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Radiation therapy has emerged as a mainstay therapeutic approach for cancer therapy. Radiation therapy includes
beams of intense energy that destroy cancer cells by targeting their genetic material. Radiation treatment is a localized
therapy that can be used to shrink the tumor for which it will be eligible for surgery. Chemoradiation combination
is often used to inhibit the rapid proliferation and metastasis of cancer. Although radiation therapy is an important
therapeutic modality for cancer, its adverse effect on normal cells and unwanted side effects cannot be ignored.
Therefore, with the increase in cancer prevalence, the clinical management of radiation therapy has become a major
challenge in cancer therapy. The challenges in radiation therapy can be addressed by identifying novel radiation
modifiers that can potentiate the low dose of radiation on cancer, protect normal cells from radiation, and suppress
radiation-induced side effects. The search for radiation modifiers needs a suitable model system through which
potential radiosensitizers and radioprotectors can be screened and validated to be used in the radiation field. Keeping
the importance of a suitable model in the clinical management of radiation therapy, we have discussed different
models in this review that can be used to screen radiation modifiers.

1. INTRODUCTION

Radiation therapy is one of the widely accepted therapies for the
majority of cancers that uses beams of intense energy to kill cancer
cells and shrink the tumor. High-energy radiation damages the genetic
material of cells and inhibits their further proliferation and division [1].
Ionizing radiation can cause deoxyribonucleic acid (DNA) damage
directly or indirectly by producing free radicals [Figure 1]. lonizing
radiation generates free radicals and reactive oxygen species leading
to DNA damage followed by apoptosis [2]. DNA damages caused by
the ionizing radiation activate DNA damage repair systems and failure,
which leads to apoptosis [Figure 1]. lonizing radiation damages the
cancer cells and severely affects normal cells. Hence, the purpose
of radiation therapy is to enhance the efficacious use of radiation
against abnormal cancer cells with low doses of radiation so that the
surrounding normal cells are least affected [3]. Apart from radiation
therapy, many imaging modalities used for various disease diagnosis
include ionizing radiation to generate images that cause damage to
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the normal cells [4]. Thus, potent radioprotectors for normal cells or
radiosensitizers for cancer cells have gained much attention to address
radiation-induced challenges depending on the need. The screening
procedure of potent radioprotector/radiosensitizer molecules demands
a perfect model that may be a cell-based model or an animal model.

The demand for animal models has sharply increased to screen
potential radioprotectors and radiosensitizers to elucidate the effect
of these molecules in different physiological and genetic setups. The
search to explore suitable in-vitro and in-vivo models is to be used to
screen radiation modifiers and understand the effect of radiation and
modifiers in different physiological conditions with different genetic
setups. Here, we summarized many of the major other model systems
used to assess radioprotectors and radiosensitizers central to radiation
therapy or radiation exposure.

2.IN VITRO MODELS
2.1. Organoid/3D Culture Model

Organoids are three-dimensional tissue-resembling structures that
provide better in vivo tumor architecture and are a convenient model
for observing cell-cell interaction in comparison to 2D culture
systems [5]. Patient-derived organoids (PDOs) are suitable models for
rapid testing of multiple drugs and radiation than the time-consuming
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Figure 1: Mechanism of ionizing radiation (IR) induced cell death. IR causes deoxyribonucleic acid (DNA) damage directly or indirectly through generation of

reactive free radicals. Failure in DNA repair mechanisms induces cell death.

process of respective patient-derived xenograft (PDX) generation [6].
Hubert et al. demonstrated the potential of glioblastoma organoids
to be used as a screening tool to identify radiosensitizers and they
found the heterogeneous response of organoids toward radiation
[7]. Linkous et al. demonstrated that organoids combining healthy
cerebral tissue and glioblastoma cells called GLICO (cerebral
organoid glioma) show radioresistance compared to 2D culture [8].
Park et al. suggested valproic acid acted as both radiosensitizer and
radioprotector using different species and organ-specific organoid
culture as valproic acid protected both mouse and human intestinal
organoids whereas sensitized human colorectal cancer organoids
toward radiation [9].

