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Mucuna pruriens (L.) DC. is a medicinal plant with a wide range of pharmacological properties that have been
used in various medicinal preparations for centuries. M. pruriens is a rich source of levodopa (L-DOPA), mainly
used to treat Parkinson’s disease. The present study investigates the impact of heavy metals such as cadmium (Cd),
mercury (Hg), and lead (Pb) on the growth parameters and biochemical characteristics, including the L-DOPA
content of M. pruriens. The seeds of M. pruriens were treated with different concentrations of Cd (0-250 ppm), Hg
(0250 ppm), and Pb (0-2000 ppm) for 21 days. On exposure to heavy metals, the germination %, the vegetative
growth, and the biochemical characteristics such as the protein, carbohydrate, chlorophyll, total phenol, flavonoid,
and proline content varied significantly in the heavy metal-treated plants when compared to control. It was also
observed that the L-DOPA content increased with increased metal concentration and then decreased further with
higher concentration of metals. The metal accumulation increased with the increase in the metal concentration. The
seeds treated with 1000 ppm of Pb showed the highest L-DOPA content compared with control and other treatments.

1. INTRODUCTION

Mucuna pruriens (L.) DC., commonly known as Velvet bean, belongs
to the family Fabaceae. This leguminous plant which grows in tropical
and subtropical regions of Africa, America, Asia, and the Pacific
Islands, is endemic to India. The pods of this plant are used as a
vegetable, and the leaves are used as animal feed [1]. This underutilized
legume has anti-inflammatory and antioxidant properties. Besides this,
the plant is well known for its neuroprotective effect and is used to
treat Parkinson’s disease [2]. The plant is also used to treat infertility
in men. Levodopa (L-DOPA), a precursor of alkaloids, plays a key role
in increasing the dopamine content abundantly found in M. pruriens.
Hence, it can treat Parkinson’s disease [3].

During its growth in its natural habitat, the plant is exposed to a wide
variety of biotic and abiotic stress. Exposure to heavy metals such as
lead (Pb), cadmium (Cd), and mercury (Hg) in the soil is one such
abiotic stress that impedes plant growth [4]. The soil gets accumulated
with these heavy metals due to its contamination with industrial
effluents, pesticides, and fertilizers [4,5]. While heavy metal Pb is
toxic at higher concentrations, other heavy metals such as Hg and Cd
are toxic even at lower concentrations. The Cd metal is known to be
taken up more readily by the plant’s roots and retards the growth of
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shoots and roots in plants. It is also known to interfere with plants’
Ca, Mg, P, and K and water uptake [6]. The silver-white metal Hg
enters the plants through the roots and alleviates oxidative stress [7].
Pb, at higher concentrations, induces detrimental effects in plants by
affecting photosynthesis and transpiration, in turn, affecting the overall
plant growth [8].

The stress induced by heavy metals may affect the efficacy and quality
of the biosynthesis of secondary metabolites in medicinal plants. The
mobile heavy metals are known to suppress the secondary metabolites
production in some species by inactivating genes of enzymes involved
in the biosynthetic pathway or enhancing the secondary metabolite
production in some other species by activating the gene expression
involved in the biosynthesis [9,10]. The present study investigates the
effects of Cd, Hg, and Pb on the germination, growth, and biochemical
characteristics of M. pruriens. Furthermore, the present work aspires to
study the impact of the selected heavy metals on the L-DOPA content.

2. MATERIALS AND METHODS

2.1. Evaluation of lethal dose (LD, ) for Heavy Metals on Seed
Germination and its Growth

The authenticated seeds of Mucuna pruriens (L.) DC. (Arka Shubra)
were collected from ICAR-Indian Institute of Horticultural Research,
Hessaraghatta, Bengaluru, India. The seeds were surface sterilized
with a soap solution (1-2 min) and sodium hypochlorite (4-5 min).
The seeds were transferred to Petri dishes with filter paper moistened
with 10 different concentrations of selected heavy metals ranging from
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25-250 ppm of Cd, 25-250 ppm of Hg, and 200-2000 ppm of Pb and
incubated at 25°C in a dark chamber for germination.

