Journal of Applied Biology & Biotechnology Vol. 11(2), pp. 259-267, Mar-Apr, 2023

Available online at http://www.jabonline.in DOI: 10.7324/JABB.2023.69250

Leafy vegetable diversity and their ethnomedicinal uses against gastrointestinal disorders in the Balasore district of Odisha, India

Niquehat Noor[®], Kunja Bihari Satapathy*[®]

School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.

ARTICLE INFO

Article history: Received on: June 26, 2022 Accepted on: September 23, 2022 Available online: January 22, 2023

Key words: Leafy vegetable, Starvation, Ethnomedicinal, Gastrointestinal, Nutraceutical.

ABSTRACT

With an ever-increasing demand for food due to the population explosion, leafy vegetables play a significant role in mitigating the starvation of the human population. The present study was undertaken to explore the diversity of leafy vegetables consumed by the inhabitants and to document their use for gastric disorders in the Balasore district of Odisha, India. A total of 126 leafy vegetables belonging to 93 genera under 43 families were recorded, which revealed that the local communities consume many wild leafy vegetables. Twenty-five species were reported for their ethnomedicinal claims against gastrointestinal complaints, implying their role in maintaining the good gut health of the local populace. *Oxalis corniculata* L. is the most cited ethnomedicinal leafy vegetable for gastrointestinal ailment and diarrhea, with a fidelity level of 93.83%. The Factor of informant consensus value was found to be maximum (Fic value 1) in the disease category of peptic ulcer. The findings of the present study reveal that leafy vegetables not only meet the nutritional requirements but also have the potential to fulfill the medicinal demands of humankind. It can be recommended that further investigation could throw light on their efficacy as a suitable nutraceutical.

1. INTRODUCTION

The accelerated growth of the population worldwide results in growing levels of food inadequacy. To overcome this issue, food production needs to be enhanced to satisfy the food requirements of the growing population. In view of this, exploration, identification, and utilization of less known leafy vegetables could play a prominent role in alleviating the hunger of the world's expanding population [1]. Further, traditional leafy vegetables, being highly nutritive, play a crucial role during times of famine and poor harvest in ensuring food security [2]. Many unexplored leafy vegetables with hidden nutritional and medicinal values exist in their natural habitat that needs commercialization to solve the menace of malnutrition. Leafy vegetables not only add variety and flavor to our diet, but also meet our daily nutrient requirements. Due to their ready accessibility and lower price, they are regarded as "poor man's vegetables," thereby being identified as the food bowl of tribal and rural people. They also earn their livelihood by selling those leafy vegetables in the local market, boosting their socioeconomic standard. Unfortunately, they are considered inferior foods despite being a rich source of nutritional and medicinal values.

Leafy vegetables are excellent sources of minerals such as iron, magnesium, calcium, and potassium, along with Vitamins B, C, E,

Dr. Kunja Bihari Satapathy, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar - 752 050, Odisha, India. E-mail: kbs bot @ rediffmail.com and K. Besides, they are bestowed with phytonutrients such as betacarotene, lutein, zeaxanthin, and Omega-3 fatty acids, which protect cells from injury and age-related problems [3]. They are enriched in compounds that possess antidiabetic [4], anti-histaminic [5], and anti-carcinogenic properties [6]. Being enriched in folic acid, leafy vegetables fight anemia. Antioxidants in leafy greens protect against various diseases by scavenging free radicals in our body [7]. Due to the nutritional and therapeutic benefits of leafy vegetables, it can be explored as future herbal drugs and superfoods [8].

Leafy vegetables promote the growth of beneficial gut bacteria, forming a healthy gut microbiome. According to the earlier findings, sulfoquinovose, a sulfonated monosaccharide, found in many green vegetables supplies, a selective but crucial substrate for a few but widely distributed bacteria in the human gut [9]. This particular sort of sugar, which is utilized as an energy source by good gut bacteria as an energy source, increases their dominance and inhibits harmful bacteria from multiplying in the stomach [10]. Furthermore, as a good source of magnesium, leafy vegetables can help relieve constipation by increasing muscle contractions in our gastrointestinal tract. Further, it facilitates bowel movements by increasing water content in the intestines. They are low in calories and fat while being high in dietary fiber; they aid in weight loss and digestion. Thus, leafy greens boost our gut health, protecting us from gastrointestinal disorders.

Although several floristic and ethnobotanical studies on wild edible plants have been conducted in the state of Odisha [11-16], very little attempt has been made to document the diversity and ethnomedicinal uses of leafy vegetables in this region [17,18]. Despite the wide

^{*}Corresponding Author:

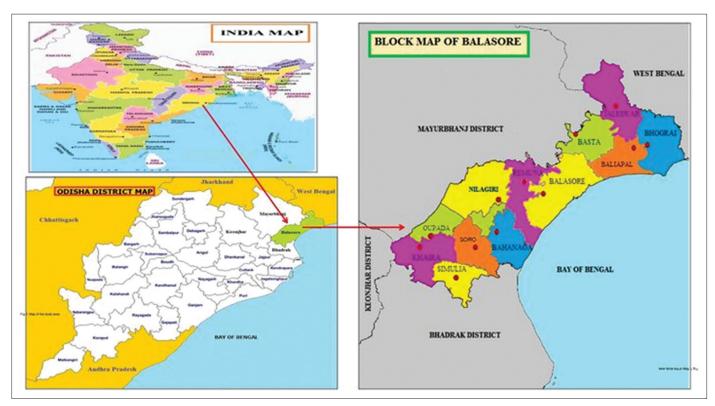
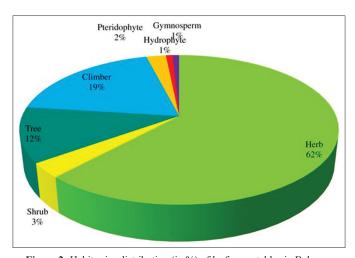



Figure 1: Map of the study area.

