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ABSTRACT

Microalgae biomass and their products are invaluable bio-resources with numerous applications in food, feed, 
pharmacy, cosmetics, and environments. The effects of light intensities on biomass, chlorophyll-a, and total 
carotenoid production by Chlorella sorokiniana and Ankistrodesmus falcatus were studied in Bold’s Basal Medium 
(BBM) and Poultry Medium (PM) as the growth media. The growth of C. sorokiniana and A. falcatus increased 
with increase in light intensity in PM and was inhibited at 1786 lux in C. sorokiniana in BBM. PM supported higher 
biomass production by C. sorokiniana than BBM while it was the reverse for A. falcatus. A. falcatus produced higher 
(P ≤ 0.05) concentrations of chlorophyll-a than C. sorokiniana in both media. The highest carotenoid concentration 
of 11.84 mg/g-biomass was accumulated by C. sorokiniana in PM as against 7.027 mg/g-biomass obtained in BBM. 
On the other hand, the highest carotenoid concentration of 7.633 mg/g-biomass was accumulated by A. falcatus in 
BBM as against 4.299 mg/g-biomass obtained in PM. It is interesting to note in the present study that a cheap medium 
such as PM supported higher biomass and carotenoid production by C. sorokiniana than BBM.

1. INTRODUCTION

Food insecurity and need for functional foods have been increasing 
due to rapid population growth. It is especially true for the developing 
countries where majority of the populace live under poverty level and 
are thus malnourished. There is therefore an urgent need to explore 
alternative sources of cheap and nutritionally rich foods.

Microalgae are very good sources of proteins [1-3], 
carbohydrates [4], carotenoids [5-7], chlorophylls [8-10], and a variety 
of vitamins and pro-vitamins depending on the species and culture 
conditions [3,11-13]. Many species also accumulate high concentrations 
of various forms of lipids (both saturated and unsaturated) that can 
be converted to biodiesel [14] or used as functional food supplements 
to combat hunger and diseases [15]. Many species of microalgae 
therefore have great potentials as foods and food supplements.

Another important characteristic of microalgae is that they are 
ubiquitous with high photosynthetic efficiency and high growth 
rates [16-18]. Thus, their productivities can be orders of magnitude 
higher than those of the higher plants. They can be cultivated all the 
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year round and even in places that are not suitable for conventional 
agriculture. In comparison with other microorganisms, they can be 
cultivated on cheap and easily available media such as agricultural 
and food processing wastewater. This also means that wastewater 
treatment can be coupled with production of microalgae biomass and 
metabolites for various applications [19,20]. Metabolite production 
from microalgae is environmentally friendly since they use up carbon 
dioxide for photosynthesis and generate oxygen making their growth 
activities close to carbon neutral [16,21,22].

Some important species of microalgae such as Spirulina, Chlorella, 
Nannochloropsis, Phaeodactylum, and Dunaliella are already 
cultivated for various purposes [2,3]. However, there are still a lot of 
species that are yet to be evaluated. This is especially true for many 
African countries where research activities on microalgae are still 
very low.

Among the important components of microalgae are chlorophylls 
and carotenoids. Chlorophylls have many useful applications 
in food industries as colorants and nutraceuticals. They are also 
applied as ingredients in cosmetics and pharmaceutical preparations 
as anti-inflammatory, anti-mutagenic [23,24], and antimicrobial 
agents [25,26]. Carotenoids have several health benefits in man 
and animals and are used as colorants in aquaculture feed, as 
coloring agent in human food, and as food supplements due to 
their antioxidative properties. They are used in pharmaceutical 
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preparations and costimetics as anti-inflammatory, anti-carcinogenic, 
and antimicrobial agents [6,18,27].