2.2. Measurement of Vegetative Growth Characteristics

The root and shoot length, fresh weight (FW), and dry weight (DW) of
21-day-old seedlings were measured.

2.3. Biochemical Characterization of the Seedlings

The proline content, total chlorophyll, protein, and carbohydrate
content of the 21-day-old treated seedlings were estimated.

2.3.1. Estimation of proline

The proline content was estimated by following the method of Troll
and Lindsley (1955) with some modifications [11]. 0.1 g of sample
was homogenized with 5 mL of 3% sulfosalicylic acid, the sample was
filtered, and 2 mL of'this filtrate was mixed with 2 ml each of Ninhydrin
reagent and glacial acetic acid. This mixture was then heated in a
boiling water bath for an hour and cooled. A chromophore was formed
by adding 4 mL toluene to this cooled solution. The absorbance was
measured at 520 nm using the UV—-VIS spectrophotometer (Shimadzu,
UV-1900, Kyoto, Japan). Proline ranging from 0 to 10 pg mL™" was
used as standard, and a graph was plotted from which the proline
content of the samples was estimated.

2.3.2. Estimation of chlorophyll

The total chlorophyll content was measured by following the
modified method of Arnon (1949) [12]. 0.1 g of leaf sample was
homogenized with 5 mL of 80% acetone and incubated overnight at
room temperature. It was then centrifuged at 5000 rpm for 5 min. The
supernatant was made up to 5 mL with 80% acetone and the optical
densities were measured at 645 and 663 nm wavelengths using the
UV-VIS spectrophotometer (Shimadzu, UV-1900, Kyoto, Japan).

Total chlorophyll content(mg g’l) FwW (fresh Weight) =

202 (Ags) + 802 (Agy) X V
(1000 x W)

Where, A is the absorbance at specific wavelength; V = final volume of
chlorophyll extract (mL); and W = fresh weight(g).

2.3.3. Estimation of protein and carbohydrate

The protein content was estimated by following the method of Lowry
(1951) [13]. The carbohydrate was estimated by phenol-sulfuric acid
method as followed by Dubois et al., (1956) [14]. The absorbance of
control and the treated samples was measured at 660 nm and 490 nm,
respectively, using the microplate reader (BIO-RAD, iMARK™, Japan).

2.4. Preparation of Plant Methanolic Extract

The plant methanolic extract was prepared by soaking the dried plant
samples (control and treated, 0.2 g each) in 5 mL methanol, covered
with aluminum foil, and was incubated for 24 h with constant stirring.
It was then filtered, and the filtrate was evaporated until the residue
was obtained. The residue was redissolved in methanol to obtain
a stock concentration of 10 mg mL™". These methanolic extracts of
control and treated plants were further used for the estimation of total
phenol and flavonoid content and for antioxidant assays.

2.5. Estimation of Total Phenol Content (TPC)

The TPC was measured using Folin—Ciocalteu assay followed
by Sembiring et al. (2018) [15]. 25 pL of the extract (500 pg

mL ") was used to which 25 pL of (1:1) Folin—Ciocalteu reagent
and 100 pL of 7.5% sodium bicarbonate solution were added
and incubated at room temperature for 2 h in dark condition.
The absorbance was recorded at 765 nm using the microplate
reader (BIO-RAD, iMARK™, Japan). Gallic acid ranging from
0 to 100 pg mL™!' was used as a standard to calculate the phenol
content of the samples.

2.6. Estimation of Total Flavonoid Content (TFC)

The TFC was evaluated using a modified aluminum chloride method
by Sembiring et al. (2018) [15]. 50 uL extract (5 mg mL™") was
taken, to which 150 uL of 80% methanol, 10 pL aluminum chloride
(10% [w/v]), and 10 pL 1M sodium acetate were added and incubated
at room temperature for 45 min. The absorbance was recorded at
415 nm using the microplate reader (BIO-RAD, iMARK™, Japan).
Quercetin ranging from 0 to 100 ng mL™' was used as a standard to
calculate the flavonoid content of the samples.