Figure 2: Habit-wise distribution (in %) of leafy vegetables in Balasore district.

diversity of leafy vegetables in the Balasore district of Odisha, it is still unexplored by scientific communities. Therefore, the present study aims to identify, document and create a scientific database on leafy vegetables found in different blocks of the Balasore district, along with the determination of the most cited ethnomedicinally potent leafy vegetable used against gastrointestinal disorders.

2. MATERIALS AND METHODS

2.1. Study Area

Balasore (latitude 21°3'-21°59' N, longitude 86°20'-87°29' E) is an administrative district which is located in the northern most coastal part of Odisha state, in Eastern India [Figure 1]. It is densely populated

(92,320,529 people; 2011 census) and covers an area of 3806 km². It is bordered on the North by the Midnapore district of West Bengal, on the East by the Bay of Bengal, on the South by Bhadrak district, and the West by Mayurbhanj and Keonjhar districts. Balasore and Nilagiri are the two administrative subdivisions, with 12 C.D. blocks: Jaleswar, Bhograi, Basta, Baliapal, Balasore, Remuna, Nilagiri, Bahanaga, Oupada, Soro, Khaira, and Simulia. It is known for its special tone of the local dialect, "Baleswari bhasa." Besides, this district is inhabited by numerous ethnic, linguistic, religious groups, and indigenous tribes such as Santal, Bhumij, Oraon, etc. It is blessed with a good climate, alluvial soil, and perennial rivers that favor rich floral diversity in this region.

2.2. Data Collection

Intensive seasonal field tours were conducted in the inner pockets of 12 blocks in the Balasore district of Odisha from April 2019 to March 2022. Through semi-structured interviews and discussions, information about the variety of leafy vegetables consumed by the district's native and tribal people, along with their ethnomedicinal uses against gastrointestinal diseases, was gathered. During the survey, 216 local informants were interviewed, including 66% of men and 34% of women. The informants were between the ages of 28 and 80. Each plant's data includes its botanical name, vernacular name, voucher number, family, habit, flowering, and fruiting season. The data for ethnomedicinal leafy vegetables comprise the botanical name, vernacular name, parts used, diseases treated, and mode of utilization.

2.3. Plant Identification and Collection of Voucher Specimens

By referring to the regional floras, plant specimens obtained during field visits were thoroughly studied taxonomically and identified [19-21]. Plants were photographed digitally in their natural

 Table 1: Diversity of leafy vegetables in Balasore district of Odisha, India.

S. No.	Botanical name	Vernacular name [O: Odia; B:Bengali]	Family	Voucher number	Habit	Flowering and Fruiting
1	Abelmoschus moschatus Medik.	Bano bhindi (O)	Malvaceae	NN-363	Herb	Aug–Jan
2	Abutilon indicum (L.) Sweet	Pedi-pedika (O)	Malvaceae	NN-395	Herb	Jul–Apr
3	Achyranthes aspera L.	Apamaranga (O)	Amaranthaceae	NN-298	Herb	Oct–Feb
4	Aerva lanata (L.) Juss. ex Schult.	Paunsia (O)	Amaranthaceae	NN-256	Herb	Aug-Jan
5	Allium cepa L.	Piaja (O)	Amaryllidaceae	NN-305	Herb	Feb-Apr
6	Allium sativum L.	Rasuna (O)	Amaryllidaceae	NN-277	Herb	Feb-Apr
