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Atrazine is a controversial and widely used herbicide to control weeds in both agriculture fields and residential
sites. Instead of adopting manual weed control, atrazine is being used by people who resulted in a negative impact
on the environment. Therefore, removing atrazine in soil has received considerable attention. Microorganisms have

terrific potential for degradation of hazardous pollutants which always motivates continuous bioremediation-directed
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soil and water in the future.

research. The objective of this review is to identify, analyze, and compile all the studies on atrazine—degrading
microorganisms. Particular emphasis is made on the atrazine degradation pathways, a diverse group of bacteria,
fungi, and yeast along with the genetics and enzymology aspects of degradation. The present review may act as a
source of information for developing a cheaper and microbiological method for rescuing the atrazine-contaminated

1. INTRODUCTION

The widespread and long-term use of chemicals including atrazine
(2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) ~ herbicide
in both agriculture and non-agricultural field is still a severe concern
today. These compounds have the potential to runoff and leach through
the soil leading to surface and groundwater contamination [1]. Most
attentively, atrazine can cause serious human health problems such as
endocrine disruption, central nervous system, reproductive system,
immune system, and carcinogenic disorders [2]. Atrazine inhibits
photosynthesis efficiency, superfluous energy dissipation in electron
transport, and destroys cellular structure which resulted in the inhibition
of growth in algae [3]. Moreover, atrazine has a moderately persistent,
long half-life, and high mobility in soil than some other herbicides.
Due to its high toxicity, persistence, and mobility in the environment,
atrazine was prohibited by the European Union in 2004 [4], but it
is still one of the most extensively used herbicides against weeds
today in several countries, for example, annually 23 million kg in the
USA [5], 27 million kg in Brazil, 16 million kg in Argentina [6], and
3 million kg in India [1]. Therefore, for a safe and sound environment,
the rapid abolition of atrazine from the contaminated site has become
very crucial.
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Microorganisms have tremendous potential for bioremediation and
herbicide degradation due to the presence of various catalytic enzymes
[7]. The presence of such characteristics, microorganisms can degrade
atrazine into different metabolites that act as a source of energy for
other organisms. Many strains have been reported for their abilities in
atrazine mineralization including members of the genera Pseudomonas,
Bacillus, Burkholderia, Arthrobacter, Enterobacter, and Norcardioides
[8-11]. In addition, several fungal species belonging to the genera
Fusarium, Aspergillus, Penicillium, and Pleurotus have also been
isolated and studied for degradation of atrazine [2,12,13]. Therefore,
microorganisms can be chosen for easy and better strategies for the
rescue of atrazine polluted sites ecofriendly.

In recent years, several review papers have been published on the
degradation of atrazine in different aspects such as the impact of
atrazine in the aquatic environment, technologies used to reduce the
toxicity of atrazine as well as advantage and disadvantages [14,15].
In 2021, a similar review was published by Abd Rani et a/. [16] that
focused on only bacteria while fungi and yeast are neglected. In
contrast, this review is a humble attempt to accumulate all the microbes
associated with atrazine degradation in a single article that has already
been gathered through vigorous research. This article also presents
the clear degradation pathways along with the genes and enzymes
involved in atrazine-degradation. This review will help researchers to
develop a cost-effective and efficient microbiological technology for
the remediation of atrazine-contaminated soil.

© 2023 Mili, et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlike Unported

License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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2. DEGRADATION OF ATRAZINE

2.1. Pathways of Atrazine-degradation

Degradation pathways of atrazine occur through three major different
pathways that channel into cyanuric acid metabolism [1]. The
degradation pathway is generally initiated by two enzymes, that is,
atrazine chlorohydrolase and atrazine monooxygenase. The first
pathway is initiated by the enzyme atrazine chlorohydrolase catalyzes
the hydrolytic dechlorination of atrazine and produces hydroxyatrazine
(HA) which is further converted into N-Isopropylammelide by the
activity of atrazine ethylaminohydrolase and finally into Cyanuric acid
later on by N-isopropylammelide isopropylaminohydrolase [17].

Thesecondand third pathways arebeginning withatrazinemonooxygenase
activity that degrades the atrazine into Deisopropylatrazine and
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Cyanuric acid. In the third pathway, Deethylatrazine is transformed into
deisopropyldeethylatrazine by deethylatrazine monooxygenase which is
then converted into cyanuric acid through several steps [18] [Figure 1].