2.7. Antioxidant Activity

2.7.1. Radical scavenging activity using 2,2-diphenyl-1-picryl-
hydrazyl (DPPH)

The antioxidant activity was assessed using a modified DPPH
scavenging assay as described by Blois (1958)[16]. 30 pL (10 mgmL™)
of the plant extract was taken and made up to 3 mL with methanol.
1 mL of DPPH (0.004% [w/v]) was added and incubated for 30 min in
the dark. The absorbance was recorded at 517 nm using the UV-VIS
spectrophotometer (Shimadzu, UV-1900, Kyoto, Japan). Methanol (3
mL) served as the blank.

. . .. o/\ _ Acomrol _Asample
Radical scavenging activity (%)= —————"=x 100

control

Where, A and ASample are the absorbances of control without plant

extract and sample with plant extract, respectively.

2.7.2. Metal chelating activity

The method described by Chew er al. (2009) [17] was followed
for analysis of metal chelating activity. 1 mL of plant extract
(400 pg mL™") was used to which 1 mL of 0.1 mM ferrous sulfate
and 2 mL of 0.25 mM ferrozine were added. After incubating for
10 min at room temperature, the absorbance mixture was recorded
at 562 nm using a UV-VIS spectrophotometer (Shimadzu, UV-1900,
Kyoto, Japan).

. P 0 _ Aconlml - Asample
Metal chelating activity (%)= —————"=x 100

control

Where, A and Asample are the absorbances of control without plant

extract and sample with plant extract, respectively.

2.7.3. Reducing power assay

The FRAP assay was conducted following the method of Chung et al.
(2014) [18]. 1 mL of plant extract (400 ug mL™") was mixed with 2.5 mL
of phosphate buffer (0.2 M) and potassium ferricyanide [K3Fe(CN6)]
(1%) each. The mixture was incubated at 50°C for 20 min. 2.5 mL of
trichloroacetic acid (10%) was added to the mixture and centrifuged
at 1000 rpm for 10 min. The upper layer of the solution (2.5 mL) was
then mixed with 2.5 mL distilled water and ferric chloride (FeCl,)
(0.5mL, 0.1%). Absorbance was measured at 700 nm using a UV-VIS
spectrophotometer (Shimadzu, UV-1900, Kyoto, Japan).



Banadka and Nagella: Effect of heavy metals on germination, biochemical, and L-DOPA content in Mucuna pruriens (L.) DC. 2022;10(6):117-126119

2.8. Analysis of Heavy Metal Accumulation in Seedlings of
M. pruriens

The heavy metals were analyzed by the wet acid digestion method
as described by Turek ez al., (2019) [19]. The plant sample (control
and treated) was oven dried at 60°C + 2°C. 2 g of 24 h air-dried,
powdered samples was digested using a mixture of 12 mL HNO,
and 4 mL HCI and was heated on hot plate maintained at 45°C
+ 5°C in fume hood until the volume reduced to 10 mL. It was
then made up to 25 mL with deionized water and filtered using
Whatman No. 42 filter paper. The heavy metals were analyzed
using atomic absorption spectrophotometer (Shimadzu, AA-6880,
Japan).

2.9. Quantification of L-DOPA using HPLC

Quantification of L-DOPA from the heavy metal-treated seedlings
was carried out following the method of Rakesh et a/. (2021) [20].
0.2 g of dried plant material (control and treated) was dissolved
in 5 mL of 0.1M orthophosphoric acid and placed in an orbital
shaker at 150 rpm at room temperature for 30 min. The mixture
was centrifuged for 10 min at 10,000 rpm, and the supernatant was
filtered using 0.45 uM nylon membrane and subjected to HPLC
analysis. RP-HPLC system (Shimadzu) equipped with Sharpsil-U
C-18, 250 (L) x 4.6 mm. The mobile phase consisted of a mixture
of phosphate buffer (pH 2.5) and acetonitrile (80:20, v/v) as mobile
phase at a flow rate of 0.5 mL min! and column temperature was
maintained at 40°C and absorbance was set at 280 nm with isocratic
elution and run time of 10 minutes. L-DOPA content ranging from
50 to 1000 png mL ™" was used as a standard from which the L-DOPA
content of the samples was estimated. The HPLC grade L-DOPA
(purity — 99.3%) was procured from Natural Remedies Pvt. Ltd.,
Bengaluru, India.

