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1. INTRODUCTION

Radiation therapy is one of the widely accepted therapies for the 
majority of cancers that uses beams of intense energy to kill cancer 
cells and shrink the tumor. High-energy radiation damages the genetic 
material of cells and inhibits their further proliferation and division [1]. 
Ionizing radiation can cause deoxyribonucleic acid (DNA) damage 
directly or indirectly by producing free radicals [Figure 1]. Ionizing 
radiation generates free radicals and reactive oxygen species leading 
to DNA damage followed by apoptosis [2]. DNA damages caused by 
the ionizing radiation activate DNA damage repair systems and failure, 
which leads to apoptosis [Figure 1]. Ionizing radiation damages the 
cancer cells and severely affects normal cells. Hence, the purpose 
of radiation therapy is to enhance the efficacious use of radiation 
against abnormal cancer cells with low doses of radiation so that the 
surrounding normal cells are least affected [3]. Apart from radiation 
therapy, many imaging modalities used for various disease diagnosis 
include ionizing radiation to generate images that cause damage to 
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the normal cells [4]. Thus, potent radioprotectors for normal cells or 
radiosensitizers for cancer cells have gained much attention to address 
radiation-induced challenges depending on the need. The screening 
procedure of potent radioprotector/radiosensitizer molecules demands 
a perfect model that may be a cell-based model or an animal model.

The demand for animal models has sharply increased to screen 
potential radioprotectors and radiosensitizers to elucidate the effect 
of these molecules in different physiological and genetic setups. The 
search to explore suitable in-vitro and in-vivo models is to be used to 
screen radiation modifiers and understand the effect of radiation and 
modifiers in different physiological conditions with different genetic 
setups. Here, we summarized many of the major other model systems 
used to assess radioprotectors and radiosensitizers central to radiation 
therapy or radiation exposure.

2. IN VITRO MODELS

2.1. Organoid/3D Culture Model
Organoids are three-dimensional tissue-resembling structures that 
provide better in vivo tumor architecture and are a convenient model 
for observing cell-cell interaction in comparison to 2D culture 
systems [5]. Patient-derived organoids (PDOs) are suitable models for 
rapid testing of multiple drugs and radiation than the time-consuming 
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ABSTRACT

Radiation therapy has emerged as a mainstay therapeutic approach for cancer therapy. Radiation therapy includes 
beams of intense energy that destroy cancer cells by targeting their genetic material. Radiation treatment is a localized 
therapy that can be used to shrink the tumor for which it will be eligible for surgery. Chemoradiation combination 
is often used to inhibit the rapid proliferation and metastasis of cancer. Although radiation therapy is an important 
therapeutic modality for cancer, its adverse effect on normal cells and unwanted side effects cannot be ignored. 
Therefore, with the increase in cancer prevalence, the clinical management of radiation therapy has become a major 
challenge in cancer therapy. The challenges in radiation therapy can be addressed by identifying novel radiation 
modifiers that can potentiate the low dose of radiation on cancer, protect normal cells from radiation, and suppress 
radiation-induced side effects. The search for radiation modifiers needs a suitable model system through which 
potential radiosensitizers and radioprotectors can be screened and validated to be used in the radiation field. Keeping 
the importance of a suitable model in the clinical management of radiation therapy, we have discussed different 
models in this review that can be used to screen radiation modifiers.
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process of respective patient-derived xenograft (PDX) generation [6]. 
Hubert et al. demonstrated the potential of glioblastoma organoids 
to be used as a screening tool to identify radiosensitizers and they 
found the heterogeneous response of organoids toward radiation 
[7]. Linkous et al. demonstrated that organoids combining healthy 
cerebral tissue and glioblastoma cells called GLICO (cerebral 
organoid glioma) show radioresistance compared to 2D culture [8]. 
Park et al. suggested valproic acid acted as both radiosensitizer and 
radioprotector using different species and organ-specific organoid 
culture as valproic acid protected both mouse and human intestinal 
organoids whereas sensitized human colorectal cancer organoids 
toward radiation [9].

Just like other models, organoid models also have some shortcomings. 
Experiments involving organoids to model tumor xenografts need a 
repeated collection of tumor tissues or require a replenishable source 
of tissues for experimental replicates or large-scale culture in the 
form of organoids. However, this problem can be addressed with 
PDOs, which are derived from PDXs generated in animal models 
thus, repeated patient biopsy and tumor tissue collection will not be 
required [10].