7	Allmania nodiflora (L.) R.Br. ex Wight	Chadheimundia Saga (O)	Amaranthaceae	NN-380	Herb	Jul-Dec
8	Alocasia fornicata (Kunth) Schott.	Dudh maan Kochu (B)	Araceae	NN-251	Herb	Jun-Sep
9	Alocasia macrorrhizos (L.) G.Don	Mana Saru (O)	Araceae	NN-390	Herb	Jul-Nov
10	Alternanthera philoxeroides (Mart.) Griseb	Denga Madaranga (O)	Amaranthaceae	NN-243	Herb	Dec-Apr
11	Alternanthera sessilis (L.) R.Br. ex DC.	Chotta Madaranga (O)	Amaranthaceae	NN-227	Herb	Jul–Jan
12	Amaranthus blitum L.	Kosala (O)	Amaranthaceae	NN-232	Herb	Jan-Dec
13	Amaranthus caudatus L.	Khada Sago (O)	Amaranthaceae	NN-295	Herb	Jun-Oct
14	Amaranthus graecizans L. subsp. thellungianus (Nevski ex Vassilez.) Gusev	Champa neutiya (O)	Amaranthaceae	NN-318	Herb	Aug-Dec
15	Amaranthus spinosus L.	Kanta neutia (O)	Amaranthaceae	NN-240	Herb	Jan-Dec
16	Amaranthus tricolor L.	Lal Khada (O)	Amaranthaceae	NN-235	Herb	Jan-Dec
17	Amaranthus viridis L.	Leutiya (O)	Amaranthaceae	NN-233	Herb	Jan-Dec
18	Amorphophallus bulbifer (Roxb.) Blume	Dhala Oal (O)	Araceae	NN-353	Herb	Jul– Aug
19	Amorphophallus paeoniifolius (Dennst.) Nicolson	Olua (O)	Araceae	NN-388	Herb	Apr–Jun
20	Andrographis paniculata (Burm.f.) Nees	Bhuinimbo (O)	Acanthaceae	NN-396	Herb	Sep-May
21	Antidesma acidum Retz.	Matha Saag (O)	Phyllanthaceae	NN-225	Tree	May-Dec
22	Antidesma ghaesembilla Gaertn.	Kath marmuri (O)	Phyllanthaceae	NN-264	Tree	Apr–Oct
23	Azadirachta indica A.Juss.	Nimba (O)	Meliaceae	NN-261	Tree	Feb–Jul
24	Bacopa monnieri (L.) Pennell.	Brahmi (O)	Plantaginaceae	NN-211	Herb	Apr–Dec
25	Basella alba L.	Poi (O)	Basellaceae	NN-284	Climber	Dec–Feb
26	Bauhinia purpurea L.	Raajbiji (O)	Fabaceae	NN-239	Tree	Sep-Mar
27	Bauhinia variegata (L.) Benth.	Kanchano (O)	Fabaceae	NN-322	Tree	Feb-May
28	Benincasa hispida (Thunb.) Cogn.	Panikakharu (O)	Cucurbitaceae	NN-254	Climber	Oct–Jan
29	Boerhavia diffusa L. nom. cons.	Puruni (O)	Nyctaginaceae	NN-347	Herb	Jan-Dec
30	Brassica napus L.	Sorisa (O)	Brassicaceae	NN-372	Herb	Sep–Feb
31	Brassica oleracea L. var. botrytis L.	Phulkobi (O)	Brassicaceae	NN-356	Herb	Nov–Mar
32	Brassica oleracea L. var. capitata L.	Bandha kobi (O)	Brassicaceae	NN-374	Herb	Dec-Feb
33	Brassica oleracea L. var. gongylodes L.	Olkobi (O)	Brassicaceae	NN-368	Herb	Dec–Feb
34	Capsicum annuum L.	Lanka (O)	Solanaceae	NN-221	Herb	Jan-Dec
35	Cayratia auriculata (Roxb.) Gamble	Nadara dunka (O)	Vitaceae	NN-335	Climber	Jul-Dec
36	Celosia argentea L.	Nahanga Saga (O)	Amaranthaceae	NN-288	Herb	Aug-Jan
37	Centella asiatica (L.) Urban	Thalkuri (O)	Apiaceae	NN-270	Herb	May-Nov
38	Chenopodium album L.	Bathua Saga (O)	Amaranthaceae	NN-237	Herb	Nov –Apr
39	Cheilocostus speciosus (J.Konig) C. Specht	Gaigobra (O)	Costaceae	NN-392	Herb	July-Dec
40	Cicer arietinum L.	Chana (O)	Fabaceae	NN-378	Herb	Jan-Dec
40 41	Cissampelos pareira L.	Akanabindi (O)	Menispermaceae	NN-316	Climber	Jun-Jan
42	Clerodendrum infortunatum L.	Ghetu (B)	Lamiaceae	NN-383	Shrub	Jun-Jan Jan-Jul
43	Cleome viscosa L.	Anasorisha (O)	Cleomaceae	NN-202	Herb	May-Oct
	Cleome viscosa L. Cleome rutidosperma DC	Anasorisha (O) Anasorisha (O)	Cleomaceae	NN-215	Herb	Dec–Feb
44 45						
45	Coccinia grandis (L.) Voigt	Kundri (O)	Cucurbitaceae	NN-269	Climber	Jun-Sep
46	Cocculus hirsutus (L.) Diels	Musakani (O)	Menispermaceae	NN-331	Climber	Apr-