2.10. Statistical Analysis

The assays were conducted in triplicates. The data obtained were
statistically determined and presented as means + SE. IBM SPSS
Statistics software version 22.0 was used to analyze means, standard
error, and run one-way ANOVA. The post hoc Duncan’s multiple range
test at P < 0.05 was carried out to analyze the significant differences
among means of control and metal-treated groups using the same
software.

3. RESULTS AND DISCUSSION

3.1. Estimation of LD,, Value on Seed Germination of
M. pruriens

The effects of the concentrations of Cd, Hg, and Pb on seed
germination of M. pruriens are presented in Figures 1 and 2.
The seed germination was significantly reduced with an increase
in the concentration of heavy metals. In the present study, the
concentration of 150 ppm of Cd, 175 ppm of Hg, and 1200 ppm
of Pb inhibited seed germination by 50%, respectively. The plants
from the family Fabaceae have been subjected to concentrations
ranging from 0 to 2000 ppm of Pb [21], 0 to 400 ppm of Cd [22],
and 0 to 300 ppm of Hg [23]. The inhibition of seed germination
percentage could be attributed to the heavy metal accumulation,
which causes membrane damage, induces mineral leakage, impede
food reserve mobilization, inhibit carbohydrate metabolizing
enzymes such as amylases and invertase, and cause accumulation
of lipid peroxidation products [24].

3.2. Effect of Different Concentrations of Cd, Hg, and Pb on
Growth Parameters

The effects of the concentrations of Cd, Hg, and Pb on the growth
parameters such as root and shoot length, and fresh and dry biomass
of M. pruriens are presented in Table 1. The length of the root,
shoot, and the fresh and dry mass of M. pruriens significantly
reduced with increasing heavy metal concentration compared with
untreated seeds (control). The highest root length of 5.9 = 0.12 cm
was observed in 25 ppm Hg and 200 ppm Pb, and the lowest of 2.07
+ 0.12 cm was observed in 250 ppm Hg-treated plants. The highest
shoot length of 12.6+0.36 cm and the lowest shoot length of 1.5
+ 0.15 cm were recorded in 200 ppm Pb and plants treated with
250 ppm Cd, respectively. The least fresh and dry biomass of 1.32 +
0.06 g and 0.34 = 0 g was observed in plants treated with 250 ppm
Hg, respectively; the highest fresh and dry biomass of 3.3 £ 0.02 g
and 0.84 £ 0.03 g were achieved in plants treated with 200 ppm
Pb. Studies have reported inhibition of early seedling growth in the
presence of heavy metals [25,26]. The decrease in the root and shoot
length could be due to change in the cell polarity, decreased mitotic
activity, and inhibition of cell elongation caused by heavy metal
accumulation, resulting in growth inhibition [27]. The decrease in
the FW is mainly due to the loss of turgor pressure caused by the
loss of water content affecting the cell wall expansion and overall
growth [28].

3.3. Effect of Different Concentrations of Cd, Hg, and Pb on
Proline and Chlorophyll Content

Proline is a multifunctional amino acid that serves as a non-enzymatic
antioxidant when plants are exposed to stress [29]. A wide range
of studies report proline accumulation in response to stress [30].
M. pruriens exhibited high proline content on exposure to Cd, Hg, and
Pb stress. The highest proline accumulation of 11.55 = 0.28 u mol g™
FW was observed in plants treated with 225 ppm Hg and the least in
control showing 6.52 + 0.05 p mol g*' FW [Table 2]. On exposure to
heavy metals, proline accumulation could be due to protein hydrolysis,
reduced proline dehydrogenase activity, and decreased usage of
proline [31].

The light-absorbing pigment chlorophyll plays a crucial role in
photosynthesis [32]. In the present study, the chlorophyll content
decreased significantly with the increasing metal concentration
with the highest chlorophyll content of 13.43 + 0.18 mg g! FW in
the 200 ppm Pb-treated plants and the least of 6.01 + 0.06 mg g
FW in plants treated with 250 ppm of Cd [Table 2]. The reduction
in chlorophyll may be due to the accumulation of metal ions that
displaces and impairment of magnesium ions and denatures the
chlorophyll [33]. The heavy metals also disturb the chlorophyll
biosynthetic pathways by interfering with enzymes involved in the
pathway [34].