2.2. Atrazine-degrading Microorganisms

A large range of microorganisms involved in the degradation of
atrazine leads to the production of metabolites while some other
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Figure 1: Atrazine-degradation pathways. a=atrazine chlorohydrolase, b=atrazine monooxygenase, c=Hydroxydechloatrazine ethylaminohydrolase,

d=N-isopropylammelide isopropylamido hydrolase, e=s-triazine hydrolase, f=2,4-Dihydroxy-6-(N’-ethyl)amino-1,3,5-triazine hydrolase, g=ethylaminohydrolase,

h=deethylatrazine monooxygenase, i=s-triazine hydrolase, j=hydroxychloroatrazine ethyaminohydrolase, k=N-isopropylammelide isopropylaminohydrolase.
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microorganisms are not limited to only bacteria and fungi, but many
microalgae; for example, Chlamydomonas mexicana, Chlorella sp.,
and Selenastrum capricornutum have also been reported by several
researchers [20,21].

2.2.1. Bacteria

Bacteria are the most widely reported microorganism for atrazine
elimination from polluted sites [22]. As the potential machines for
bioremediation, a large variety of strains of Gram-positive and Gram-
negative bacteria that degrade atrazine have been isolated and identified.
Atrazine degrading bacteria produce various catalytic enzymes that
break down atrazine (i.e., atrazine chlorohydrolase, allophanate
amidohydrolase, HA hydrolase, N-isopropylammelide amidohydrolase,
triazine hydrolase, 1-carboxybiuret amidohydrolase, and cyanuric
acid amidohydrolase) and enhance the metabolic mechanisms. They
decrease the degradation half-life of atrazine by the different metabolic
processes including dechlorination, dealkylation, hydroxylation, and
ring cleavage [23]. The atrazine-degrading strains, for example,
Pseudomonas strain ADP break down atrazine into cyanuric acid through
three enzymatic steps, and cyanuric acid acts as a source of nitrogen for
many other bacteria [24]. Moreover, some other bacteria belonging to
the genera Rhodococcus, Acinetobacter, Streptomyces, Pseudomonas,
Clavibacter [25], Arthrobacter [26), Bacillus, Alcaligenes, Klebsiella,
and Agrobacterium [27], transform atrazine into cyanuric acid

Table 1: List of some Atrazine-degrading bacteria.

Bacteria Gram status  GenBank accession no.
Bacillus licheniformis ATLI-5 + MHS879786
Bacillus megaterium ATLJ-11 + MH879805
Pseudaminobacter sp. - nd
Nocardioides sp. +

Bacillus atrophaeus + MH685187
Paenarthrobacter sp. W11 + nd
Arthrobacter sp.C2 + MF405158
Klebsiella variicola FH-1. - nd
Pseudomonas spp.strains ACB - nd

and TLB

Variovorax sp.strain 38R - CP062121
Arthrobacter sp.strain TES + CP062235
Chelatobacter sp.strain SR38 - CP062112
Myriophyllum spicatum - nd
Acetobacter sp. -

Arthrobacter sp.strain HB-5 + nd

Ensifer sp. - nd
Nocardioides + nd
Arthrobacter, +

Bradyrhizobium, -

Burkholderia, -

Methylobacterium -

Mycobacterium, +

Clostridium. +

Rhodococcus sp. strain MB-P1 + FN357284
Citricoccus sp. strain TT3. + nd
Klebsiella variicola Strain MH250202

FH-1

which further metabolized and produce carbon and nitrogen source
compounds. However, in the past 10 years, among the most isolated
atrazine-degrading bacteria only Arthrobacter sp., Pseudomonas sp.,
and Bacillus sp. are reported as capable of fully degrading atrazine into
carbon dioxide and ammonia [16]. In a study, two atrazine degrading
bacteria such as Bacillus lichenoformis and Bacillus megaterium were
isolated from soil that showed 98.6% and 99.6% degradation efficiency
of atrazine after 7 days [7]. At the same time, the degradation of atrazine
was faster when two strains were used in combination under the same
conditions. Based on the previous data, some of the bacteria and their
producing metabolites are listed in Table 1.

2.2.2. Fungi

Fungi are another main element of soil microflora involved in atrazine
degradation after bacteria. They degrade atrazine at different rates
and produce different metabolites through N-dealkylation of either
alkylamino group [28]. The application of fungi may be the most
important way to remove atrazine from contaminated soil. They are
very effective in bioremediation as they can use different carbon
sources for metabolism by producing different enzymes which
catabolize different steps during the transformation of chemicals [29].