2.2. Cell-based High-throughput Screening
Cell-based assays that represent the multiplication capacity of tumor 
cells (i.e., clonogenic and survival) and their DNA damage repair 
activity have been extensively used to characterize the effects of 
radiosensitizing drugs. Although standard cell culture (2D) condition 
fails to recapitulate tumor architecture or microenvironmental 
gradients, it is beneficial for high-throughput screening of multiple 
drugs within a short period. Targeting a specific pathway or specific 
molecule is the key to screening the radiosensitizer and radioprotector 
by cell-based high-throughput screening. Among the targeted 

pathways are DNA damage and repair pathway [11,12], PI3K-AKT 
Pathway [13,14], Mevalonate pathway [15-17], Mitogen-activated 
protein kinase (MAPK) Pathway [18,19], and NFκB Pathway [20-22] 
are the most highlighted pathways to screen radiosensitizer or 
radioprotector by cell-based screening. High-throughput screening 
of radiosensitizer and radioprotector can also be done through live 
dead staining, as described in Figure 2. One previous study reported a 
nanoparticle composed of metallic elements Au and Pt (Au-pt-NPS) as 
a radiosensitizer in murine breast cancer cells line 4T using live dead 
staining [23].

The most affordable, routinely used and generally accepted in-vitro 
model is the 2D monolayer cell culture because the culture and 
experiment design is cost-effective, and the cellular behavior on flat 
and inflexible surfaces can be easily observed. However, a cell culture 
system in a 2-D fashion holds certain limitations, majorly a structural 
3D organization enabling extracellular matrix adhesion is lacking. 
Cell-cell communication and growth factor signaling are altered 
and can differ from normal processes. Because of these restrictions, 
cells growing in a 2D monolayer exhibit unnatural growth kinetics 
and sometimes aberrant functions and behavior. Different assays are 
performed to screen the radiosensitizers and radioprotectors in cell 
culture [Figure 3].

In a study by Ravi et al., small molecule drugs including RAD001, 
MK2206, BEZ235, MLN0128, and MEK162 were screened using 
U87 glioblastoma spheroid and noticed that MEK162, the MAPK-
targeting agent enhanced the radiosensitivity of glioblastoma 
spheroids. MEK162 downregulated and dephosphorylated the cell-
cycle checkpoint proteins CDK1/CDK2/WEE1 and DNA damage 
response proteins p-ATM/p-CHK2, suggesting the persistence of 
prolonged DNA damage [24].

Figure 1: Mechanism of ionizing radiation (IR) induced cell death. IR causes deoxyribonucleic acid (DNA) damage directly or indirectly through generation of 
reactive free radicals. Failure in DNA repair mechanisms induces cell death.



Mohapatra, et al.: Journal of Applied Biology & Biotechnology 2023;11(2):94-10196

3. IN VIVO MODELS

3.1. Yeast Model System
The fission yeast Schizosaccharomyces pombe and the budding yeast 
Saccharomyces cerevisiae have been valuable models for studying the 
cellular response toward different antitumor drugs or radiation [25,26]. 
Interestingly, the previous findings have reported yeast as a perfect 

model to screen radiosensitizer or radioprotector candidates for clinical 
use [27,28]. One of the yeast model findings suggests that histone 
acetyltransferasecan (HAT) be a therapeutic target for radiosensitization 
by targeting HAT with inhibitors that sensitize wild-type yeast to 
radiation [29]. In another study, the budding yeast S. cerevisiae was 
used to evaluate the radiosensitizing efficacy of AK 2123 (sanazole). 
The result suggested that the treatment of sanazole sensitized yeast 

Figure 3: Different assays to screen radiosensitizer and radioprotector. Various in vitro and in vivo assays could be adapted to evaluate the effects of potential 
radiation-modifiers.

Figure 2: High-throughput screening of radiosensitizer using live/dead staining. The cultured cells are transferred to a multiwell plate. Then the cells are treated 
with drug alone, radiation alone, and both drug and radiation. One condition remains as the untreated condition. After a certain time point, the cells are stained 

with live/dead staining and analyzed using a high content analyser.
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cells toward radiation by increasing DNA damage [30]. In a similar 
study using S. cerevisiae, cisplatin was reported as a radiosensitizer by 
inhibiting DNA damage repair caused by radiation [31]. Nemavarkar 
et al. used the budding yeast S. cerevisiae, and antioxidants such as 
disulfiram, glutathione, curcumin, quercetin, rutin, and ellagic acid 
were found as radioprotectors as these protected normal cells from 
gamma radiation-induced injury [32]. Hence, the above experimental 
evidence suggests the yeast model’s reliability in screening potential 
radiosensitizers and radioprotectors for clinical use.

