash in an environmentally acceptable manner is through 
bioremediation, which uses biological agents such as bacteria, fungi, 
and algae [14]. Fungi are a varied group of eukaryotic organisms that 
can act as saprobes, symbionts, and parasites in nearly all aerobic and 
some anaerobic conditions [15].

The significance of fungus in the biodegradation of plastic is 
considerable. The presence of pro-oxidant ions and the secretion of 
enzymes that aid in degradation, such as proteases, cutinases, and 
lipases, has been reported to cause effective degradation by fungi. 
By generating functional groups through oxidation or hydrolysis by 
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the action of enzymes, higher molecular weight compounds can be 
converted into lower one by making polymers more hydrophilic [13]. 
Several fungal strains including Aspergillus clavatus, Trichoderma 
viride, Aspergillus nomius, Penicillium sp. have been known to 
potentially degrading this alarming plastic waste and providing 
a way to get rid of this plastic waste management issue in an eco-
friendly way [16-18]. There is a need to create innovative solutions 
to both reduce and degrade this waste using a green approach, as the 
generation of plastic garbage is a problem that affects the entire globe. 
This review article gives a systematic view at the various fungal strains 
involved in plastic biodegradation, process of biodegradation, and 
various assessment techniques involved.

2. BIODEGRADATION

Plastic polymers are a big threat to the entire world and are not 
biodegradable. It would take decades for these plastics to break 
down. Biodegradation is the most efficient and ideal method for 
plastic breakdown due to its non-polluting mechanism, environmental 
friendliness, and economic viability [13]. Microbes are the 
intermediaries in a challenging physicochemical process that breaks 
down polymers into smaller components [19,20]. Complex organic 
molecules can be biochemically broken down, assimilated, and 
metabolized by microorganisms, specifically fungi [21,22].

Biodeterioration, biofragmentation, assimilation, and 
mineralization are a few of the biochemical degradative routes 
for plastic biodegradation. These procedures all rely on different 
enzyme functions and bond cleavage [14,23]. Biodeterioration is the 
chemical and physical activity of microbes that results in a plastic 
polymer’s surface degradation and alteration of its mechanical, 
physical, and chemical properties [24]. Adhesion and colonization 
of microbes on the surface of the polymer initiates this first step, 
the only goal of which is to reduce the resistance and durability 
of plastic materials. It is frequently required to add hydrophilic 
functional groups to plastic surfaces to promote microbe adherence 

because plastics are naturally hydrophobic in nature [25]. The 
polymers are used by microbes as their main source of carbon as 
they attach to the polymer’s surface and keep multiplying. Next 
is the depolymerization process known as “biofragmentation,” 
extracellular enzymes and bacterially generated free radicals 
catalyze the breakdown of biodegraded polymers into smaller 
pieces [26]. Next step is assimilation in which the biofragmented 
smaller molecular weight compounds are then transported into 
the microbial cytoplasm [27,28]. The last step is mineralization, 
which involves the successful delivery of these plastic derivatives 
into cells and a sequence of enzymatic reactions that cause them 
to completely decompose into oxidized metabolites including CO2, 
N2, CH4, and H2O [29]. Numerous enzyme activities, including 
peroxidases, lipases, esterase, cutinase, and laccase, are necessary 
for the complete mineralization process [30].

3. FUNGAL STRAINS INVOLVED IN BIODEGRADATION

The world’s fungus species range from 2.2 to 3.8 million from 
harmless free-living bacteria to dangerous diseases that may survive in 
a variety of host and environmental niches such soil, water, plants, and 
animals [31]. Fungi vary in their morphology and can be unicellular, 
filamentous or dimorphic [32]. They can exist independently or in 
mutualistic symbiotic relationships or as parasitic pathogens of diverse 
plants and animals, including humans [33,34]. Numerous fungi inhabit 
terrestrial, freshwater, and aquatic habitats [35-37].

Numerous fungi species have been found to be able to degrade a 
wide range of plastic polymers due to their potential to use these 
synthetic polymers as their primary or only source of energy. In 
this context, it has been demonstrated that a vast variety of fungi, 
representing different classes, ecologies, and morphologies, are 
capable of degrading plastics. Due to its enormous advantage over 
chemical and physical degradation approaches, the biodegradation 
of these man-made compounds by microorganisms seems to 
be one of the important techniques to control the problem of 

Figure 1: Types of plastic.
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Figure 2: System overview of biodegradation of plastic by fungal community.

plastic waste [38]. Biological degradation is thought to be a more 
effective and strong solution to this global issue. Biodegradation 
involves many kinds of plastic degrading microorganisms [39,40]. 
Many chemicals are transformed into simpler compounds by 
microorganisms through biochemical processes. An indicator of 
the biodegradation of plastic polymers is a change in the physical 
properties of the polymers, such as a reduction in molecular weight, 
a loss of mechanical strength, or a change in the surface properties 
of the plastic [29] [Figure 2].