Among fungi, wood-degrading basidiomycetes are also a key player
in atrazine degradation. The ability of chemical degradation of white-

Detected metabolites References
Hydroxyatrazine and N-isopropylammelide [7]
Hydroxyatrazine and N-ethylammelide [51]
nd [43]
nd [52]
Hydroxyatrazine, N-isopropylammelide, cyanuric acid, and [26]
deisopropylhydroxyatrazine (DIHA)

nd [53]
nd [10]
nd [11]
Hydroxyatrazine (HA), deelthylatrazine (DEA), [22]
didealkylatrazine (DDA), cyanuric acid (CYA), and biuret

nd [23]
N-isopropylammelide, Cyanuric acid (CA) [54]
N-isopropylammelide (IPA), ammelid, biuret, and cyanuric [55]
acid

De-ethyl de-isopropyl atrazine, De-isopropyl atrazine, [56]
De-ethyl atrazine

nd [57]
2-hydroxyl-4-ethylamino-6-isopropylamino-1,3,5-triazine [58]

(HEIT) 2-hydroxyl-4,6-bis (ethylamino)-1,3,5-triazine
(MEET), and 4,6-bis (ethylamino)-1,3,5-triazin-2 (1H)-one
(AEEO)

In the table, nd=no data obtained in the cited reference.
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rot fungi is due to the existence of the ligninolytic system [30].
Fungi belonging to basidiomycetes and ascomycetes produce both
extracellular and intracellular enzymes that biotechnologically and
industrially valued molecules are responsible for herbicides and
pesticide degradation [31]. The purpose of white-rot fungi in atrazine
degradation may be advantageous because they can tolerate a wide
range of environmental circumstances, including varying temperature,
moisture, and nutrient contents. For example, Trametes versicolor
belonging to basidiomycetes can actively grow and degrade atrazine
in nonsterile soil under low water availability conditions [32]. A well-
known white-rot fungus Phanerochaete chrysosporium has been
reported to degrade a large variety of environmentally persistent
chemicals.

The potential roles of mycorrhizal fungi in the degradation of
atrazine have been addressed by several authors. Axenic cultures of
ectomycorrhizae fungi can degrade atrazine, and degradation was
increased when they were full-fledged in symbiosis with plants [33].
Besides, ericoid mycorrhizal fungi have also been reported to degrade
atrazine when they are axenically cultured [34]. Moreover, arbuscular
mycorrhiza fungi have remarkable potential for atrazine degradation.
They enhance soil microbial activity and increase the activities of soil
enzymes [28]. Glomus caledonium and G. etunicatum can accumulate
in fugal hyphae or the associated roots and atrazine dissipation in the
near rhizosphere and bulk soils [35]. Some of the fungi associated with
atrazine degradation are listed in Table 2.

2.2.3. Yeast

Apart from bacteria and filamentous fungi, yeast also has atrazine-
degrading potential. A novel yeast strain Pichia kudriavzevii strain
Atz-EN-01 was isolated from atrazine-contaminated soil which
showed the efficient degradation in liquid culture media and soil [36].

Table 2: List of some atrazine-degrading fungi.

This strain breaks atrazine down into three intermediates such as
HA, N-isopropylammelide, and cyanuric acid. Another species
of Pichia has (Pichia pastoris strain X-33) also been reported as
the ability to transform atrazine into hydroxylisopropylatrazine,
atraton (2-methoxy-4-ethylamino-6-isopropylamino-1,3,5-s-
triazine), demethylated atrazine, HA [37], Hydroxy-dehydrogenated
and 2-OH-isopropyl-IPU [38]. Moreover, a yeast
species called Cryptococcus laurentii was isolated from atrazine-
contaminated agricultural soil and GC-MS analysis showed several
metabolites such as HA, deethylatrazine, deisopropylatrazine,
and deethyldeisopropylatrazin during atrazine degradation when
conducting an in vitro experiment [39]. The role of Saccharomyces
cerevisiae in atrazine degradation was also reported by Zhu ez al. [40].
However, in recent times, most of the research is focused on bacteria
and filamentous fungi while little information is available on the role
of yeast in atrazine degradation.