Just like other models, organoid models also have some shortcomings.
Experiments involving organoids to model tumor xenografts need a
repeated collection of tumor tissues or require a replenishable source
of tissues for experimental replicates or large-scale culture in the
form of organoids. However, this problem can be addressed with
PDOs, which are derived from PDXs generated in animal models
thus, repeated patient biopsy and tumor tissue collection will not be
required [10].

2.2. Cell-based High-throughput Screening

Cell-based assays that represent the multiplication capacity of tumor
cells (i.e., clonogenic and survival) and their DNA damage repair
activity have been extensively used to characterize the effects of
radiosensitizing drugs. Although standard cell culture (2D) condition
fails to recapitulate tumor architecture or microenvironmental
gradients, it is beneficial for high-throughput screening of multiple
drugs within a short period. Targeting a specific pathway or specific
molecule is the key to screening the radiosensitizer and radioprotector
by cell-based high-throughput screening. Among the targeted

pathways are DNA damage and repair pathway [11,12], PI3K-AKT
Pathway [13,14], Mevalonate pathway [15-17], Mitogen-activated
protein kinase (MAPK) Pathway [18,19], and NFkB Pathway [20-22]
are the most highlighted pathways to screen radiosensitizer or
radioprotector by cell-based screening. High-throughput screening
of radiosensitizer and radioprotector can also be done through live
dead staining, as described in Figure 2. One previous study reported a
nanoparticle composed of metallic elements Au and Pt (Au-pt-NPS) as
a radiosensitizer in murine breast cancer cells line 4T using live dead
staining [23].

The most affordable, routinely used and generally accepted in-vitro
model is the 2D monolayer cell culture because the culture and
experiment design is cost-effective, and the cellular behavior on flat
and inflexible surfaces can be easily observed. However, a cell culture
system in a 2-D fashion holds certain limitations, majorly a structural
3D organization enabling extracellular matrix adhesion is lacking.
Cell-cell communication and growth factor signaling are altered
and can differ from normal processes. Because of these restrictions,
cells growing in a 2D monolayer exhibit unnatural growth kinetics
and sometimes aberrant functions and behavior. Different assays are
performed to screen the radiosensitizers and radioprotectors in cell
culture [Figure 3].

In a study by Ravi et al., small molecule drugs including RADO001,
MK2206, BEZ235, MLNO0128, and MEK162 were screened using
U87 glioblastoma spheroid and noticed that MEK 162, the MAPK-
targeting agent enhanced the radiosensitivity of glioblastoma
spheroids. MEK162 downregulated and dephosphorylated the cell-
cycle checkpoint proteins CDK1/CDK2/WEE1 and DNA damage
response proteins p-ATM/p-CHK2, suggesting the persistence of
prolonged DNA damage [24].
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3.IN VIVO MODELS

3.1. Yeast Model System

The fission yeast Schizosaccharomyces pombe and the budding yeast
Saccharomyces cerevisiae have been valuable models for studying the
cellular response toward different antitumor drugs or radiation [25,26].
Interestingly, the previous findings have reported yeast as a perfect

model to screen radiosensitizer or radioprotector candidates for clinical
use [27,28]. One of the yeast model findings suggests that histone
acetyltransferasecan (HAT) be a therapeutic target for radiosensitization
by targeting HAT with inhibitors that sensitize wild-type yeast to
radiation [29]. In another study, the budding yeast S. cerevisiae was
used to evaluate the radiosensitizing efficacy of AK 2123 (sanazole).
The result suggested that the treatment of sanazole sensitized yeast
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cells toward radiation by increasing DNA damage [30]. In a similar
study using S. cerevisiae, cisplatin was reported as a radiosensitizer by
inhibiting DNA damage repair caused by radiation [31]. Nemavarkar
et al. used the budding yeast S. cerevisiae, and antioxidants such as
disulfiram, glutathione, curcumin, quercetin, rutin, and ellagic acid
were found as radioprotectors as these protected normal cells from
gamma radiation-induced injury [32]. Hence, the above experimental
evidence suggests the yeast model’s reliability in screening potential
radiosensitizers and radioprotectors for clinical use.