(Contd...)

 Table 1: (Continued).

S. No.	Botanical name	Vernacular name [O: Odia; B:Bengali]	Family	Voucher number	Habit	Flowering and Fruiting
47	Coleus barbatus (Andrews) Benth. ex G.Don	Rukunahata pochha (O)	Lamiaceae	NN-283	Herb	Oct-Dec
48	Colocasia esculenta (L.) Schott.	Saru (O)	Araceae	NN-394	Herb	Jun-Nov
19	Commelina benghalensis L.	Kaniseera (O)	Commelinaceae	NN-223	Herb	Jul–Jan
50	Commelina erecta L.	Konisir (O)	Commelinaceae	NN-253	Herb	Aug-Dec
51	Corchorus aestuans L.	Bana nalita (O)	Malvaceae	NN-245	Herb	Jul-Dec
52	Corchorus capsularis L.	Jhutto/Nalita (O)	Malvaceae	NN-302	Herb	May-Nov
3	Corchorus olitorius L.	Madhura nalita (O)	Malvaceae	NN-303	Herb	Jul-Nov
4	Cordia dichotoma G. Forst.	Sheluka (B)	Boraginaceae	NN-361	Tree	Mar-Sep
5	Coriandrum sativum L.	Dhaniya (O)	Apiaceae	NN-291	Herb	Nov-Mar
6	Cucumis sativus L.	Kakudi (O)	Cucurbitaceae	NN-255	Climber	Sep-Nov
7	Cucurbita maxima Duchesne	Boitalu (O)	Cucurbitaceae	NN-273	Climber	Mar–Aug
8	Cucurbita pepo L.	Kakharu (O)	Cucurbitaceae	NN-258	Climber	Jul-Oct
9	Cyanotis axillaris (L.) D.Don ex Sweet	Kanasari (O)	Commelinaceae	NN-262	Herb	Jul–Jan
0	Cycas orixensis (Haines) Singh & Khuraijam	Bheru (O)	Cycadaceae	NN-349	Tree	May-Oct
1	Dicliptera bupleuroides Nees.	Khaparakatia (O)	Acanthaceae	NN-262	Herb	Sep-Feb
2	Diplazium esculentum (Retz) Sw.	Dheki Saag (B)	Athyriaceae	NN-327	Pteridophyte	Jan-Dec
3	Eclipta prostrata (L.) L.	Bhrungaraj (O)	Asteraceae	NN-272	Herb	Aug-Apr
4	Enydra fluctuans Lour.	Hidimicha Sago (O)	Asteraceae	NN-311	Herb	Dec–Feb
5	Eryngium foetidum L.	Jangli dhania (O)	Apiaceae	NN-340	Herb	Apr–Aug
5	Erythrina variegata L.	Paladhua (O)	Fabaceae	NN-333	Tree	Mar–Jul
7	Euphorbia hirta L.	Chita–kutei (O)	Euphorbiaceae	NN-241	Herb	Jan-Dec
3	Ficus religiosa L.	Aswatta (O)	Moraceae	NN-385	Tree	Jun-Oct
)	Foeniculum vulgare Mill.	Pan mohari (O)	Apiaceae	NN-369	Herb	Oct–Mar
)	Glinus oppositifolius (L.) Aug. DC.	Pitagama (O)	Molluginaceae	NN-293	Herb	Mar-Oct
1	Hibiscus sabdariffa L.	Kaunria Saga (O)	Malvaceae	NN-355	Herb	Jul-Feb
2	Hygrophila auriculata Schumach.	Koelekha (O)	Acanthaceae	NN-308	Herb	Oct–Feb
3	Ipomoea aquatica Forssk.	Kalama Saga (O)	Convolvulaceae	NN-260	Herb	Nov-Mar
4	Ipomoea batatas (L.) Lam.	Kandumulo (O)	Convolvulaceae	NN-344	Herb	Dec-Jan
5	Ipomoea sepiaria Koenig ex Roxb.	Mushakani (O)	Convolvulaceae	NN-370	Climber	Oct–Apr
6	Justicia adhatoda L.	Basango (O)	Acanthaceae	NN-359	Shrub	Jun-Feb
7	Lablab purpureus (L.) Sweet	Simbo (O)	Fabaceae	NN-310	Climber	Oct–Feb
3	Lagenaria siceraria (Molina) Standl.	Lau (O)	Cucurbitaceae	NN-377	Climber	Jul–Feb
9	Leucas aspera (Willd.) Link	Gaiso (O)	Lamiaceae	NN-299	Herb	Jul–Jan
0	Leucas cephalotes (Roth) Spreng.	Goyoso (O)	Lamiaceae	NN-292	Herb	Aug-Dec
1	Luffa acutangula (L.) Roxb.	Janni (O)	Cucurbitaceae	NN-279	Climber	Aug-Nov
2	Luffa aegyptica Mill.	Tadari/Pitta Torai (O)	Cucurbitaceae	NN-266	Climber	Aug-Nov
3	Marsilea minuta L.	Sunsunia Saga (O)	Marsileaceae	NN-286	Pteridophyte	Nov–Mar
4	Marsilea quadrifolia L.	Sunsunia saga (O)	Marsileaceae	NN-325	Pteridophyte	Nov-Feb
		e ()	Lamiaceae		Herb	
5	Mentha spicata L.	Pudina (O)		NN-320		Jul-Sep
5 7	Merremia quinquefolia (L.) Hallier f.	Chadhei saga (O)	Convolvulaceae	NN-351	Climber	Apr–Sep
7	Mollugo pentaphylla L.	Pita saga (O)	Molluginaceae	NN-324	Herb	Jan-Dec
8	Momordica charantia L.	Kalara (O)	Cucurbitaceae	NN-265	Climber	Jun–Feb
9	Momordica dioica Roxb. ex. Willd	Kankada (O)	Cucurbitaceae	NN-280	Climber	Aug-Nov
0	Moringa oleifera Lam.	Sajana (O)	Moringaceae	NN-229	Tree	Jan–Jun
1	Murraya koenigii (L.) Spreng.	Bhursunga (O)	Rutaceae	NN-375	Tree	Feb-Sep
2	Nyctanthes arbor–tristis L.	Gangaseoli (O)	Oleaceae	NN-399	Tree	Sep-Jan
93	Olax scandens Roxb.	Bhadbhadia (O)	Olacaceae	NN-387	Shrub	Mar-

(Contd...)

Table 1: (Continued).