The demand for natural pigments such as chlorophylls and 
carotenoids has been increasing with increase in human population 
and the increased awareness and perceptions of the negative health 
implications of consuming synthetic pigments [28,29]. The world 
market price for carotenoid was estimated to be about 1.24 billion 
US dollars in 2016 and it was estimated to increase up to 1.53 billion 
dollars by the year 2021 [6,30]. According to the Market Research 
Report 2019, (Report Code 4411) the carotenoid market price is 
expected to go up to 2.0 billion USD by the year 2026 [31]. Algal 
products such as the biomass, chlorophylls, and carotenoids are 
indispensable components of human and animal diet [32]. Despite, 
the functionality of microalgae pigments such as chlorophylls and 
carotenoids (beta-carotene, phycocyanin, astaxanthin, and lutein) as 
food supplements and colorants, they are still very expensive and not 
affordable by many poor rural dwellers. Several species of microalgae 
grow freely at various locations and have the potentials to be employed 
in the production of useful biomass, chlorophylls, and carotenoids 
to provide solutions for food, health, and environmental problems 
of the community/rural dwellers. To make microalgae biomass and 
pigments cheap and affordable, there is a need to isolate local species 
and establish their growth on locally available nutrients. It has been 
estimated that the nutrients required for cultivation, maintenance, and 
production of metabolites from microalgae contribute up to 50% of the 
total production costs [33,34]. Thus, the use of agro-industrial wastes 
in microagal nutrient formulation will go a long way in reducing the 
production cost and mitigate environmental pollution. As a means 
of increasing protein supply, poultry farms have been increasing 
steadily in both numbers and sizes, leading to generation of huge 
amounts of poultry manure, which when disposed untreated causes 
a lot of environmental pollution. The composition of poultry manure 
depends on the type of feed but generally it contains a lot of nitrogen 
(mainly in form of ammonia), potassium, and phosphorus [34] all 
of which are essential for the growth of microalgae. Light is also 
among the most important factor affecting photoautotrophic growth 
of microalgae. Although Nigeria and most tropic countries have 
abundant light throughout the year, it is important to optimize light 
intensity since high light intensities inhibit cell growth and metabolite 
formation [35].

The aim of this research work was to evaluate the influence of light 
intensity and poultry waste based growth medium on the production 
of cell biomass, total chlorophyll, and carotenoid contents by two 
local microalgae isolates (Chlorella sorokiniana and Ankistrodesmus 
falcatus).

2. MATERIALS AND METHODS

2.2. Microalgae Species
Two species of microalgae (C. sorokiniana and A. falcatus) were 
supplied by Prof. N.O. Nweze of the Department of Plant Science 
and Biotechnology University of Nigeria, Nsukka. The microalgae 
species were activated by cultivating in sterilized Bold’s Basal 
Medium (BBM) and Poultry Medium (PM) for 14 days at room 
temperature (27 ± 2°C) using sun light as the light source. They 
were transferred and maintained in BBM and poultry agar slant 
cultures. The slants were stored in a refrigerator at 8°C and sub-
cultured every 2 weeks into fresh liquid BBM or PM for use in the 
experiments.

2.2. Preparation of BBM
The BBM was prepared according to the methods of Martos [36]. The 
appropriate volume of the major element stock solution was dispensed 
into a 2000 ml round bottom flask. One milliliter each of the trace 
element stock solution and the diluted H2SO4 were added. The pH of 
the medium was adjusted to 6.8 with 0.1 M NaOH and the volume was 
made up to 1000 mL with distilled water. The medium was dispensed 
in 200 mL aliquots into 900 mL flat bottom jars. The jars were plugged 
with cotton wool, wrapped with aluminum foil and autoclaved at 
121°C, 1.0 atm for 20 min. 

2.3. PM
Poultry (chicken) droppings were obtained from a poultry farm at the 
Faculty of Veterinary Medicine, University of Nigeria, Nsukka. The 
chicken droppings were air dried for 24 h and 75 g was dissolved in 
1 l of tap water. This was made up to 30 l and filtered with a cheese 
cloth to remove debris. The filtrate was left to stand for 2 days and then 
autoclaved at 121°C and 1.0 atm for 20 min [37]. 

2.4. Light Illumination
Three rechargeable 592.6 cm florescent tubes were installed inside a 
wooden frame and used as a source of light. The intensity of light on 
the culture surface was varied by varying the distance of the cultures 
from the florescent tubes. The light intensity was measured using a lux 
meter (Custom Lux Meter, Model lx-1000, China). The culture flasks 
were placed at distances of 3.75 cm, 7.75 cm, and 10.75 cm from the 
light source. These positions corresponded to 1786 lux, 1307 lux, and 
702 lux, respectively.

