Revised morphology and barcoding of *Strobilanthes andersonii* Bedd. a critically endangered plant

Tiny Antony¹, Jomy Augustine¹*, Linu Mathew²

¹Department of Botany, St. Thomas College, Palai, Kottayam, Kerala, India.
²School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India.

ARTICLE INFO

Received on: December 01, 2021
Accepted on: June 10, 2022
Available online: ***

Key words:
DNA barcode, *Strobilanthes andersonii* Bedd, ITS nr DNA.

ABSTRACT

Strobilanthes is a genus of perennial flowering shrubs with about 400 species. Due to the infrequent flowering period and monocarpic nature the availability of reproductive parts – the primary requisites for species identification – is comparatively a rare chance. Hence, other methods, such as molecular techniques, are vital to differentiate *Strobilanthes* species in the vegetative stages. The establishment of DNA barcode database is a suitable method. The DNA barcode region ITS nuclear ribosomal DNA of *Strobilanthes andersonii* Bedd was sequenced. A revised morphology of *S. andersonii* Bedd is also prepared. A ML phylogram was constructed to evaluate the phylogenetic perspective of *S. andersonii* Bedd.

1. INTRODUCTION

Strobilanthes (Family: *Acanthaceae*) is a South-East Asian wet tropical evergreen genus that exists in moist forests. This genus with 400 species is the second largest in the family *Acanthaceae* [1], and distributed along the South and Southeast Asia. It reached India after the Indian subcontinent merged Asian mainland through the continental drift. The original genetic stock of *Strobilanthes* was probably a single species, reached from Malaysian region to the Western Ghats [2]. In India, there are 146 species of *Strobilanthes* distributed in the wet non-deciduous forests of the Western Ghats and the Himalayas [3]. Fifty-nine species are reported from South India with maximum endemism in Peninsular India [4]. Beddome incompletely described the species *Strobilanthes andersonii* Bedd in 1864 [5]. Due to the long flowering periodicity, no further collections of this plant were made making the description of this plant incomplete and no further attempt was made on revising the morphology till now. Furthermore, since then, this species was considered extinct [4]. The massive flowering of this species was noticed in the shola forests of Eravikulam National Park in 2008 (2). Pendent flowering spikes with large green bracts were the distinguishing feature of this species. In the present study, the gregarious flowering of *S. andersonii* Bedd is noticed in 2018 in the same locality. Hence, the flowering periodicity of this endemic shrub is ascertained as 10 years.

*Corresponding Author:
Dr. Jomy Augustine,
Department of Botany, St. Thomas College, Palai, Kottayam, Kerala, India.
E-mail: jomyaugustine66@gmail.com

© 2022 Antony T, et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlike Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
using ITS nr DNA. *Hemigraphis confinis* T. Anderson as selected the out-group.

2. MATERIALS AND METHODS

2.1. Taxonomy

First description *S. andersonii* Bedd. Madras J.Lit. and Sci. 1:55, 1864 [5].

2.2. Habitat and Distribution

Evergreen shola forests, 2000 m above the sea level, Kerala, India. The present collection is from Eravikulum National Park, Idukki District, Southern Western Ghats, India.

2.3. Materials and Methods

S. andersonii used in the study was collected from the evergreen shola forests, Eravikulum National Park, Idukki District, and Kerala in November 2018. The plant species were collected and brought to the laboratory for further molecular analyses. The collected plant specimen, the voucher samples were deposited in the Calicut University Herbarium (CALI) Kerala (Voucher Specimen Number – 7068), (Collection Number – 2101).

2.4. DNA Extraction

The total genomic extraction was done with Nucleospin Plant II kit (Mechery-Nagel) using 100 mg of fresh leaves homogenized using liquid nitrogen. The quality of the isolated DNA was tested by agarose gel electrophoresis followed by gel staining with ethidium bromide.

2.5. Polymerase Chain Reaction (PCR) Amplification and Sequencing

PCR amplifications of the ITS region were carried out in a PCR thermal cycler [14] using the primer pairs [15] and thermo cycling conditions given in Table 1.

Sequencing reaction was performed with the Big Dye Terminator v3.1 cycle sequencing kit [14]. Sequence Scanner Software v1 was used for checking the quality of the sequence (Applied Bio system). Analysis and comparison of the locus were done with the help of BLAST routines [16].