atrazine,

2.3. Genes Involved in Atrazine-degradation

Atrazine a commonly known herbicide is used as a carbon and
nitrogen source by different soil microflora by breaking it into
CO, and NH," [41]. The degradation and utilization of atrazine by
microflora are possible because of the complex catabolic pathway
mediated by a diverse array of enzymes encode by a series of
genes [16]. Different genes are involved in different steps throughout
the degradation pathways that lead to the transformation of atrazine
to its intermediate cyanuric acid [42]. To the best of our knowledge,
the total number of eight genes involved in the atrazine metabolic
pathway has been reported such as atzA4, atzB, atzC, atzD, atzE, atzF,
trzN, and trzD. The genes atzABC identified from Pseudomonas
sp. strain ADP that homology to five atrazine-degrading microbial

Metabolite produced References
nd [59]
Deethylatrazine (DEA) [35]
(2-amino-4-chloro-6-isopropylanine-striazine)

and deisopropylatrazine (DIA)
(2-amino-4-chloro6-ethylamino-s-triazine)

nd [32]
Deisopropylatrazine (DIA) and deethylatrazine (DEA) 2]
nd [60]
Deisopropylatrazine (DIA) and deethylatrazine (DEA) [12]
nd [61]
nd [62]
2-hydroxy atrazine and desethylatrazine [63]
Deethylatrazine ( DEA), deisopropilatrazine (DIA), [64]
hydroxyatrazine (HA)

nd [13]
Hydroxyatrazine, deethylatrazine, deisopropylatrazine [22]
nd [19]

Fungi Division GeneBank
accession no.
Anthracophyllum discolor Basidiomycota nd
Glomus caledonium Glomeromycota nd
Trametes versicolor Basidiomycota nd
Fusarium sp. CCLM_DF Ascomycota MT062480
Fusarium sp. CCLM_GU MT062481
Fusarium sp. CCLM_GW MT062482
Fusarium sp. CCLM_IB MT062483
Aspergillus niger Ascomycota nd
Pleurotuso streatus INCQS 40310 Basidiomycota nd
Pluteus cubensis SXS320, Basidiomycotina nd
Gloelophyllum striatum MCA7, and
Agaricales MCA17
Bjerkandera adusta Basidiomycota EF441742
Metarhizium robertsii Ascomycota nd
Aspergillus niger AN 400 Ascomycota nd
Penicillium chrysogenum NRRL 807 Ascomycota nd
Saccharomyces cerevisiae Ascomycota nd
Aspergillus fumigatus Ascomycota nd

Penicillium citrinum

In the table, nd=no data obtained in the cited reference.
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Table 3: Microbial genes involved in atrazine-degradation.

Gene Enzyme encoded Step catalyzed References
atzA Atrazine chlorohydrolase Atrazine — Hydroxyatrazine (HA) [63]
atzB Hydroxydechloroatrazine ethylaminohydrolase Hydroxyatrazine (HA) — N-isopropylammelide [64]
atzC N-isopropylammelide isopropylamido hydrolase N-isopropylammelide — Cyanuric acid+isopropylamine [16]
atzD Cyanuric acid amidohydrolase Cyanuric acid — Biuret [42]
atzE 1-Carboxybiuret hydrolase Biuret — Allophanic acid [42]
atzF Allophanate hydrolase Allophanic acid — CO,+NH,* [42]
trzD Cyanuric acid amidohydrolase Cyanuric acid — Biuret [42]
trzN Atrazine chlorohydrolase Atrazine — Hydroxyatrazine (HA) [65]

isolates which gives a piece of strong evidence for the genes are
widespread. Some other bacteria such as Arthrobacter agilis and
Nocardioides nanhaiensis are harbored atzA/trzN genes that code for
atrazine chlorohydrolase that catalyze the dechlorination of atrazine
into HA [42]. The same authors stated that atzD/trzD was involved in
the conversion of cyanuric acid into biuret through ring cleavage by
encoding an enzyme called cyanuric acid amidohydrolase. The other
genes like atzB/atzC are associated with the dealkylation catabolic
step while atzE and atzF/trzF are involved in biuret deamination and
hydrolysis of allophanate, respectively. Different genes and their
encoded enzymes involved in different steps in atrazine degradation
are shown in Table 3.

2.4. Factors Affecting Microbial Degradation of Atrazine

Several factors influence the microbial degradation of atrazine. The
microbial population is influenced by both biotic and abiotic factors
in the soil and they directly or indirectly affect the rate of degradation
of atrazine.