3.2. Zebrafish Model System
Zebrafish (Danio rerio) embryos have been proved as a distinct vertebrate 
model to screen therapeutic agents. It has gained popularity among 
researchers because of its close genetic relationship to humans, optical 
clarity in imaging, short embryonic development, and abundance and 
accessibility of getting embryos within a short time [33]. The transparent 
visualization of the radiation effect in this model system makes it more 
convenient to check potential radioprotectors and radiosensitizers [34,35]. 
For a long time, zebrafish and their embryos have been used to develop 
xenograft models using established cancer cell lines or combining 
the tumor and stromal tissues together, which helps to study rapid 
drug screening [36]. The Zebrafish model helps in the assessment of 
radioprotector and radiosensitizer from various analyses [10].

Geiger et al. verified the radioprotective effect of amifostine using the 
zebrafish model. Zebrafishes were used to assess the radiation damage 
at different developmental stages, and different doses of radiation and 
amifostine were found to improve the reduction in brain volume and 
hypocellularity and disorganization of retinal layers than only radiated 
embryos [37]. McAleer and colleagues documented amifostine 
as a radioprotector and AG1478, a tyrosine kinase inhibitor, as a 
radiosensitizer using the zebrafish model [38]. Their study revealed that 
the pre-treatment of 2.5–5 μM AG1478 enhanced embryonic death and 
significant embryonic disorder along with 4 Gy X-ray radiation at 72 
hpf. Another study observed that the treatment of zebrafish embryos with 
flavopiridol, a cyclin D1 inhibitor, enhanced the radiation sensitivity of 
zebrafish embryos [39]. In the recent past, one of our studies reported 
fluvastatin as a potential radiosensitizer using zebrafish embryos [17].

The zebrafish larva xenografts model has emerged as a promising 
in vivo model to test therapeutic agents for cancer treatment [40]. 
Zebrafish models have also been used for in vivo radiotherapy studies. 
For example, using the U251 neuroblastoma zebrafish xenograft model, 
4′-bromo-3′nitropropiophenone (NS-123) was reported as a potential 
radiosensitizer for glioblastoma [41]. Cotreatment with NS-123 and 
irradiation drastically reduced the numbers of surviving tumor cells 
in zebrafish xenografts which were successfully reproduced in murine 
xenograft models. In another similar study, Geiger et al. used U251 
human glioma zebrafish xenograft model and reported temozolomide, 
a DNA-methylating agent as a potent radiosensitizer without 
affecting zebrafish embryonic development [42]. Gnosa et al. used 
an embryonic zebrafish xenograft model to confirm the importance of 
astrocyte elevated gene 1 in the invasion and migration of colon cancer 
cells as well as radiation-mediated invasion in vivo [43]. Therefore, 
the accumulated findings emphasize the importance of the zebrafish 
model in the field of radiation.

Using zebrafish embryos, the radioprotective effect of DF-1 
(fullerene nanoparticle) was assessed at systemic and organ-specific 
levels. Zebrafish embryos for radioprotector screening were further 
validated [44]. In these recent times, the radioprotective effect of 
Kelulut honey was validated in zebrafish embryos and radioprotection 

was conferred by increasing the survival of embryos, protecting organ-
specific damage, and exhibiting cellular protection by reducing DNA 
damage and expression of apoptosis markers [45]. Similarly, the 
radioprotective effect of polymers was checked on zebrafish embryos 
in a high throughput screening combining polymer chemistry through 
Hantzsch’s reaction. The polymers were found to have enormous 
protective potential, even superior to amifostine, mainly by protecting 
cellular DNA from radiation damage [46].

3.4. Mouse Model
An in vivo cancer study model should satisfy several notable features 
of human tumor development or pathophysiology, particularly for 
radiation therapy studies. [47]. Moreover, tumor initiation steps 
are essential for experimental feasibility and reproducibility, and 
this consideration is especially important to observe the impact of 
radiation on the tumor microenvironment [48]. In a previous study, 
using a mouse osteosarcoma model, histone deacetylase inhibition was 
identified as a radiosensitizing strategy in cancer radiotherapy [49]. 
Doiron et al. using a mouse xenograft model showed that intratumoral 
release of thymidine analog bromodeoxyuridine (BrdUrd) sensitized 
cancer toward radiation [50]. Liu et al. compared the radiosensitizing 
properties of silver-nanoparticle (AgNPs) and gold nanoparticles 
(AuNPs). They evaluated the radiosensitizing efficacy of AuNPs and 
AgNPs in an orthotopic mouse brain tumor model using U125 cells 
[51]. Our study used the UN-KC-6141 syngeneic mouse subcutaneous 
pancreatic tumor model and found that fluvastatin sensitized pancreatic 
cancer toward radiation and inhibited radiation-induced fibrosis [17]. 
Our study advocates that the mouse model can be used not only for 
radiation modifiers but also to check the side effects of radiation like 
fibrosis in tumor stroma.