2.6. Phylogenetic Analysis

An ITS phylogram was constructed using ML analysis performed by RAXML with default parameters ans 1000 bootstrap replications [17,18]. The criterion used to assess BS support percentages (BP) was as follows: low 50–70%, moderate 71–84%, and strong 95–100. The in group taxa consisted of *S. andersonii* Bedd and 40 other species of *Strobilanthes* retrieved from NCBI Gen Bank [Table 2]. *H. confinis* T. Anderson was the out-group.

3. RESULTS AND DISCUSSION

S. andersonii Bedd is considered to be an extinct species (4), but it is rediscovered recently (2). The flowering periodicity of this plant is 10 years. Hence, identification, discrimination, and morphological characterization for the purpose of taxonomic studies were difficult. The *S. andersonii* Bedd with long flowering periodicity and monopercarpic nature is also a possible cause for their rarity. It is difficult to get the specimens of *Strobilanthes* in flowers. Hence, identification of these species is very challenging in many flora works. Hence, it results in the poor documentation of the diversity of *Strobilanthes*, even though the species is there in its vegetative condition. The characteristics of leaves and other vegetative parts have less importance in species wise diagnostic characteristics. Using ITS nrDNA barcoding, we can expose the genetic relationships among accessions more effectively and accurately [8].

3.1. Revised Morphology

The previous description of this species [5] was incomplete with respect to the floral characteristics which were redressed in the present revised morphology which is elaborated here [Figure 1].

S. andersonii Bedd is a large shrub, growing to 4 m height; young stems angled, hirsute, terete when mature. Leaves simple, opposite; lamina 15–22 × 8–12 cm, ovate, round at base, acuminate at apex, and hirsute-hairy on upper and lower surface; acumen 2–3 cm long, pointed at apex; margin regularly crenate-serrate, ciliate; lateral nerves 6–7 pairs, alternate, regular; intercostae parallel, nervules reticulate, all prominently projected below, and impressed above; and petioles 1.5–4.5 cm long, hirsute-hairy, and hairs light pink. Inflorescences spikes, terminal and upper axillary, usually pendent, 4–7 cm long, 2–3 cm broad, cylindrical to obtusely sub-4-angled; bracts many, arranged in four rows, 1.5–2.5 cm across, ovate-orbicular, concave, pale green to pale purple with green-purple nerves, glabrous, margin finely serrulate; serrulations produced in to small spinules; and bracteoles 2, oblanceolate, acute at apex, 1.5 × 0.7 cm, glabrous, greenish white with green nerves, ciliate along the margins. Flowers 15–30 in each spike, densely packed, usually a pair of two opposite flowers or rarely two pairs bloom together; sepals 1.6 cm long, linear-lanceolate, acute, glabrous, ciliate along the margin, pale green;

<table>
<thead>
<tr>
<th>DNA region</th>
<th>Primer pairs</th>
<th>Primer sequence (5-3)</th>
<th>Thermo cycling conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS</td>
<td>ITS-5F</td>
<td>GGAAGTAAAAAGTCGTAACAGG</td>
<td>98°C 30 s, 98°C 5 s, 58°C 10 s, 72°C 15 s, 72°C 60 s, 4°C-40 cycles</td>
</tr>
<tr>
<td></td>
<td>ITS-4R</td>
<td>TCCTCCGCTTATCGATG</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: *Strobilanthes andersonii* Bedd. (a) Habit, (b) One spike inflorescence (c) One flower longitudinally sectioned.
corolla 2.1 cm long, 2.5 cm across, sub-campanulate; tubular below, broadened above; tubular lower part cylindrical, 0.7 cm long, deep violet inside, glabrous; upper portion sub-campanulate, 1.4 cm broad, white-pale blue with deep violet prominent nerves, glabrous; lobes equal, orbicular, round to sub-cordate at apex, entire or shallowly crenate along the margins, glabrous, pale blue with thin blue nerves, spreading, twisted; stamen 4, free; filaments unequal, in 2 pairs, attached together into a small sheath just above the tubular part of the corolla tube; longer filaments 18 mm long, 1.5 mm thick, violet below, white above, glabrous; shorter filaments 12 mm long, inner, similar to the outer long filaments; anthers similar, just at the mouth of the corolla, oblong, shallowly cleft to sagittate at base, 5 mm long, pale pink, anthers of long stamens open first; ovary on a disc, 4 mm long, ovoid, glabrous; ovules 4, style 2.1 cm long, slender, glabrous,
pink; stigma pointed into a white spot; and disk present below the ovary, 2 mm thick, yellow. Fruit 2 × 0.7 cm, ovoid, acute, glabrous; seeds four, orbicular, and compressed.