S. No.	Botanical name	Vernacular name [O: Odia; B:Bengali]	Family	Voucher number	Habit	Flowering and Fruiting
94	Oxalis corniculata L.	Ambiliti (O)	Oxalidaceae	NN-315	Herb	Jan-Dec
95	Paederia foetida L.	Prasaruni (O)	Rubiaceae	NN-338	Climber	Aug-Oct
96	Pisum sativum L.	Matar (O)	Fabaceae	NN-352	Herb	May-Oct
97	Polygonum plebeium R.Br.	Muthi saga (O)	Polygonaceae	NN-294	Herb	Feb-Jun
98	Portulaca quadrifida L.	Balbalua (O)	Portulacaceae	NN-309	Herb	Jan-Dec
99	Portulaca oleracea L.	Badabalbalua (O)	Portulacaceae	NN-342	Herb	Jan-Dec
100	Pontederia hastata L.	Konsida (O)	Pontederiaceae	NN-391	Hydrophyte	Apr–Sep
101	Raphanus sativus L.	Mula saga (O)	Brassicaceae	NN-300	Herb	Jan-Feb
102	Rungia pectinata (L.) Nees	Sankh Sago (O)	Acanthaceae	NN-332	Herb	Nov-Feb
103	Senna sophera (L.) Roxb	Ghodachakunda (O)	Fabaceae	NN-217	Shrub	Aug-Feb
104	Senna tora (L.) Roxb.	Chakunda (O)	Fabaceae	NN-262	Herb	Sep-Dec
105	Senna occidentalis (L.) Link	Kola chakunda (O)	Fabaceae	NN-329	Herb	Sep–Feb
106	Sesbania grandiflora (L.) Poiret	Agasthi (O)	Fabaceae	NN-213	Tree	Nov-May
107	Sesbania sesban (L.) Merr.	Jayanti (O)	Fabaceae	NN-218	Shrub	Oct-Jan
108	Solanum lycopersicum L.	Bilati baigan (O)	Solanaceae	NN-337	Herb	Jan-Dec
109	Solanum melongena L.	Baigana (O)	Solanaceae	NN-341	Herb	Jan-Dec
110	Solanum tuberosum L.	Alu (O)	Solanaceae	NN-268	Herb	Jan-Dec
111	Spermacoce articularis L.f.	Solaganthi (O)	Rubiaceae	NN-360	Herb	July-Dec
112	Spinacea oleracea L.	Palanga (O)	Amaranthaceae	NN-257	Herb	Nov-Feb
113	Spondias pinnata (L.f.) Kurz.	Ambada (O)	Anacardiaceae	NN-210	Tree	Feb-Mar
114	Streblus taxoides (Roth) Kurz.	Phutkuli (O)	Moraceae	NN-366	Tree	Mar–Jun
115	Talinum fruticosum (L.) Juss.	Jangli Poi (O)	Talinaceae	NN-290	Herb	Oct–Jan
116	Tamarindus indica L.	Tentuli (O)	Fabaceae	NN-216	Tree	Jan–Jun
117	Telosma pallida (Roxb.) W.G. Craib	Tokeikundei (O)	Apocynaceae	NN-307	Climber	May-Jan
118	Tinospora cordifolia (Thunb.) Miers	Guluchi (O)	Menispermaceae	NN-365	Climber	Aug-May
119	Trichosanthes cucumerina L.	Chichendara (O)	Cucurbitaceae	NN-400	Climber	May –Aug
120	Trichosanthes dioica Roxb.	Potala (O)	Cucurbitaceae	NN-252	Climber	Apr– Sep
121	Trianthema protulacastrum L.	Khapara Sago (O)	Aizoaceae	NN-281	Herb	Jul-Dec
122	Trigonella corniculata (L.) L.	Piring Saga (O)	Fabaceae	NN-393	Herb	Nov-Mar
123	Trigonella foenum-graecum L.	Methi Saaga (O)	Fabaceae	NN-397	Herb	Dec-Mar
124	Typhonium trilobatum (L.) Schott	Ghet Kachhu (B)	Araceae	NN-350	Herb	Jan-Dec
125	Vigna unguiculata (L.) Walp.	Jhudango (O)	Fabaceae	NN-357	Climber	Jul-Oct
126	Zanthoxylum asiaticum (L.) Appelhans, Groppo & J.Wen	Tundpora (O)	Rutaceae	NN-345	Climber	Aug-Apr

habitat to facilitate their identification and nomenclature. The plant specimens were dried and kept as voucher specimens using herbarium techniques [22] and submitted as herbarium samples to the Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India.

2.4. Statistical Analysis

With the help of biostatistical formulas, the factors of informant consensus (Fic) and fidelity level (Fl) of the most recorded (cited) leafy vegetables used against gastrointestinal diseases were calculated. The following equation calculated the Fic: Fic = Nur-Ntaxa/Nur-1, where Nur is the number of valuable reports in each category and Ntaxa is the number of species in each category [23,24]. The Fl was calculated for the most commonly reported medicinal leafy vegetables as: Fl (%) =

 $(Np/N) \times 100$, where Np denotes the number of informants who claim to have used a plant species to treat a specific disease, and N denotes the number of informants who have used the plants as medicine to treat any given disease [25].

3. RESULTS AND DISCUSSION

The study area recorded a total of 126 (122 angiosperms, 3 pteridophytes, and 1 gymnosperm) leafy vegetables belonging to 93 genera under 43 families [Table 1]. Among the 122 angiosperms recorded, 109 were dicot species belonging to 81 genera under 35 families, and 13 were monocot species belonging to 9 genera under 5 families. The distribution of leafy vegetables by habit revealed that 78 (62%) were herbs, followed by 24 (19%) climbers, 15 (12%) trees, 4 (3%) shrubs, 3 (2%) pteridophytes, 1 (1%) hydrophyte, and

 Table 2: Ethnomedicinal uses of leafy vegetables against gastrointestinal disorders.