3.4. Effect of Different Concentrations of Cd, Hg, and Pb on
Protein and Carbohydrate Content

Proteins are polymers of amino acids that play various structural,
enzymatic, and functional roles such as biosynthesis, photosynthesis,
storage, transport, and overall plant growth [35]. M. pruriens subjected
to Cd, Hg, and Pb stress showed a sharp decline in the protein content
with the highest protein content of 65.63 = 0.73 mg g™' FW in control
plants and the least protein content of 25.57 + 0.38 mg g™' FW in
plants treated with 250 ppm Cd [Table 2]. Heavy metal stress studies
conducted on germination in Vigna radiata showed a reduction in
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Figure 1: Lethal dose of Cd, Hg, and Pb on seed germination of Mucuna pruriens (L.) DC. Data represent mean values + SE of three replicates; each
experiment was repeated thrice. Means with common letters are not significantly different at P < 0.05 according to Duncan’s multiple range test (DMRT).
Cd: Cadmium, Hg: Mercury, Pb: Lead.

Figure 2: Germination of Mucuna pruriens (L.) DC seeds treated with different concentration of heavy metals (Cd, Hg and Pb). Cd: Cadmium,
Hg: Mercury, Pb: Lead.

the protein content on exposure to heavy metals [36]. Heavy metals
alter the native conformation of proteins and destruct their biological
activity. The metals either suppress or inhibit the de novo synthesis of
proteins or degrade into amino acids [37].

Carbohydrates are the first formed organic molecules resulting
from photosynthesis that serve as the primary source of energy
and take part in defense against plant pathogens and wounds. The
carbohydrate content decreased in the metal-treated plants with
increasing metal concentrations. The highest carbohydrate content of
85.49 £ 0.42 mg g! FW and the least of 58.68 £ 0.5 mg g' FW were
reported in untreated control plants and plants treated with 2000 ppm
Pb, respectively [Table 2]. In response to heavy metal stress, the
carbohydrate content has decreased in some plants such as Cajanus
cajan [38]; however, it has also been found to increase in some plants
such as Glycine max at lower heavy metal concentrations [39]. The
loss of carbohydrates in the metal-treated plant can be attributed to the
defective photosynthetic machinery caused by metal accumulation. In
turn, the suppression in carbohydrate metabolism results in stunted
growth [40].

3.5. Effect of Different Concentrations of Cd, Hg, and Pb on
Total Phenol and Flavonoid Content

Phenols and flavonoids are non-enzymatic antioxidants that get
stimulated in response to heavy metal stress and serve as stress tolerance
bioindicators. These secondary metabolites scavenge the molecular
species of active oxygen and serve as metal chelators [41]. In the present
study, the phenol content increased up to 125 ppm of Cd, 150 ppm of Hg,
and 1200 ppm of Pb and further decreased. The highest phenol content
of 169.09 + 0.25 mg g' gallic acid equivalent (GAE) and the least of
86.63 + 0.06 mg g”' GAE were observed at 125 ppm Cd and 2000 ppm
of Pb, respectively [Table 2]. The flavonoid content increased in a dose-
dependent manner up to 125 ppm of Cd, 175 ppm of Hg, and 1200 ppm
of Pb and further decreased with increasing concentrations. The highest
flavonoid content of 7.66 + 0.21 mg g™! quercetin equivalent (QE) and
lowest of 1.99 + 0.34 mg g' QE were recorded at 1200 ppm Pb and
250 ppm of Cd, respectively [Table 2]. Studies have reported increasing
phenol and flavonoid content with increasing metal concentrations [27].
The phenols and flavonoids increased initially but decreased further due
to inhibition of peroxide formation by products of secondary oxidation
further formed at higher concentrations [42].
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Table 1: Effect of different concentrations of Cd, Hg and Pb on growth parameters of Mucuna pruriens.
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Data represent mean values+SE of three replicates; each experiment was repeated thrice. Means with common letters are not significantly different at P<0.05 according to Duncan’s multiple range test (DMRT). Cd: Cadmium, Hg: Mercury,

Pb: Lead..