3.2. Phylogenetic Analysis

Presently, the phylogram based on ITS nr DNA gene sequences grouped all available 40 species into two clades [Figure 2]. The *Strobilanthes* species of Peninsular India are distributed in both. These clades were further divided into sub-clades. Clade I consisted of 9 taxa divided into two groups (BS 100%). *S. andersonii* Bedd is coming under Group A. Group B contains 8 taxa with BSS of 51%. The species coming under group B are *Strobilanthes pulneyensis* Clark, *Strobilanthes barbata* Nees, *Strobilanthes lawsonii* Gamble, *Strobilanthes neilgherrensis* Bedd, *Strobilanthes ciliata* Nees, *Strobilanthes kunthiana* (Nees) T. Anderson, *S. andamanensis* Bor, *Strobilanthes ciliata* Nees, *Strobilanthes kunthiana* (Nees) T. Anderson, *S. andamanensis* C. B. Clark, and *S. andamanensis* Bor. Among these, all species except *S. andamanensis* Bor is native to Southern Western Ghats, India. *S. andamanensis* Bor is from Andaman Islands. The Indian *Strobilanthes* species *S. andersonii* Bedd, *S. pulneyensis* Clark, *S. barbata* Nees, *S. lawsonii* Gamble, *S. neilgherrensis* Bedd, *Strobilanthes ciliata* Nees, *S. kunthiana* (Nees) T. Anderson, *S. stenodon* C. B. Clark, and *S. andamanensis* Bor formed the most recent clade I with high boot strap support (BSS of 100%). The members of these clade can be considered as recent radiations and with Clade II as a sister clade.

Clade II consisted of 32 species and was divided into five sub-groups. Group A contains *Strobilanthes japonica*, the native of Japan, East Asia with BSS 39%. Group B contains *Strobilanthes galeopsis* Stapf is from S.E. Asia with BSS 20%. Group C contains 22 species with BSS 58%.

Group D contains three species, two species of Strobilanthes anceps Nees and Strobilanthes punctate Nees which are from South Asia BS value 26%.

Group E contains five species. They are Strobilanthes asper Venu and Daniel, Strobilanthes micrantha Wight, Strobilanthes lupulina Nees. Strobilanthes walkeri Arn. ex Nees, and Strobilanthes decurrens Nees. These species are native of Southern Western Ghats, India. S. japonica is the sister taxa to this clade. Clade II is the basal clade with taxa showing an early establishment and wide geographical distribution. Members of this clade might have been the earliest radiations in the Southern Western Ghats from an ancestor with South Asian origin.

S. andersonii Bedd and its related species were descended from clade II and recently established in Western Ghats due to adaptive radiation. In evolutionary radiation, a fast escalation in the diversity of a group of organisms occurs by frequent speciation within a particular clade with fast evolutionary and ecological divergence in geographical location [19]. S. andersonii Bedd has close affinity with other Indian species. Moreover, the analysis shows that South Indian species belong to recent lineages of Strobilanthes.

4. CONCLUSION

By revisiting the taxonomic description of this species hitherto considered as extinct, a proper key for identifying the species can be formulated for field identification of the species. Furthermore, it will accelerate the conservation efforts of this species with high endemism by demarcating the areas of its occurrence a further clarification on the taxonomic ambiguity was attempted by the phylogenetic study. Internal transcribed spacer nuclear DNA sequences were suitable in taxonomic studies of Strobilanthes even if the flowers are not accessible. In the present study, sequence analysis of S. andersonii Bedd using ITS sequences was performed to clarify phylogenetic relationships and found that this species is recent radiation in the South Western Ghats.

5. AUTHORS’ CONTRIBUTIONS

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agreed to be accountable for all aspects of the work. All the authors are eligible to be an author as per the International Committee of Medical Journal Editors (ICMJE) requirements/guidelines.

6. FUNDING

Department of Science and Technology, Government of India for financial support vide Ref. No SR/WOS-A/LS-396/2017 under Women Scientist Scheme (WOS-A).

7. CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

8. ETHICAL APPROVALS

Forest Department of Kerala, India providing permission to collect the plant sample and this study does not involve experiments on animals or human subjects.

9. DATA AVAILABILITY

Plant sample information and data available in Table:2.

10. PUBLISHER’S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES

14. ABI PRISM Big Dye Terminator v3.1 Cycle Sequencing Kit-User