3.2. Zebrafish Model System

Zebrafish (Danio rerio) embryos have been proved as a distinct vertebrate
model to screen therapeutic agents. It has gained popularity among
researchers because of its close genetic relationship to humans, optical
clarity in imaging, short embryonic development, and abundance and
accessibility of getting embryos within a short time [33]. The transparent
visualization of the radiation effect in this model system makes it more
convenient to check potential radioprotectors and radiosensitizers [34,35].
For a long time, zebrafish and their embryos have been used to develop
xenograft models using established cancer cell lines or combining
the tumor and stromal tissues together, which helps to study rapid
drug screening [36]. The Zebrafish model helps in the assessment of
radioprotector and radiosensitizer from various analyses [10].

Geiger et al. verified the radioprotective effect of amifostine using the
zebrafish model. Zebrafishes were used to assess the radiation damage
at different developmental stages, and different doses of radiation and
amifostine were found to improve the reduction in brain volume and
hypocellularity and disorganization of retinal layers than only radiated
embryos [37]. McAleer and colleagues documented amifostine
as a radioprotector and AG1478, a tyrosine kinase inhibitor, as a
radiosensitizer using the zebrafish model [38]. Their study revealed that
the pre-treatment of 2.5-5 WM AG1478 enhanced embryonic death and
significant embryonic disorder along with 4 Gy X-ray radiation at 72
hpf. Another study observed that the treatment of zebrafish embryos with
flavopiridol, a cyclin D1 inhibitor, enhanced the radiation sensitivity of
zebrafish embryos [39]. In the recent past, one of our studies reported
fluvastatin as a potential radiosensitizer using zebrafish embryos [17].

The zebrafish larva xenografts model has emerged as a promising
in vivo model to test therapeutic agents for cancer treatment [40].
Zebrafish models have also been used for in vivo radiotherapy studies.
For example, using the U251 neuroblastoma zebrafish xenograft model,
4'-bromo-3'nitropropiophenone (NS-123) was reported as a potential
radiosensitizer for glioblastoma [41]. Cotreatment with NS-123 and
irradiation drastically reduced the numbers of surviving tumor cells
in zebrafish xenografts which were successfully reproduced in murine
xenograft models. In another similar study, Geiger ef al. used U251
human glioma zebrafish xenograft model and reported temozolomide,
a DNA-methylating agent as a potent radiosensitizer without
affecting zebrafish embryonic development [42]. Gnosa et al. used
an embryonic zebrafish xenograft model to confirm the importance of
astrocyte elevated gene 1 in the invasion and migration of colon cancer
cells as well as radiation-mediated invasion in vivo [43]. Therefore,
the accumulated findings emphasize the importance of the zebrafish
model in the field of radiation.

Using zebrafish embryos, the radioprotective effect of DF-1
(fullerene nanoparticle) was assessed at systemic and organ-specific
levels. Zebrafish embryos for radioprotector screening were further
validated [44]. In these recent times, the radioprotective effect of
Kelulut honey was validated in zebrafish embryos and radioprotection

was conferred by increasing the survival of embryos, protecting organ-
specific damage, and exhibiting cellular protection by reducing DNA
damage and expression of apoptosis markers [45]. Similarly, the
radioprotective effect of polymers was checked on zebrafish embryos
in a high throughput screening combining polymer chemistry through
Hantzsch’s reaction. The polymers were found to have enormous
protective potential, even superior to amifostine, mainly by protecting
cellular DNA from radiation damage [46].