A. clavatus isolated from landfill soil has been found to 
degrade LDPE [16]. There are numerous Aspergillus species, including 
Aspergillus terreus, Aspergillus sydowii, Aspergillus tubingensis, 
Aspergillus fumigates isolated from Mangrove dumpsite. The coastal 
environment of the Gulf of Mannar and seawater is known to degrade 
polyethylene effectively [18,41,42]. Various fungal strains have been 
discovered so far and showing degradation of different types of plastic 
in an accomplished way. Various fungal strains isolated from different 
habitats and degrading different types of plastics have been reported 
worldwide [Table 1].

4. ASSESSMENT TECHNIQUES

To measure the degree of plastic biodegradation, a variety of 
assessment techniques have been used. Previously, the gravimetric 
assessment of polymer weight/mass loss over time when exposed to 
cultured microbes was the most widely used method for assessing 
plastic biodegradation [49,50]. Although nowadays, various new 
assessment methodologies are currently being employed to assess 
the level of plastic biodegradation. Scanning electron microscopy 

(SEM), which creates a surface image by illuminating a surface 
with a high-intensity electron beam and scanning across it. High 
magnification and hence good resolution are provided by SEM at the 
nanoscale range. SEM observations are utilized to study and evaluate 
the colonization of plastic films or particles by microorganisms and 
at the same time visualizing fractures, trenches, and deformations 
on the plastic surface [51,52], Which can indicate if the polymer is 
damaged. SEM has been used in a number of studies to examine 
fungi on polymers. SEM is a fast technique for observing surface 
attachment and morphological microstructures [38]. Atomic force 
microscopy (AFM) is another technique that can be used to identify 
surface alteration of polymers during degradation [53]. Using this 
method, topographical changes at the polymer surface, such as 
the emergence of pits and crevices, the adhesion of microbes to 
the polymer surface, and an increase in surface roughness, can be 
directly observed [54].

Fourier-transform infrared spectroscopy (FTIR) is used to identify 
functional groups contained in polymer films. FTIR spectrum detects 
and semi-quantifies changes in initial polymer arrangement, such 
as the addition of carbonyl groups during oxidation [55,56]. The 
crystallinity of polymer films was measured using X-ray diffraction 
examination. It was carried out using an X-ray diffractometer. By 
examining the diffraction patterns produced by polymer films, the 
structure of such films was discovered [57]. Due to their high water 
content, hydrophilic surfaces have higher surface energies and yield 
smaller contact angles with water. As a result, polar functional groups 
that develop in polymers as a result of environmental degradation 
cause the contact angle to decrease. The rate of disintegration is 
further accelerated by increased hydrophilicity because it encourages 
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Table 1: Various fungal strains showing plastic biodegradation.

Substrate Sample location Fungal strains Weight loss (%) Assessment techniques References

PSc NCIM Mucor sp. 1.81±0.13 Weight reduction 
measurement, FTIR, SEM, 
TGA–DTG, GC-MS and 
GPC

[43]

PS NCIM Cephalosporium sp. 2.17±0.16 Weight reduction 
measurement, FTIR, SEM, 
TGA–DTG, GC-MS and 
GPC

[43]

LDPE Sewage disposal 
ground

A. nomius 4.9 Determination of Dry Weight 
of Residual LDPE, AFM, 
GC-MS and FTIR

[44]

LDPE Landfill soil T. viride 5.13 Weight loss and tensile 
strength analyses

[17]

LDPE Sewage disposal 
ground

Streptomyces sp., 5.2 Determination of dry weight 
of residual LDPE, AFM, 
GC-MS and FTIR

[44]

HDPE Marine 
environmental 
site dumped with 
plastic waste

A. tubingensis 6.02±0.2 dry weight of the residual 
HDPE, FTIR analysis, fungal 
cell surface hydrophobicity 
and SEM analysis

[42]

LDPE Landfill soil A. nomius 6.63 Weight loss and tensile 
strength analyses

[17]

HDPE Marine 
environmental 
site dumped with 
plastic waste

A. flavus 8.51±0.1 Dry weight of the residual 
HDPE, FTIR analysis, fungal 
cell surface hydrophobicity 
and SEM analysis

[42]

(Contd...)
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Table 1: (Continued).

