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ABSTRACT

Pseudomonas species or pseudomonads are known for their metabolic and ubiquitous diversity which enables them 
to survive in extreme conditions such as in marine and terrestrial environments as well as in association with flora and 
fauna. The sequenced genomes of many strains of Pseudomonas spp. show their vast repertoire of biotechnological 
applicability potential with respect to their genetic makeup and also exhibit industrially important applications due to 
physicochemical tolerances to extreme conditions (such as temperature, pH, and toxic chemicals and solvents). The 
best studied species include opportunistic human and plant pathogens, soil bacteria, and the plant growth-promoting 
pseudomonads. Pseudomonas species also are plant-commensals known for exhibiting effective antimicrobial 
activities and enabling plants to retrieve key nutrients. Hence, studying Pseudomonas with respect to its various 
characteristics in response to plant interactions is a far more important subject to be studied for their effective 
applications. In this review, the Pseudomonads have been analyzed extensively for their genome; biomolecules 
produced and plant beneficial activities. Thus, the present work helps future endeavors for Pseudomonad research 
by streamlining the areas.

1. INTRODUCTION

Understanding of the beneficial activity and diversity of plant-bacterial 
association is important for maintenance and sustainable agriculture 
in agricultural-ecosystems [1-3]. The plant growth promoting 
rhizobacteria colonize the rhizosphere rapidly, suppress soil-borne 
pathogen at the root surface, and stimulate plant growth [4-7].

Since the dawn of agriculture, humans have been battling against 
plant diseases and pests which were greatly helped by the invention 
and deployment of chemical pesticides use which enhanced crop 
production increasing the need for persistent disease management 
strategies in 20th century. Although chemicals are available for plant-
pest and disease-management, no alternatives are available for pest 
resistance for pesticides. The environmental, health, and safety 
concerns of these chemical products have increased the need for search 
for alternatives to control plant diseases and pests [8,10].

One group of bacteria that have become a focal point for research on 
biocontrol of plant diseases is the genus Pseudomonas (ubiquitous 
Gram-negative rod shaped gamma-proteobacteria possessing polar 
flagella) [13,51]. Their physiological and ecological diversity reported 
globally (which can extended to genetic level) are known for their 

*Corresponding Author 
Anoop R. Markande,  
Department of Biological Sciences, PD Patel Institute of Applied Sciences,  
Charotar University of Science and Technology, Anand, Gujarat, India. 
E-mail: anoopmarkande@gmail.com

secondary metabolite production which are applicable for integrated 
biocontrol of plant diseases [18-20]. The genome size of Pseudomonas 
species typically varies from 4.6 to 7.1 Mb having G+C content of 57.8 
to 66.6% with 4237–6396 predicted genes [21]. Using multi-locus 
sequencing techniques, genus Pseudomonas, currently, possesses more 
than 100 species with further groups and sub-groups [3,22,24,26]. 
The details of pseudomonads whose genome has been elucidated are 
discussed in Table 1.

Genus Pseudomonas are ecologically significant and the most 
heterogeneous group termed as pseudomonads are characterized by 
the presence of a complex enzymatic system and elevated metabolic 
versatility. With simple nutritional requirements Pseudomonas spp. 
are found in nature, from industrial equipment, oils-pills, aseptic 
solutions, cosmetics, medical products, and clinical instruments [29]. 
Certain they are known to be pathogens or carriers for plants and 
human infections, while others strains and species exhibit biocontrol 
and bioremediation activities [14,18]. They have also been reported 
for their ability to produce effective biosurfactants [31] and efficient 
remediation capabilities [33,35].

Fluorescent pseudomonads are visually distinguishable than 
other species in the genus due to their water-soluble fluorescent 
pigment production. Root associated pseudomonads in rhizosphere 
(which is a zone of high microbial activity) enhances and acts 
in the management of plant health [20,24,25]. They are known 
to act as both plant pathogens (Pseudomonas syringae) and 
plant growth promoters (fluorescent pseudomonads) and fight 
the phytopathogens [22,26,27]. They are known to be rapid root 
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Table 1: Genome studies of Pseudomonads

Strain Source of isolation References

P. aeruginosa 2192 Chronically-infected 
cystic fibrosis patient

 

Mathee et al., 
(2008) [18]

P. aeruginosa C3719 “Manchester epidemic 
strain” isolated from 
cystic fibrosis patient

P. aeruginosa LESB58 “Liverpool epidemic 
strain”isolated from cystic 
fibrosis patient

Winstanley  
et al.,(2009) 
[28]

P. aeruginosa PA14 Wound, from culture 
collection at University of 
California at Berkeley

Lee et al., 
(2006) [29]

P. aeruginosa PAO1 Burn wound Stover et al., 
(2000) [30]

P. entomophila L48 Fruit or fruit fly Vodovar et al., 
[31]

P. fluorescens Pf-5 Soil Paulsen et al., 
(2005) [32]

P. fluorescens PfO-1 Soil Silby et al., 
(2009) [10]P. fluorescens SBW25 Leaf of sugar beet

P. putida KT2440 Cured strain lacking the 
TOL plasmid

Nelson et al., 
(2002) [33]

P. putida W619 Endophytic strain isolated 
from poplar

Taghavi et al., 
(2009) [34]