5.9+0.1°

5.83+0.15°

Root length (cm)

3.6. Antioxidant Activity in Response to Heavy Metal Stress

Plants have adopted a defensive antioxidant system to combat
heavy metal stress and alleviate cellular damage by scavenging free
radicals that would otherwise cause cellular damage. Plants have
exhibited antioxidant activity in response to heavy metal stress [43].
DPPH radical scavenging activity, reducing power assay, and metal
chelating activity were performed to determine the antioxidant
potential of M. pruriens under heavy metal stress. The effects of
Cd, Hg, and Pb concentrations on DPPH radical scavenging, metal
chelating activity, and reducing potential in M. pruriens are presented
in Figure 3 and Table 3, respectively. The DPPH activity and metal
chelating activity increased up to 125 ppm Cd, 150 ppm Hg, and
1200 ppm Pb whereas the reducing power increased up to 125 ppm
Cd, 125 ppm Hg, and 1000 ppm Pb. The highest DPPH activity
of 81.76% and the lowest of 65.57% were achieved at 150 ppm of
Hg and 2000 ppm of Pb, respectively. The highest metal chelating
activity of 73.23% and the lowest of 58.14% were achieved at 1200
and 2000 ppm of Pb, respectively. The highest reducing power
activity of 0.71 OD was observed at 125 ppm Cd and 1000 ppm Pb,
and the lowest activity of 0.46 OD was observed at 200 ppm Pb.
The initial increase and further decrease in antioxidant activity can
be attributed to the increase and further decrease in the phenolic and
flavonoid content.

3.7. Accumulation of Heavy Metals in Seedlings of M. pruriens

The bioaccumulation analysis of three heavy metals, Cd, Hg, and
Pb, in M. pruriens exposed to 10 different concentrations, represents
the pattern of metal accumulation. It also helps understand the effect
of these accumulated metals on plant growth and its biochemical
characteristics. The effects of the concentrations of Cd, Hg, and Pb
on metal accumulation in M. pruriens are presented in Figure 4. The
highest metal accumulation of 940.32 + 0.48 mg kg' DW of Pb,
143.49 £ 1.12 mg kg™' DW of Hg, and 7.19 + 0 mg kg™' DW of Cd
was observed in plants treated with 2000 ppm of Pb, 250 ppm Hg,
and 250 ppm Cd, respectively. Studies conducted in medicinal plants
grown in heavy metal (Cd, Cr, Hg, and Pb) contaminated soil have
reported that the plants have been well adapted to the contaminated
soil and are not suitable for their use in herbal formulations [44].
In the present study, the heavy metals Cd, Hg, and Pb accumulated
in a dose-dependent manner. This indicates that M. pruriens could
uptake, hyperaccumulate, and get well adapted to Cd, Hg, and Pb
toxicity.

3.8. Effect of Heavy Metals on L-DOPA Content in Seedlings
of M. pruriens

The effect of Cd, Hg, and Pb on L-DOPA content in the seedlings of
M. pruriens are presented in Figure 5 and Table 4. In the present study,
the L-DOPA content increased up to 125 ppm Hg, 150 ppm Cd, and
1000 ppm Pb. It decreased further with increasing metal concentration.
The highest L-DOPA accumulation of 105.25 + 0.09 mg g! DW was
observed in 1000 ppm Pb, and the least of 19.97 = 0.11 mg g' DW was
observed in the control plants. The effect of drought stress on L-DOPA
production in Vicia faba L. has been reported by Etemadi ez al. (2018)
[45]. It has been concluded that the drought stress enhanced the L-DOPA
accumulation. The oxidative stress due to heavy metal treatment could
trigger the signaling pathway of secondary plant metabolites [9]. The initial
increase in L-DOPA with metal concentration was due to the induction
of biosynthesis and accumulation of L-DOPA; however, the plants fail
to tolerate the stress induced by a further increase in metal concentration,
leading to reduction in plant growth and inhibition of biosynthetic activity.
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Figure 3: DPPH radical scavenging activity and metal chelating activity of heavy metal (Cd, Hg, and Pb) treated seedlings of Mucuna pruriens (L.) DC. Data
represent mean values + SE of three replicates; each experiment was repeated thrice. Means with common letters are not significantly different at P < 0.05
according to Duncan’s multiple range test (DMRT). Cd: Cadmium, Hg: Mercury, Pb: Lead.
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Figure 4: Accumulation of Cd, Hg, and Pb in seedlings of Mucuna pruriens (L.) DC. Data represent mean values + SE of three replicates; each experiment was
repeated thrice. Means with common letters are not significantly different at 7 < 0.05 according to Duncan’s multiple range test (DMRT). Cd: Cadmium, Hg:
Mercury, Pb: Lead.
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Table 3: Reducing power of Mucuna pruriens subjected to heavy metal stress.