3.4. Mouse Model

An in vivo cancer study model should satisfy several notable features
of human tumor development or pathophysiology, particularly for
radiation therapy studies. [47]. Moreover, tumor initiation steps
are essential for experimental feasibility and reproducibility, and
this consideration is especially important to observe the impact of
radiation on the tumor microenvironment [48]. In a previous study,
using a mouse osteosarcoma model, histone deacetylase inhibition was
identified as a radiosensitizing strategy in cancer radiotherapy [49].
Doiron et al. using a mouse xenograft model showed that intratumoral
release of thymidine analog bromodeoxyuridine (BrdUrd) sensitized
cancer toward radiation [50]. Liu et al. compared the radiosensitizing
properties of silver-nanoparticle (AgNPs) and gold nanoparticles
(AuNPs). They evaluated the radiosensitizing efficacy of AuNPs and
AgNPs in an orthotopic mouse brain tumor model using U125 cells
[51]. Our study used the UN-KC-6141 syngeneic mouse subcutaneous
pancreatic tumor model and found that fluvastatin sensitized pancreatic
cancer toward radiation and inhibited radiation-induced fibrosis [17].
Our study advocates that the mouse model can be used not only for
radiation modifiers but also to check the side effects of radiation like
fibrosis in tumor stroma.

Similarly, several types of research have been undertaken to validate
radioprotective candidates in mice models. Kunwar et al. using a
mouse model suggested melanin as a potent radioprotector [52]. The
study by Feng et al. proclaims the importance of lactoferrin (LF) as a
radioprotector using male BALB/c mice. In this study, a significant
increase in the survival ratio of mice in the combination group (IR +
LF) was noticed when compared to only the radiation group between
days 15 and 30 after irradiation. Importantly, combination treatment
reduced DNA damage in comparison to only radiated mice [53]. Nair
et al. investigated the radioprotective effect of natural polyphenol,
and gallic acid (3,4,5-trihydroxy benzoic acid, GA) in Swiss albino
mice and found that treatment of GA (100 mg/kg body weight) along
with radiation reduced DNA damage in mouse bone marrow cells,
splenocytes, and peripheral leukocytes revealed by comet assay [54].
The GA treatment protected the cells from radiation by preventing
radiation-induced suppression of the antioxidant enzyme, glutathione
peroxidases, and non-protein thiol glutathione [54]. In another study,
an increase in the survival of irradiated mice was noticed when the
mice were treated orally with 17-dimethylaminoethylamino-17-
demethoxygeldanamycin (17-DMAG, 10 mg/kg) before radiation
whereas post-administered 17-DMAG failed to produce such results
[55]. Several investigators preferred inbred, hybrid, and outbred
mice strains to study the effect of radiation [56]. The effect of
radioprotectors and sensitizers has been well characterized in C57BL/6
and C3H/HeN strains of mice model, and both the strains have shown
detectable differences in several tissues’ responses post-irradiation and
drug treatment [56]. Yet, dozens of other essential mice strains and
genetically modified breeds of mice have also been established for this
purpose. Other used and important mice models are C3H/HE, C3H/Hel,
BALB/C and, B6D2F1/J [56]. In general, the use of different strains



of the mouse can suggest the potential of radioprotectors along with
their impact on the immune system. The xenograft model has emerged
as a workhorse model in both the industry and research sectors [57].
Although xenograft models are very simple to study, it only satisfies
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which it lacks predictive value for clinical approach [57]. In contrast,
genetically engineered mouse models provide many similar features to
conduct experiments designed for radiobiological studies. Different in
vivo models used for screening of radiosensitizers and radioprotectors
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Table 1: Advantages and limitations of different models used for the screening of radiosensitizers and radioprotectors

Model Type

In vitro model

Models

culture model

w

Cell lines

In vivo model  Yeast

Zebrafish 1.

W

>

N W

—_—

Mouse

W

Organoid/3D 1.

B =

nkhwN =

Pros

Provides better in vivo tumor architecture and it is a
convenient model to study the impact of cellular interaction in
radiosensitization/radioprotection comparison to 2D culture systems

. Patient-derived organoids are suitable models for rapid screening of

multiple drugs as radiosensitizer/radioprotector

. Allows cell matrix interaction and some organoids have successfully

recapitulated the tumor scenario of patients when allowed to grow in
mice models

Quick multiplication
Relatively cheaper than other models

. Readily available and easy handling

Genetic manipulation study can be easily approached to check the
effect of radiation along with radiosensitizers or radioprotectors
Can be used for high throughput drug screening for radiation study
Effect of radiosensitizers or radioprotectors can be validated in a
short period of time