Botanical name and family	Vernacular name	Tribe	Parts used and treatment mode
Achyranthes aspera L. [Amaranthaceae]	Buridataram	Santal	Leaves: 1–2 teaspoonful leaf juice is orally administered 3 times a day for 7 days on an empty stomach for curing peptic ulcer
Aerva lanata (L.) Juss. ex Schult. [Amaranthaceae]	Chindi	Oraon	Leaves: Leaf paste along with boiled rice is grinded and made into cake and consumed for treating dysentery
Antidesma acidum Retz. [Phyllanthaceae]	Matha arak	Santal	Leaves: Dried leaf powder along with water is given for curing dysentery
Basella alba L. [Basellaceae]	Purai	Santal	Leaves: $\frac{1}{4}$ th of the leaf along with two black pepper is grinded and is taken three times a day for treating diarrhoea
Cayratia auriculata (Roxb.) Gamble [Vitaceae]	Nadara dunka	Bhumija	Leaves: Dried leaves made into powder and taken for curing dysentery
Cicer arietinum L. [Fabaceae]	But arak	Santal	Seeds: 50 g of seeds soaked overnight in water is prescribed raw for treating constipation
Cocculus hirsutus (L.) Diels [Menispermaceae]	Musakani	Santal	Leaves: For treating stomach aches, leaf juice along with fresh curd is given twice a day for 3 days
Coleus barbatus (Andrews) Benth. ex G.Don [Lamiaceae]	Ban juani	Bhumija	Leaves: 10 ml leaf juice along with a pinch of rock salt is given once in every one hour for curing diarrhea
Cucurbita pepo L. [Cucurbitaceae]	Kahanda arak	Santal	Seeds: For expelling intestinal worms, a paste prepared by mixing 25 g seed kernel along with a little water and jaggery is given with 4 teaspoonful warm milk in the morning after breakfast
Eclipta prostrata (L.) L. [Asteraceae]	Kala kesadura	Oraon	Leaves: 10 ml of leaf juice added with 20 ml sheep's milk is taken 2 times a day for treating dysentery
Eryngium foetidum L. [Apiaceae]	Jangli dhania	Bhumija	Leaves: To stop vomiting caused due to indigestion, 10 ml leaf decoction is consumed 2 times a day on an empty stomach
Erythrina variegata L. [Fabaceae]	Paladhua	Oraon	Leaves: To expel intestinal worms in children, 1–2 teaspoonfuls of leaf juice are orally administered once a day for 3–4 days
Ficus religiosa L. [Moraceae]	Hesak arak	Santal	Bark: Ash obtained from burnt bark is blended with water and given 2–4 teaspoonful in every 1 h for curing vomiting
Foeniculum vulgare Mill. [Apiaceae]	Pan mohari	Oraon	Seeds: Mixture of 10 g seeds and 50 g sugar is boiled in100 ml water and the syrup (5 ml) obtained is given to children 3 times in a day for curing colic and stomach pain caused by gas
Hygrophila auriculata Schumach. [Acanthaceae]	Koelekha	Bhumija	Leaves: Equal amount of leaf juice and lemon juice is given once a day for 3 days against worm infestation
Lablab purpureus (L.) Sweet [Fabaceae]	Simbo	Bhumija	Fruit: For relieving constipation, stir-fried fruit is consumed
Mentha spicata L. [Lamiaceae]	Pudina sakaam	Santal	Leaves: For the cure of diarrhoea, a mixture of leaf juice (10 ml), sunthi powder (5 g dried ginger) and a little salt is given
Momordica charantia L. [Cucurbitaceae]	Kaalra sakaam	Santal	Leaves: For complete deworming in children, 20 ml of leaf juice is prescribed in the early morning on an empty stomach for 4–5 days
Murraya koenigii (L.) Spreng. [Rutaceae]	Kadhi patta	Bhumija	Leaves: About $\frac{1}{2}$ cup of fresh leaf juice is given in the early morning on an empty stomach to treat hyperacidity
Oxalis corniculata L. [Oxalidaceae]	Chomorakoi arak	Santal	Leaves: 10 ml leaf juice along with a little sugar candy powder is given to children twice a day for 2 days for treating diarrhoea
Portulaca oleracea L. [Portulacaceae]	Bek saga	Oraon	Leaves: Leaves are boiled, stir-fried and eaten to get rid of intestinal worms
Raphanus sativus L. [Brassicaceae]	Mula arak	Santal	Fruit: 20 ml fruit juice added with 10 g sugar candy powder is orally administered twice (morning and evening) on an empty stomach to treat hyperacidity
Spinacea oleracea L. [Amaranthaceae]	Palanga	Santal	Leaves: 50 mL of leaf juice and 50 mL of tomato juice are boiled together with a pinch of black salt and black pepper powder and taken orally to treat indigestion and to regain taste
Tamarindus indica L. [Fabaceae]	Jojo	Santal	Leaves: For curing vomiting, leaves are boiled and the resulting filtered water is consumed
Trichosanthes dioica Roxb. [Cucurbitaceae]	Potala	Oraon	Leaves: To cure diarrhoea, leaf decoction mixed with black pepper powder is orally administered

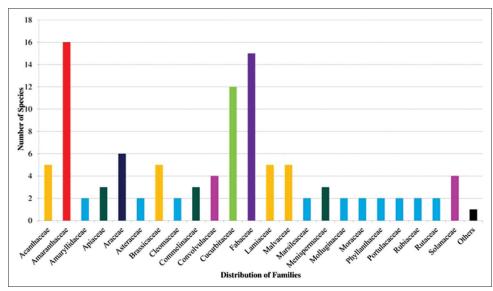


Figure 3: Family-wise distribution of leafy vegetables in Balasore district.

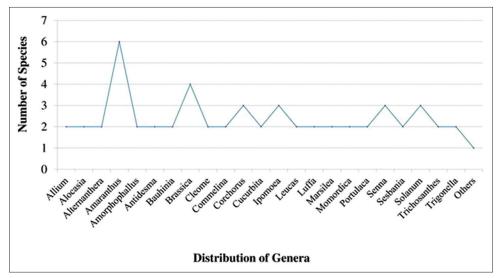


Figure 4: Genus-wise distribution of leafy vegetables in Balasore district.

1 (1%) gymnosperm [Figure 2]. Among the taxonomic families to which the documented leafy vegetables belong, Amaranthaceae with 16 species was observed to be dominant, followed by Fabaceae (15) and Cucurbitaceae with 12 species [Figure 3]. In contrast, Amaranthus with six species was reported to be the dominant genus [Figure 4]. A good number of less-known leafy vegetables, such as Abelmoschus moschatus Medik., Abutilon indicum (L.) Sweet, Achyranthes aspera L. Aerva lanata (L.) Juss. ex Schult., Antidesma ghaesembilla Gaertn., Bauhinia purpurea L., Bauhinia variegata (L) Benth., Cayratia auriculata (Roxb) Gamble, Celosia argentea L., Cleome viscosa L., Dicliptera bupleuroides Nees. and Telosma pallida (Roxb) W.G. Craib, etc. are consumed by the tribes of the Balasore district. Despite the fact that most of the species are grown as weeds, they are consumed as popular leafy vegetables by the tribal and rural belts of the Balasore district, revealing their hidden potential to combat malnutrition and hunger.