Cd conc. (ppm) Reducing power Hg conc. (ppm)
Control 0.48+0.02¢ Control
25 0.5740.03% 25
50 0.59+0 50
75 0.65+0® 75
100 0.69+0.01* 100
125 0.71+£0.01* 125
150 0.69+0.05* 150
175 0.68+0% 175
200 0.65+0.05% 200
225 0.64+0* 225
250 0.52+0.05¢ 250

Reducing power Pb conc. (ppm) Reducing power
0.48+0.01° Control 0.48+0.02°
0.52+0.01¢% 200 0.46+0.01°
0.58+0.01° 400 0.55+0°

0.6+0.02° 600 0.59+0¢
0.67+0.01* 800 0.69+0.01°
0.69+0.01* 1000 0.71£0.01°
0.59+0.01° 1200 0.7+0°

0.58+0° 1400 0.7+0.01*

0.57+0.01°% 1600 0.67+0.01°
0.54+0.01<¢ 1800 0.66+0.01¢
0.5+0.01°¢ 2000 0.53+0.01¢

Data represent mean values+SE of three replicates; each experiment was repeated thrice. Means with common letters are not significantly different at P<0.05 according to Duncan’s

multiple range test (DMRT). Cd: Cadmium, Hg: Mercury, Pb: Lead.

Table 4: L-DOPA content in Mucuna pruriens subjected to heavy metal stress.

Cd conc. (ppm) L-DOPA (mg g') DW Hg conc. (ppm)
Control 19.97+0.11¢ Control
25 19.73+0.24 25
50 30.73+0.16 50
75 39.444(.14b¢ 75
100 54.45+0.04%¢ 100
125 63.29+0.06™ 125
150 68.18+0.07° 150
175 66.84+0.08° 175
200 47.89+0.012%¢ 200
225 49.36+0.1% 225
250 40.22+0.1b 250

L-DOPA (mg g') DW Pb conc. (ppm) L-DOPA (mg g') DW
19.9740.11° Control 19.97+0.11"
30.83+0.15" 200 31.07+0.07¢8
44.1+0.12¢ 400 47.97+0.07°
44.26+0.46¢ 600 56.52+0.11¢
58.95+0.15¢ 800 67.77+0.09¢
77.13+0.15* 1000 105.25+0.09°
71.85+0.1° 1200 102.91+0.08
68.76+0.11¢ 1400 99.06+6.86™
56.43+0.1° 1600 98.58+1.28®
47.37+0.1° 1800 97.74+0.16°
68.33+0.14¢ 2000 84.04+0.21¢

Data represent mean values+SE of three replicates; each experiment was repeated thrice. Means with common letters are not significantly different at P<0.05 according to Duncan’s

multiple range test (DMRT).
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Figure 5: HPLC chromatogram for (a) Standard, (b) Control, (c and d) - 25 ppm
and 125 ppm Cd treated seedlings of Mucuna pruriens (L.) DC. Cd: Cadmium.

4. CONCLUSION

The present research enables an understanding of the effect of Cd, Hg,
and Pb on the pattern of metal accumulation, the vegetative growth,
and biochemical and physiological responses in M. pruriens. The study

provides insight into the metal stress tolerance ability of the plant.
Despite the negative impact of the heavy metals on plant growth, it has
been observed that L-DOPA content has increased significantly up to
specific heavy metal concentrations. This concept can be implemented
to promote L-DOPA production of M. pruriens. by growing them in
heavy metal-contaminated soil. As a future perspective, studies on
molecular and proteomic approaches to elucidate and identify the
target genes or proteins triggered by the heavy metals and enhance the
secondary metabolite production have to be studied.
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