2.5. Pre-culture of the Microalgae Species
Twenty milliliters (20 mL) of the stock microalgae culture (section 
2.1) were used to inoculate 200 mL of BBM or PM in 900 ml glass 
jars to activate the microalga cells before the main experiments. The 
cultures were incubated at room temperature (27 ± 2°C) and cultivated 
for 14 days with intermittent manual shaking twice daily to re-suspend 
the cell sediments and facilitate oxygen and carbon dioxide transfer. 

2.6. Effects of Light Intensities on the Growth, Chlorophyll-a, 
and Total Carotenoid Production by C. sorokiniana and 
A. falcatus in Bold’s Basal and Poultry Media
Thirty six glass jars each with a total volume of 900 mL (section 2.5) 
were used for the experiment. BBM or PM (250 mL) was dispensed 
into each jar, plugged with cotton wool and a sampling tube was 
inserted into each jar. They were autoclaved at 121°C (1.0 atm) for 
15 min. After cooling, 18 of them were inoculated with 50 ml of 
C. sorokiniana culture with cell concentration of 2 × 107 cells/ml 
while the other 18 jars were inoculated with A. falcatus culture with 
the same cell concentration. For each species of microalgae, three jars 
were incubated at 702 lux, three at 1307 lux while the other three were 
incubated at 1786 lux. The cultivation was done inside the wooden 
box at room temperature (27 ± 2°C) for 15 days. Sample (0.5 mL each) 
was withdrawn every 3 days to measure biomass, chlorophyll, and 
carotenoid concentrations. 

2.7. Analytical Methods
2.7.1. Measurement of cell growth
Cell growth was measured by counting the cells and measuring the 
optical densities. Hemocytometer was used to count the cell number 
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while UV visible spectrophotometer (Shimadzu Model UV-1200, 
Japan) was used to measure the optical density (OD) at a wavelength 
of 750 nm.

2.7.2. Measurement of chlorophyll and carotenoid concentrations
2.7.2.1. Extraction

Chlorophyll and carotenoids were extracted from wet biomass 
following a modified method of Becker [38]. Five milliliters 
(5 ml) of culture broth were centrifuged at 3000 rpm for 15 min 
and the supernatant was discarded. The pellet was washed twice by 
re-suspending in 5 ml of distilled water and centrifuging at 3000 
rpm for 10 min. The supernatant was discarded and 3 ml of 90% 
methanol was added and vortexed for 5 min to mix. The mixture was 
incubated in a water bath at 60°C for 60 min. The mixture was then 
made up to 5 ml with 90% methanol and centrifuged at 3000 rpm for 
another 15 min. The supernatant was collected in a clean test tube and 
used for absorbance reading.

2.7.2.2. Measurement of the absorbance

The extract was diluted with distilled water and the absorbance 
measured at 470, 650, 655, and 750 nm using a UV visible 
spectrophotometer (Shimadzu Model UV-1200, Japan).

2.7.2.3. Calculation of the chlorophyll and carotenoid contents

Chlorophyll-a and total carotenoid contents were calculated from the 
following equations:

Chlorophyll a; Chl-a (μg/ml) = 16.72 A660 – 9.16 A650

Chlorophyll b; Chl-b (μg/ml) = 34.09 A650 – 15.28A660

Carotenoid; carotenoids (μg/ml)= (1000A470 – 1.63 chl a – 104.9  
chl b)/221.

Where A660, A650, and A470 represent absorbance at 660 nm, 650 nm, 
and 470 nm, respectively, Branisa et al. [39].

2.8. Statistical Analysis
The experiments were performed in triplicates and the data generated 
were analyzed by one way analysis of variance. Where there was a 
significant difference, the means were separated using least significant 
difference.

3. RESULTS

3.1. Growth in BBM
As shown in Figure 1, the growth of C. sorokiniana and A. falcatus in 
BBM increased with increase in the light intensity. This result agrees 
with the work of Metsoviti et al. [40], who reported an increase in the 
growth rate of Chlorella vulgaris with increase in light intensity when 
cultivated both indoors and outdoors. However, A. falcatus exhibited 
higher growth in BBM than C. sorokiniana with an OD of 1.2 after 
15 days at 1786 lux as against OD of 0.85 obtained for C. sorokiniana 
at the same light intensity and cultivation period. At a lower light 
intensities of 1307 and 702 lux, C. sorokiniana exhibited higher 
growth rate than Ankistrodesmus with optical densities of 0.8 and 
0.65 against 0.7 and 0.4 for Ankistrodesmus, respectively. This result 
implied that at higher light intensity, the growth of C. sorokiniana was 
inhibited. This agrees with the findings of Nzayisenga et al. [41], who 
reported that a light intensity of about 150 µEm−2s−1 was the optimal 
for biomass production by C. vulgaris and Scenedesmus obliquus and 

that increasing the intensity to 300 µE m−2s−1 was inhibitory to their 
growth. This result shows that the intensity of light required by the two 
microalgae differs and that Ankistrodesmus has higher light saturation 
intensity than Chlorella.