It is worth noting that 25 ethnomedicinally potent leafy vegetables belonging to 16 families under 25 genera were documented in the

study area, which was used to treat gastrointestinal disorders [Table 2]. The most cited ethnomedicinal leafy vegetables are *Oxalis corniculata* L., *Eryngium foetidum* L., *A. aspera* L., *A. lanata* (L.) Juss. ex Schult., *Momordica charantia* L., and *Murraya koenigii* (L) Spreng. Among the most frequently cited indigenous medicinal leafy vegetables, four species displayed greater than a 75% Fl [Table 3]. *O. corniculata* L., with a Fl of 93.83%, was observed to be the most recommended species against diarrhea. Interestingly, the observations of the present study on *O. corniculata* in the treatment of diarrhea are supported by the studies of several researchers [26-28]. Orally, 10 ml of leaf juice of this plant mixed with a little sugar candy powder is administered twice a day for 2 days to treat diarrhea. Apart from their culinary uses, they have the potential to meet the primary health-care needs of the tribal and rural people, thereby preserving their endangered ethnomedicinal knowledge.

To determine tribal general agreement in the use of the recorded ethnomedicinal plants, the Fic values of total gastrointestinal disorders was categorized into nine groups. The average Fic value obtained for

Table 3: Fidelity level (Fl%) of most cited leafy vegetables against gastrointestinal disorders.

<u> </u>				
Species	Ailments	NP	N	Fl%
Oxalis corniculata L.	Diarrhoea	137	146	93.83
Eryngium foetidum L.	Vomiting	107	139	76.97
Achyranthes aspera L.	Peptic ulcer	62	81	76.54
Aerva lanata (L.) Juss. ex Schult.	Dysentery	84	111	75.67
Momordica charantia L.	Deworming	128	197	64.97
Murraya koenigii (L.) Spreng.	Hyperacidity	112	177	63.27

Table 4: Factor of informant consensus (Fic) value of each disease category.

Diseases categories	Number of taxa	Used report	Fic values
Diarrhoea	5	163	0.975
Deworming	5	141	0.971
Dysentery	4	97	0.968
Vomiting	3	144	0.986
Indigestion	3	87	0.976
Constipation	2	108	0.99
Hyperacidity	2	121	0.991
Peptic ulcer	1	62	1
Colic and	2	93	0.989
Stomach ache			

all gastrointestinal disorders categories was 0.982, indicating that most tribals in the Balasore district were well aware of ethnomedicinal plant knowledge. The gastrointestinal disorder category-"peptic ulcer" attained the highest Fic value of 1 [Table 4]. A Fic value of 1 indicated that a large number of respondents used fewer plant species to treat peptic ulcers, thereby indicating that specific plant remedies against peptic ulcers were well practiced among informants in the study area. *A.* aspera L. is used for treating peptic ulcers by the tribals of Balasore district. To treat a peptic ulcer, 1–2 teaspoons of its leaf juice are taken orally 3 times a day on an empty stomach for 7 days. Furthermore, a good number of studies have supported the gastroprotective effects of *A. aspera* against peptic ulcers [29-31].

The results of the present investigation revealed that many unexplored or lesser-known leafy vegetables are still consumed by the tribal and indigenous people, which need immediate documentation and preservation. Several leafy vegetables were used against gastrointestinal complaints, which indicated that they boost our gut health and provide a healthy gut environment. In addition, they are loaded with nutrients and antioxidants that help improve our immunity, thereby protecting us against different diseases. Further, ethnomedicinal leafy vegetables with high FL and Fic values that have not been investigated yet can be screened for phytochemical, nutritional, antioxidant, and pharmacological analysis to discover novel drugs to treat various diseases. However, due to a lack of awareness among people about their beneficial effects, they are underutilized. Therefore, it is recommended that immediate necessary measures should be taken for its exploration, documentation, and conservation for the future sustainable utilization.

4. CONCLUSION

The present study reveals that indigenous leafy vegetables can play a prominent role in addressing developing countries' food scarcity and malnutrition issues. Wild edible plants ensure food security and household income for tribal and rural communities. Documentation and exploration of indigenous leafy vegetables would open up new horizons for popularizing their wider consumption by the indigenous people in their diet, thereby promoting good health. Further research on a greater scale is required to reveal their potential as the future medicines. However, there is an urgent need for restoration and perpetuation of ethnomedicinal uses of indigenous leafy vegetables that face severe genetic loss. Mainstreaming the use of nutrientrich underutilized leafy vegetables fulfills not only dietary requirements but also meets new market demands. Furthermore, an integrated conservation approach will be an effective measure for the sustainable utilization of undervalued leafy vegetables. Joint forest management, participatory rural appraisal, organic farming, in situ conservation strategies, bioprospection, biofortification, and commercialization are essential for effectively utilizing underutilized leafy vegetables.

5. ACKNOWLEDGEMENT

The authors are thankful to the administration and management of Centurion University of Technology and Management, Odisha, India, for their support during the investigation.

6. AUTHORS' CONTRIBUTIONS

KBS and NN conceived the idea. NN performed the experiments. KBS and NN analyzed the information. Both authors have made significant contributions in drafting the manuscript.

7. FUNDING

There is no funding to report.

8. CONFLICTS OF INTEREST

The authors report no financial or any other conflicts of interest in this work.

9. ETHICAL APPROVALS

This study does not involve experiments on animal and human subjects.

10. DATA AVAILABILITY

All data generated and analyzed are included within this research article.