The mechanism underlying radioresistance and radiosensitization
can be validated

Simple growth

Rapid cell division

Easy and economic

Genome similarities with higher eukaryote

. Mutation study can be undertaken to check the effect of radiation

along with radiosensitizers or radioprotectors and to decipher the
role of individual proteins

Low cost for zebrafish culture
Optical clarity to observe the effect of radiation along with drug

. Short embryonic development allows to assess the effect of

radiosensitizers or radioprotectors within a short period of time
Possibility of getting a good number of embryos within a short time

. Minimum parental care
. Tumor xenografts have been developed in different zebrafish strains

to be used for screening of radiosensitizers

. Availability of different genetically modified mouse (GEM) models

helps to understand the molecular aspect of radiation along with
drugs in different genetic backgrounds

. Well characterized syngeneic and xenograft tumor mouse models

provide reproducible data and allow real time monitoring and
imaging of tumors in animals

. Use of patient derived xenograft models in mice is helpful

for identification of radiosensitizers for individual patients
(personalised)

. Helps to study radiation-associated toxicity

Cons

1. Experiments involving organoids to model tumor
xenografts need repeated collection of tumor tissues

2. Organoids have also been reported to not fully
recapitulate the tumor scenario or tissue/organ
peculiarities exhibited in vivo

3. Organoid culture is relatively costly and requires
significant resources and time. Organoids from
many tissues and for multiple diseases or organs
have not been fully developed which limits its use

1. Lacks cellular diversity and interaction

2. Lack of involvement of immune cells

3. Cell-matrix interaction can’t be validated

4. The impact of different cells like fibroblasts,
immune cells, and other normal cells on
radioresistance and radiosensitization can’t be
validated

—_

. Presence of a cell wall reduces drug permeability

2. Yeast model can’t dissect tissue-specific response
to radiosensitizers or radioprotectors

. Yeast is not complex like higher eukaryotes
which limits its use to validate different
mechanisms involved in radiosensitization or
radioprotection

w

1. Evolutionary distantly related to human

2. Physiology is not identical to human

3 Anatomically differs from higher vertebrates

4. Presence of chorion up to 48 hpf delays drug
permeability

1. The xenograft mouse is not exactly similar to the
human tumor microenvironment

2. The component of the immune system and
vasculature of the tumor is mouse origin in
patient derived xenograft (PDX) mouse models,
so does not reflect human situation

3. In a GEM mouse model, the tumor and its
microenvironment are of mouse origin that
doesn’t fully mimic human tumor origin and
development. The cost of GEM mouse is also a
limiting factor

Although every model has its advantages and limitations, each has
significantly contributed to pre-clinical studies in the radiation filed.
Therefore, advancement of preclinical in vitro and in vivo models
will assist in the identification and validation of radiosensitizers/
radioprotectors that can be used in clinical trials. Different in vitro
and in vivo models with their pros and cons are described in Table 1.
Several zebrafish models including different strains of normal fishes,
genetic mutants, and xenograft models are recently used in radiation
studies; however, a reporter based zebrafish model specifically
showing the effect of radiation on DNA damage and repair has not
been extensively explored yet. Thus, considering the effective use
of zebrafishes in radiation studies and the need of molecular level
detection of radiation effects, the need of reporter zebrafishes is
highly warranted.

4. CONCLUSION

Radiotherapy is an essential cancer treatment therapy, and it is
often combined with cytotoxic drugs to enhance radiation efficacy.
The enhancement of radiation efficacy can be achieved by targeting
cancer cells and protecting normal cells from radiation effects.
Both radiosensitizers and radioprotectors play a key role in the
field of radiation biology. Thus, it is essential to identify a potent
radiation modifier that needs suitable models. In this review, we
have discussed multiple models which have been used to screen
radiosensitizers and radioprotectors previously. Every model
system has pros and cons depending on the conditions [Table 1].
The models discussed here can be of utmost help to researchers to
find out the best model to screen the radiation modifiers. As all the
model systems have few drawbacks, searching for a new model for



100 Mohapatra, et al.: Journal of Applied Biology & Biotechnology 2023;11(2):94-101

screening radiosensitizer and radioprotector is highly required in
the near future.
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