Similarly, several types of research have been undertaken to validate 
radioprotective candidates in mice models. Kunwar et al. using a 
mouse model suggested melanin as a potent radioprotector [52]. The 
study by Feng et al. proclaims the importance of lactoferrin (LF) as a 
radioprotector using male BALB/c mice. In this study, a significant 
increase in the survival ratio of mice in the combination group (IR + 
LF) was noticed when compared to only the radiation group between 
days 15 and 30 after irradiation. Importantly, combination treatment 
reduced DNA damage in comparison to only radiated mice [53]. Nair 
et al. investigated the radioprotective effect of natural polyphenol, 
and gallic acid (3,4,5-trihydroxy benzoic acid, GA) in Swiss albino 
mice and found that treatment of GA (100  mg/kg body weight) along 
with radiation reduced DNA damage in mouse bone marrow cells, 
splenocytes, and peripheral leukocytes revealed by comet assay [54]. 
The GA treatment protected the cells from radiation by preventing 
radiation-induced suppression of the antioxidant enzyme, glutathione 
peroxidases, and non-protein thiol glutathione [54]. In another study, 
an increase in the survival of irradiated mice was noticed when the 
mice were treated orally with 17-dimethylaminoethylamino-17-
demethoxygeldanamycin (17-DMAG, 10  mg/kg) before radiation 
whereas post-administered 17-DMAG failed to produce such results 
[55]. Several investigators preferred inbred, hybrid, and outbred 
mice strains to study the effect of radiation [56]. The effect of 
radioprotectors and sensitizers has been well characterized in C57BL/6 
and C3H/HeN strains of mice model, and both the strains have shown 
detectable differences in several tissues’ responses post-irradiation and 
drug treatment [56]. Yet, dozens of other essential mice strains and 
genetically modified breeds of mice have also been established for this 
purpose. Other used and important mice models are C3H/HE, C3H/HeJ, 
BALB/C and, B6D2F1/J [56]. In general, the use of different strains 
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of the mouse can suggest the potential of radioprotectors along with 
their impact on the immune system. The xenograft model has emerged 
as a workhorse model in both the industry and research sectors [57]. 
Although xenograft models are very simple to study, it only satisfies 
some of the common features of the tumor microenvironment, for 

which it lacks predictive value for clinical approach [57]. In contrast, 
genetically engineered mouse models provide many similar features to 
conduct experiments designed for radiobiological studies. Different in 
vivo models used for screening of radiosensitizers and radioprotectors 
are given in Figure 4.

Figure 4: Different in vivo models used for screening of radiosensitizer and radioprotectors. (a) Yeast cells exposed to radiation in presence of radioresponse 
modulators facilitates evaluating their effects through estimation of levels of cellular deoxyribonucleic acid damage and cell death, (b) the zebrafish embryos are 
useful to evaluate effects of radio-response modulators based on their effects on radiation-induced morphological changes and/or viability and (c) experimental 

tumor bearing mice helps to evaluate radiosensitizers based on their effects on overall tumor growth.

c

b

a
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Although every model has its advantages and limitations, each has 
significantly contributed to pre-clinical studies in the radiation filed. 
Therefore, advancement of preclinical in vitro and in vivo models 
will assist in the identification and validation of radiosensitizers/
radioprotectors that can be used in clinical trials. Different in vitro 
and in vivo models with their pros and cons are described in Table 1. 
Several zebrafish models including different strains of normal fishes, 
genetic mutants, and xenograft models are recently used in radiation 
studies; however, a reporter based zebrafish model specifically 
showing the effect of radiation on DNA damage and repair has not 
been extensively explored yet. Thus, considering the effective use 
of zebrafishes in radiation studies and the need of molecular level 
detection of radiation effects, the need of reporter zebrafishes is 
highly warranted.