3.2. Growth in PM
The growth of the two species of microalgae in PM took a similar 
pattern with the growth in BBM. Their growth increased with increase 
in the light intensity. However, PM favored the growth of Chlorella 
more than Ankistrodesmus. The optical densities were 1.45, 1.33, 
and 1.12 after 15 days of culturing C. sorokiniana at 1786, 1307, and 
702 lux, respectively. The highest OD obtained in A. falcatus was 
1.0 as shown in Figure 2. This might be due to the differences in the 
composition of the two media. PM is known to contain higher nitrogen 
and other elements than BBM [36,37]. This result agrees with the work 
of Kumar et al. [42], who reported that nutrient from poultry excrete 
gave the highest cell growth of their isolate of Chlorella sorokiniana 
among the four animal wastes they tested. In case of Ankistrodesmus, 
there are no reports in literature on the effect of media or light intensity 
on the growth. A comparison of the growth of the two species in PM 
and BBM is shown in Table 1. At a light intensity of 1307 lux, the 
growth of both Ankistrodesmus and Chlorella in PM was significantly 
higher (P < 0.01) than in BBM, showing that at that light intensity, 
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Figure 1: Effect of light intensity on the growth of Chlorella sorokiniana and 
Ankistrodesmus falcatus in Bold’s Basal medium.
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nutrients was limiting in BBM. However, at higher light intensity 
of 1786 lux, there was no significant increase in the growth of both 
Ankistrodesmus and Chlorella in PM, but there was significant 
increase in BBM implying that light was already saturating in PM but 
still limiting in BBM. On the whole, the effects of light intensity on the 
growth of the two species in PM were not significant, probably due to 
the turbidity of the medium which affects light absorption.

3.3. Chlorophyll-a Production in BBM
The results of the effects of light intensities on chlorophyll-a production 
by C. sorokiniana and A. falcatus in BBM are shown in Figure  3. 
For the two microalgae cultivated in BBM, biomass harvested after 
15 days of growth had higher chlorophyll-a content than the one 
harvested on the 12th-day irrespective of the light intensity. In the 
case of C. sorokiniana, the highest light intensity (1786 Lux) gave 
the highest chlorophyll-a content. However, chlorophyll-a contents 
decreased with increase in light intensity in the case of A. falcatus. 
Hence, the highest chlorophyll-a content in A. falcatus was obtained 
on day 15 at 702 lux which was the lowest light intensity employed 
in this study. Although light is important for chlorophyll synthesis, 
very high light intensities inhibit chloroplast development [43,44]. On 
the whole, the chlorophyll-a contents of A. falcatus were significantly 
higher (P < 0.05) than those of C. sorokiniana under all the light 
intensities investigated.

3.4. Chlorophyll-a Production in PM 
The results of chlorophyll-a contents of C. sorokiniana and A. falcatus 
in PM are shown in Figure  4. When the two microalgae were 
cultivated in PM, light intensity did not have any significant effects 
on the chlorophyll-a contents of C. sorokiniana but harvesting the 

biomass after 12 days of growth gave higher chlorophyll-a contents 
than harvesting after 15 days. In the case of A. falcatus, the highest 
chlorophyll-a content was obtained at the lowest light intensity (702 
lux) from biomass harvested on day 15. As in the case of BB medium, 
increase in light intensity led to a reduction in the chlorophyll-a 
contents in A. falcatus. In other words, high light intensity inhibited 
chlorophyll-a synthesis in A. falcatus irrespective of the medium. As in 
the case of BBM, chlorophyll-a contents of A. falcatus were relatively 
higher than those of C. sorokiniana but chlorophyll-a contents of 
C. sorokiniana cultivated in PM were higher than those cultivated 
in BBM.