Substrate Sample location Fungal strains Weight loss (%) Assessment techniques References

PU Solid 
waste-dumping 
site

Aspergillus sp. 15–20 SEM, FTIR and DSC 
measurement

[45]

PE Seawater A. niger 19.5 Weight loss, tensile
Strength, SEM and FTIR

[18]

PE Seawater A. fumigatus 20.5 Weight loss, tensile
Strength, SEM and FTIR

[18]

PE Seawater A. terreus 21.8 Weight loss, tensile
Strength, SEM and FTIR

[18]

PET Solid waste litter 
site

Aspergillus sp. 22 Weight loss, FTIR, SEM and 
XRD

[46]

LDPE Landfill soil A. clavatus 35 Weight loss, CO2 evolution 
measured by Strum test, 
infrared spectra and 
morphological changes 
measured by SEM and AFM 
analysis

[16]

PE Mangrove
Dumpsite

A. sydowii 37.94 Weight loss, tensile strength, 
SEM and FTIR

[41]

PE Dumpsite soil T. harzianum 40. SEM, FTIR, NMR analyses 
and enzymatic assay

[47]

PE Mangrove
Dumpsite

A. terreus 41.82 Weight loss, tensile
Strength, SEM and FTIR

[41]

(Contd...)
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Table 1: (Continued).

microbe adhesion to the polymer surface [58]. Differential scanning 
calorimetry is a method for carrying out thermal analysis (DSC). 
Its analysis provides capacity to track phase transitions, solid state 
transformations, and thermodynamic parameters during controlled 
sample heating and cooling. DSC analysis can be used to measure a 
variety of characteristics, including the glass transition temperature, 
crystallization temperature, melting temperature, polymer crystallinity 
percentage, specific heat capacity, transformation enthalpy, and many 
others [59]. Evolution of CO2 is typically taken into account as a sign 
of biological decay [14,56]. By monitoring the CO2 released during 
biotic or abiotic mineralization in a controlled setting, the rate of 
polymer degradation can be estimated [61-63].

The oligomeric fraction produced during polymer breakdown or the 
detection of low-molecular-weight metabolites can also be studied 
using gas chromatography (GC) with flame ionization detection 
(GC-FID) or mass spectrometry (GC-MS) [64-66]. Another 
chromatographic method utilized for the examination of complex 
oligomeric mixtures created during biodegradation is LC-MS [66]. 

Gel-permeation chromatography (GPC) is used to quantify molar 
mass and molecular weight shifts [67,68]. High-performance liquid 
chromatography (HPLC) is also used to identify certain homologues 
of low-molecular-weight polymers [69].

5. APPLICATIONS

In general, fungi are more effective in degrading polymers than bacteria 
because they can stick to the hydrophobic surfaces of polymers, produce 
extracellular enzymes that target insoluble fibers, and endure challenging 
growth environments [24,70,71]. Fungi produce a wide range of 
enzymes that have the potential to break down the chemical bonds of 
the plastic polymers [72]. According to a study, enzymes called laccases 
from fungi like Aspergillus flavus and Pleurotus ostreatus significantly 
degraded polyethylene [73,74]. According to another study, PS can 
be broken down by an extracellular esterase from Lentinus tigrinus 
[75]. Serine and cysteine hydrolase from Pestalotiopsis microspore 
was shown in another investigation to be active in degrading PU [76]. 
The breakdown of lignin is frequently correlated with the enzymes 

Substrate Sample location Fungal strains Weight loss (%) Assessment techniques References

LDPE Sea water samples Penicillium sp. 43.4 Weight reduction and SEM [18]

LDPE Culture
Collection of 
the Institute of 
Excellence in 
Fungal Research

D. italiana 43.90 Weight loss, tensile strength, 
FTIR, SEM and GC-MS

[48]

LDPE Culture
Collection of 
the Institute of 
Excellence in 
Fungal Research

S. citrulli 45.12 Weight loss, tensile strength, 
FTIR, SEM and GC-MS

[48]

LDPE Culture
Collection of 
the Institute of 
Excellence in 
Fungal Research

T. jaczewskii 46.34 Weight loss, tensile strength, 
FTIR, SEM and GC-MS

[48]

LDPE Culture
Collection of 
the Institute of 
Excellence in 
Fungal Research

C. fructicola 48.78 Weight loss, tensile strength, 
FTIR, SEM and GC-MS

[48]

PS: Polystyrene, PE: Polyethylene, LDPE: Low-density PE, PET: PE terephthalate, HDPE: High-density PE, PU: Polyurethane, NCIM: National Collection of Industrial 
Microorganism, FTIR: Fourier-transform infrared spectroscopy, SEM: Scanning electron microscopy, GC-MS: Gas chromatography mass spectrometry, AFM: Atomic force microscopy,  
DSC: Differential scanning calorimetry, GPC: Gel-permeation chromatography, A. nomius: Aspergillus nomius, T. viride: Trichoderma viride, A. tubingensis: Aspergillus tubingensis,  
A. flavus: Aspergillus flavus, A. niger: Aspergillus niger, A. fumigatus: Aspergillus fumigatus, A. terreus: Aspergillus terreus, A. clavatus: Aspergillus clavatus, A. sydowii: Aspergillus sydowii,  
T. harzianum: Trichoderma harzianum, D. italiana: Diaporthe italiana, S. citrulli: Stagonosporopsis citrulli, T. jaczewskii: Thyrostroma jaczewskii, C. fructicola: Colletotrichum 
fructicola, TGA–DTG: Thermogravimetric analysis-derivative thermogravimetry, NRM: Nuclear magnetic resonance, XRD: X-ray diffraction.
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