4. CONCLUSION

Radiotherapy is an essential cancer treatment therapy, and it is 
often combined with cytotoxic drugs to enhance radiation efficacy. 
The enhancement of radiation efficacy can be achieved by targeting 
cancer cells and protecting normal cells from radiation effects. 
Both radiosensitizers and radioprotectors play a key role in the 
field of radiation biology. Thus, it is essential to identify a potent 
radiation modifier that needs suitable models. In this review, we 
have discussed multiple models which have been used to screen 
radiosensitizers and radioprotectors previously. Every model 
system has pros and cons depending on the conditions [Table 1]. 
The models discussed here can be of utmost help to researchers to 
find out the best model to screen the radiation modifiers. As all the 
model systems have few drawbacks, searching for a new model for 

Table 1: Advantages and limitations of different models used for the screening of radiosensitizers and radioprotectors

Model Type Models Pros Cons

In vitro model Organoid/3D 
culture model

1. �Provides better in vivo tumor architecture and it is a 
convenient model to study the impact of cellular interaction in 
radiosensitization/radioprotection comparison to 2D culture systems

2. �Patient-derived organoids are suitable models for rapid screening of 
multiple drugs as radiosensitizer/radioprotector

3. �Allows cell matrix interaction and some organoids have successfully 
recapitulated the tumor scenario of patients when allowed to grow in 
mice models

1. �Experiments involving organoids to model tumor 
xenografts need repeated collection of tumor tissues

2. �Organoids have also been reported to not fully 
recapitulate the tumor scenario or tissue/organ 
peculiarities exhibited in vivo

3. �Organoid culture is relatively costly and requires 
significant resources and time. Organoids from 
many tissues and for multiple diseases or organs 
have not been fully developed which limits its use

Cell lines 1. Quick multiplication
2. Relatively cheaper than other models
3. Readily available and easy handling
4. �Genetic manipulation study can be easily approached to check the 

effect of radiation along with radiosensitizers or radioprotectors
5. Can be used for high throughput drug screening for radiation study
6. �Effect of radiosensitizers or radioprotectors can be validated in a 

short period of time
7. �The mechanism underlying radioresistance and radiosensitization 

can be validated

1. Lacks cellular diversity and interaction
2. Lack of involvement of immune cells
3. Cell-matrix interaction can’t be validated
4. �The impact of different cells like fibroblasts, 

immune cells, and other normal cells on 
radioresistance and radiosensitization can’t be 
validated

In vivo model Yeast 1. Simple growth
2. Rapid cell division
3. Easy and economic
4. Genome similarities with higher eukaryote
5. �Mutation study can be undertaken to check the effect of radiation 

along with radiosensitizers or radioprotectors and to decipher the 
role of individual proteins

1. Presence of a cell wall reduces drug permeability
2. �Yeast model can’t dissect tissue-specific response 

to radiosensitizers or radioprotectors
3. �Yeast is not complex like higher eukaryotes 

which limits its use to validate different 
mechanisms involved in radiosensitization or 
radioprotection

Zebrafish 1. Low cost for zebrafish culture
2. Optical clarity to observe the effect of radiation along with drug
3. �Short embryonic development allows to assess the effect of 

radiosensitizers or radioprotectors within a short period of time
4. Possibility of getting a good number of embryos within a short time
5. Minimum parental care
6. �Tumor xenografts have been developed in different zebrafish strains 

to be used for screening of radiosensitizers

1. Evolutionary distantly related to human
2. Physiology is not identical to human
3 Anatomically differs from higher vertebrates
4. �Presence of chorion up to 48 hpf delays drug 

permeability

Mouse 1. �Availability of different genetically modified mouse (GEM) models 
helps to understand the molecular aspect of radiation along with 
drugs in different genetic backgrounds

2. �Well characterized syngeneic and xenograft tumor mouse models 
provide reproducible data and allow real time monitoring and 
imaging of tumors in animals

3. �Use of patient derived xenograft models in mice is helpful 
for identification of radiosensitizers for individual patients 
(personalised)

4. Helps to study radiation-associated toxicity

1. �The xenograft mouse is not exactly similar to the 
human tumor microenvironment

2. �The component of the immune system and 
vasculature of the tumor is mouse origin in 
patient derived xenograft (PDX) mouse models, 
so does not reflect human situation

3. �In a GEM mouse model, the tumor and its 
microenvironment are of mouse origin that 
doesn’t fully mimic human tumor origin and 
development. The cost of GEM mouse is also a 
limiting factor
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screening radiosensitizer and radioprotector is highly required in 
the near future.
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