2.4.1. Abiotic factors

Temperature, pH, depth from the soil surface, and oxygen content of
the surrounding matrix are the main abiotic factors that can influence
atrazine degradation [43]. The mineralization rate of atrazine is
slower in anaerobic or denitrifying conditions than in aerobic
environments [44]. The water content of soil and temperature has a
significant impact on atrazine degradation. The atrazine degradation
is directly proportional to the temperature of its surrounding [45].
A study on the half-life of atrazine in clay soil was carried out and
the results showed that the average half-life of atrazine degradation
was 62 days when the water content of the soil was 20-40%.
Nevertheless, when the water content of the soil was decreased
by 8%, the half-life was increased up to 338 days [46]. Moreover,
the half-life was increased from 44 days to 206 days while the soil
temperature was decreased from 30°C to 5°C. In addition, soil layers
also have a great significance in a variation of atrazine degradation
rate. The occurrence of atrazine in different soil layers also influences
the rate of degradation. The rate of atrazine degradation is slower on
the subsurface horizon while increasing in soil depth in silty clay
loam [47].

2.4.2. Biotic factors

Crops and soil management systems have a significant impact on the
rate of herbicide degradation [48]. An experiment was carried out and
found that in a site where corn is cultivated for several years and treated
with atrazine, the adaptation of atrazine degrading microorganisms
was colonized more than where alfalfa was cultivated for 4 years with
no application of atrazine [49]. In addition, the role of earthworms is
also not the least in atrazine degradation. Two earthworm species such

as Eisenia foetida and Amynthas robust have been reported to enhance
the degradation rate of atrazine [S0]. However, our literature survey
revealed that the effect of biotic factors on the degradation of atrazine
has not been extensively studied yet.

3. CONCLUSION AND FUTURE PROSPECTS

The environment is constantly being harmed by the extended
use of toxic chemicals. Several hundreds of herbicides including
atrazine have been used by farmers and non-farmers to kill weeds
in crop fields or resident campuses. Such type of practice has been
done for many couples of the year all over the world. However,
bioremediation is the soundest and default method to rehabilitate
polluted sites with cost efficiency and environmental friendliness
by applying microorganisms. Through the discovery of atrazine-
degrading soil microorganisms, the disposing of hazardous
chemicals has gained credence. In this regard, microbes can tolerate

a high range of toxic chemicals and transform them into non-toxic

forms by biochemical reactions, more often contaminants serve

as a source of energy. Removal of persistent herbicides using
microorganisms has received attention as an outstanding option.

Microorganisms could be applied in different strategies. Some of

the recommendations are cited below:

e  The gene editing and application of system biology on different
microbial metabolic pathways are very important. The gene-
editing tools such as clustered regularly interspaced short
palindromic repeats (CRISPR-Cas), transcription activator-
like effector nucleases, and zinc-finger nucleases can make it
possible to design microbe with a functional gene of interest
for degradation of atrazine for improved bioremediation. This
will lead to optimizing the existing metabolic pathways toward
the increased and efficient microbial remediation of herbicides.
Genetic engineering can also open a new door for the degradation
of herbicides by enhancing the capability of microorganisms.
In this regard, the genetic transfer of degrading potential from
one to another microbe can be a tremendous approach toward
bioremediation.

e  Both bacteria and fungi are the main dominant degraders of
atrazine. However, there are not many influential studies that have
been carried out on the application of the organisms as consortia.
By screening their biocompatibility, consortia can be designed
that could be more effective towards bioremediation. More
research on the biochemical pathways related to the catabolism
of consortia could allocate for more efficient remediation and
narrative applications.

e  Enzymesare always a major talking point in bioremediation research
due to their inherent capability to degrade complex metabolites
present in the pollutants. Enzyme technology could be one of
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the excellent techniques for the improvement of bioremediation
practices. Microorganisms harbor a wide range of catalytic
enzymes including chromium reductase, alkane hydroxylases,
laccase, carboxylesterases, peroxidases, phytase, haloalkane
dehalogenases, phosphotriesterases, and horseradish peroxidase.
Using biotechnological approaches enzymes can be formulated
from microorganisms for direct application in the rehabilitation of
the polluted site. Moreover, with the help of enzyme engineering,
the enzyme can be modified to improve its properties such as
activity, stress tolerance, temperature, and pH for bioremediation.
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