11. PUBLISHER'S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES

- Sheela K, Nath KG, Vijayalakshmi D, Yankanchi GM, Patil RB. Proximate composition of underutilized green leafy vegetables in Southern Karnataka. J Hum Ecol 2004;15:227-9.
- Jana JC. Use of traditional and underutilized leafy vegetables of Sub-Himalayan terai region of West Bengal. Acta Hortic 2007;752:571-5.
- Sreenivasa RJ. Nutrition science in India: Green leafy vegetables: A potent food source to alleviate micronutrient deficiencies. Int Res J Basic Appl Sci 2017;2:7-13.
- Keshari AN, Gupta RK, Watal G. Hypoglycemic effects of Murraya koenigii on normal and alloxandiabetic rabbits. J Ethnopharmacol

- 2005;2:47-51.
- Yamamura S, Ozawa K, Ohtani K, Kasai R, Yamasaki K. Antihistaminic flavones and aliphatic glycosides from *Mentha spicata*. J Phytochem 1998;48:131-6.
- Rajeshkumar NV, Joy KL, Kuttan G, Ramsewak RS, Nair MG, Kuttan R. Anti-tumour and anticarcinogenic activity of *Phyllanthus amarus* extract. J Ethnopharmacol 2002;81:17-22.
- Moller SM, Jacques PF, Blumberg JB. The potential role of dietary xanthophylls in cataract and age related macular degeneration. Indian J Am Coll Nutr 2000;19:522-7.
- Noor N, Satapathy KB. Indigenous leafy vegetables: A super-food and a potent drug for future generation. Int J Bot Stud 2020;5:146-53.
- Hanson BT, Dimitri Kits K, Löffler J, Burrichter AG, Fiedler A, Denger K, et al. Sulfoquinovose is a select nutrient of prominent bacteria and a source of hydrogen sulfide in the human gut. ISME J 2021;15:2779-91.
- Speciale G, Jin Y, Davies GJ, Williams SJ, Goddard-Borger ED. YihQ is a sulfoquino-vosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. Nat Chem Biol 2016;12:215-7.
- Panda T. Traditional knowledge on wild edible plants as livelihood food in Odisha, India. J Biol Earth Sci 2014;4:144-59.
- Padhan B, Panda D. Wild edible plant diversity and its ethnomedicinal use by indigenous tribes of Koraput, Odisha, India. Res J Agric For Sci 2015;3:1-10.
- Samal D, Rout NC, Biswal AK. Contribution of wild edible plants to the food security, dietary diversity and livelihood of tribal people of Keonjhar district, Odisha. Plant Sci Res 2019;41:20-33.
- Mallick SN, Sahoo T, Naik SK, Panda PC. Ethnobotanical study of wild edible food plants used by the Tribals and rural populations of Odisha, India for food and livelihood security. Plant Arch 2020;20:661-9.
- Mallick SN, Naik SK, Panda PC. Diversity of wild edible food plants and their contribution to livelihood of tribal people in Nabarangpur district, Odisha. Plant Sci Res 2017;39:64-75.
- Behera KK, Mishra NM, Dhal NK, Rout NC. Wild edible plants of Mayurbhanj district, Orissa, India. J Econ Taxon Bot 2008;32:305-14.
- PandaT, Mishra N, Pradhan BK, Mohanty RB. Diversity of leafy vegetables and its significance to rural households of Bhadrak district, Odisha, India. Sci Agric 2015;11:114-23.
- Mohanty SP, Rautaray KT. Survey of leafy vegetables/saka/saag used in and around Gandhamardan hills, Nrusinghnath, Bargarh district, Odisha. Int J Sci Res 2020;9:511-4.
- Haines HH. The Botany of Bihar and Orissa, 6 Parts. London: Adlard and Son Ltd.; 1921-1925.

- Saxena HO, Brahmam M. The Flora of Orissa. Vol. 1-4. Bhubaneswar (Orissa): Regional Research Laboratory and Forest Development Corporation of Orissa; 1994-1996.
- Mooney HF. Supplement to the Botany of Bihar and Orissa. Ranchi: Catholic Press; 1950.
- Jain SK, Rao RR. A Handbook for field and herbarium methods. New Delhi: Today and Tomorrow Publishers; 1967.
- Trotter RT, Logan MH. Informant consensus: A new approach for identifying potentially effective medicinal plants. In: Etkin NL, editor. Plants in Indigenous Medicine and Diet, Behavioural Approaches. Bredfort Hills. New York: Redgrave Publishing Company; 1986. p. 91-112.
- Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. Medicinal plants in Mexico: Healers' onsensus and cultural importance. Soc Sci Med1998;47:1859-71.
- 25. Friedman J, Yaniv Z, Dafni A, Palewitch D. A preliminary classification of healing potential plants, based on a rational analysis of an ethno pharmacological field survey among Bedouins in the Negev desert. J Ethnopharmacol 1986;16:275-87.
- Watcho P, Nkouathio E, Nguelefack TB, Wansi SL, Kamany A. Antidiarrhoeal activity of aqueous and methanolic extracts of *Oxalis corniculata* Klotzsch in rats. Cameroon J Exp Biol 2006;1:46-9.
- 27. Mukherjee S, Koley H, Barman S, Mitra S, Datta S, Ghosh S, et al. Oxalis corniculata (Oxalidaceae) leaf extracts exerts in vitro antimicrobial and in vivo anticolonizing activities against Shigella dysenteriae 1 (NT4907) and Shigella flexneri 2a (2457T) in induced diarrhea in suckling mice. J Med Food 2013;16:801-9.
- Kirtikar KR, Basu BD. Indian Medicinal Plants. 3rd ed., Vol. 1. New Delhi: MS Periodical Experts; 1975. p. 437.
- Das AK, Bigoniya P, Verma NK, Rana AC. Gastroprotective effect of *Achyranthes aspera* Linn. leaf on rats. Asian Pac J Trop Med 2012;5:197-201.
- Mishra V, Mishra SK, Onasanwo SA, Palit G, Mahdi AA, Agarwal SK, et al. Antiulcer potential of leaves of Achyranthes aspera Linn. in rats. Natl Prod Indian J 2014;10:123-9.
- Bigoniya P. Effect of methanolic extract of Achyranthes aspera Linn. on indomethacin induced gastric ulcer in rats. RGI Int J Appl Sci Technol 2011;1:51-4.

How to cite this article:

Noor N, Satapathy KB. Leafy vegetable diversity and their ethnomedicinal uses against gastrointestinal disorders in the Balasore district of Odisha, India. J App Biol Biotech. 2023;11(2):259-267. DOI: 10.7324/JABB.2023.69250