3.5. Carotenoid Production in BBM 
The results of carotenoid production by C. sorokiniana and A. falcatus 
in BBM are shown in Figure 5. The carotenoid contents of the two 
microalgae harvested after 9 days of cultivation were very low. Day 
12 was the optimum period for harvesting Chlorella biomass for 
carotenoid extraction in this study and the optimum light intensity was 
1307 lux. This result is similar to the work of Jalal et al. [45], who 
reported that the carotenoid contents of the tropical marine microalgae 
Isochrysis sp. of biomass harvested from a 10-day-old culture grown at 
1200 lux was the optimum. On the other hand, the highest carotenoid 

Table 1: Comparison of the growth of Chlorella sorokiniana and 
Ankistrodesmus falcatus in BBM and PM under different light intensities.

Optical density (660 nm)

Chlorella sorokiniana Ankistrodesmus falcatus

BBM PM BBM PM

702 0.658±006 1.123±0024 0.404±001 0.991±002

1307 0.804±008 1.333±001 0.682±001 1.0±001

1786 1.2±0112 1.48±001 1.002±0112 1.002±001
BBM: Bold’s Basal medium, PM: Poultry medium
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Figure 3: Effect of light intensity on chlorophyll-a production by Chlorella 
sorokiniana and Ankistrodesmus falcatus in Bold’s Basal medium.
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Figure 4: Effect of light intensity on chlorophyll-a production by Chlorella 
sorokiniana and Ankistrodesmus falcatus in poultry medium.
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content was obtained from A. falcatus biomass cultivated at 1786 
lux and harvested on the 15th day. This shows that C. sorokiniana 
requires less cultivation time and a lower light intensity for carotenoid 
production than A. falcatus when grown in BBM. This result is also 
in line with that of Raman and Mohamad [46], who reported that 
cultivation of C. sorokiniana indoors favored astaxanthin production 
than outdoors. Cordero et al. [5] also reported that carotenoid 
production by C. sorokiniana was favored by a light intensity below 
690 micromole/m/s. It is important to note that except for the highest 
light intensity (1786 lux), carotenoid contents of C. sorokiniana 
biomass were higher than those of Ankistrodesmus while chlorophyll-a 
contents of A. falcatus were higher than those of C. sorokiniana.

3.6. Carotenoid Production in PM 
The results of carotenoid production by C. sorokiniana and A. falcatus 
in PM at different light intensities are shown in Figure 6. Carotenoid 
production by C. sorokiniana increased with increase in light intensity 
for the cells harvested on the 12th day. However, the highest carotenoid 
content was obtained from biomass cultivated at 1786 lux and harvested 
after 15 days. This was the opposite of what was obtained in BBM 
culture and might be due to the turbidity of PM that shielded the alga 
from high light intensity. For the A. falcatus, the highest carotenoid was 
obtained after 12 days of cultivation at a light intensity of 1307 lux. 
This result is different from the results obtained in BBM. These results 
suggest that the length of time required for cultivating microalgae for 
carotenoid production varies from one microalga strain to another and 
it is also affected by the type of medium used. In PM, the carotenoid 
contents of C. sorokiniana were more than 4 times higher than those 
of A. falcatus under all the light intensities tested. Furthermore, PM 
favored carotenoid accumulation in C. sorokiniana more than BBM.

Although several growth media are employed in cultivation of 
microalgae, the choice of the medium to be used depends on the cost, 
target product(s), accessibility, and the choice of individual laboratory 
based on experience. BBM is widely used to cultivate fresh water 
microalgae because it contains the nutrients required for microalgae 
growth in the appropriate proportions [47]. In addition to the defined 
synthetic media, different agro-industrial wastes are also employed in 
microalgae cultivation to reduce cost. Such agricultural wastes include 
poultry droppings [48,49], cow dungs, palm oil, and rubber industrial 
effluents [50]. It is interesting to note that in this study, PM supported 
better cell growth as well as chlorophyll-a and carotenoid accumulation 
than BBM. This is very significant considering that BBM is expensive 

and not easily available in many developing countries. The use of PM 
will drastically reduce the cost of cultivating microalgae in developing 
countries and thus facilitate establishment of cottage microalgae 
cultivating industries in rural communities.
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