P. stutzeri A1501 Rice paddy soils Yan et al., 
(2008) [35]

P. syringae pv. oryzae Rice Reinhardt  
et al., (2009) 
[36]

P. syringae pv. phaseolica 
1448A

Bean Joardar et al., 
(2005) [37]

P. syringae pv. syringae 
B728a

Leaf of bean Feil et al., 
(2005) [38]

P. syringae pv. tomato 
DC3000

Tomato Buell et al., 
(2003) [39]

P. syringae pv. tomato T1 Tomato Almeida et al.,  
[40]

P. protegens CHA0 Developmental stages of 
cabbage root fly

Flury et al. 
(2019) [41]

P. syringae pv. syringae 
B728

Common bean Helmann et al. 
(2019) [42]

P. syringae pv. actinidiae 
(Psa)

Kiwi fruit plant Donati et al. 
(2020) [43]

P. chlororaphis subsp. 
aurantiaca ARS-38

Cotton Mehnaz et al. 
(2020) [44]

P. aeruginosa AJD 2 Monocropic cotton 
rhizosphere

Joshi and 
Chitanand 
(2020) [45]

colonizers directly or indirectly acting as plant growth promoter or 
plant pathogen [16,43].

The mechanism of action of the plant growth promoting pseudomonads 
by synthesis of various metabolites such as antimicrobial biomolecules 
(antibiotics) and volatiles such as hydrogen cyanide (HCN) [45], 
production of siderophore-nutrient competition (even iron), niche 
exclusion [47], and systemic resistance induction (ISR) [48,50,51]. 
The present review covers different aspects of plant growth promoting 

bacterial (fluorescent pseudomonad) interaction with plants and 
rhizospheric microorganisms enhancing the disease resistance with 
agricultural and horticultural uses.

2. TAXONOMY

At present, the plant pathogenic Pseudomonas species are 
taxonomically restricted to specific group of organisms using rRNA 
gene analysis and about 21 plant associations are reported with 50 
different pathogenic strains (termed pathovars or pv- a confusing 
concept of taxonomy) of P. syringae. The complete genomes of 
three important pathovars belonging to P. syringae have been 
sequenced. Host reactions to pathogen infections have been studied 
extensively because P. syringae pv. tomato could infect other 
model plants such as Arabidopsis. The common symptoms of plant 
pathogenic pseudomonads that cause various important diseases 
show cankers, galls, blights, soft rots, leaf, and stem spots. Other 
important virulence factors causing pathogenicity include type III 
secretion system, production of secondary metabolites (hormones, 
phytotoxins, pectolytic enzymes, exopolysaccharides, etc.), and ice 
nucleation activity. No single strategy has been effective against 
plant pathogenic pseudomonads and may need polyphasic strategies 
(combinations of physical, chemical, and biological strategies) [9]. 
For specific detection of plant pathogenic pseudomonads, tools 
of molecular biology are increasingly gaining diagnostic 
importance [20,27,52].

2.1. P. syringae Caused Symptoms on Plants
A variety of P. syringae pv. syringae symptoms on woody plants 
are dependent on the microbial strain, plant part infected, and the 
environment [53]. Disease symptoms of P. syringae infections are due to 
plant-microbe interactions involving molecular interactions modulated 
by biotic and abiotic conditions and hence the concept in P. syringae 
having continuum of potential pathogenesis with evolutionary 
significance [54]. Multiple symptoms can occur simultaneously on a 
single plant, such as (1) turning of brown to black coloration of flowers 
and/or flower buds, (2) buds-dead and dormant, (3) necrotic leaf spots, 
(4) discolored and/or blackened leaf veins and petioles (due to systemic 
invasion and infection), (5) fruit spots and blisters, (6) shoot-tip die-
back (appearing as dead and blackened twig tissue extending to some 
distance from the tip), and (7) stem cankers: Bark depressions which 
darken with age [53,55]. The bacterium was found to have the ability 
to cause specific symptomology of each organ of the host plant and can 
form association with plant opening (such as stomata or trichomes, and 
wounds) resulting in apoplast infection. The pathogen could survive 
environmental in winter, wind dispersal, or even rain [56]. Causative 
agent of bacterial canker of Kiwi fruit – P. syringae pv. actinidiae (Psa) 
encodes three LuxR solos and no cognate LuxI. Thus, displaying a 
non-canonical quorum sensing system, Psa could perceive the acyl-
homoserine lactones (AHLs) of neighboring bacteria and regulate its 
virulence in the host [57].

2.2. The Pseudomonas fluorescens Group
Many strains of pseudomonads are fluorescent made up of seven 
subgroups and around 50 studied strains and species. They are common 
surface-microflora of virtually all plant tissues, along with many other 
natural habitats. Some of these plant associated strains are excellent 
promoters of plant growth and antagonists of plant pathogens. These 
strains have been enhanced as commercial products of plant growth 
promotion and agricultural bio-control agents (biofertilizers and 
biopesticides) [3,26].
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Fluorescent pseudomonads produce phytohormones – indole acetic 
acid (IAA), gibberlins, cytokinins, and ethylene production inhibitors, 
helping in increasing the plant root absorptive surface for nutrient and 
water uptake [11]. They can act directly on the nutritional status and 
thus growth and physiology of plant they colonize. P. fluorescens having 
aminocyclopropane-1-carboxylic acid- or ACC-deaminase activity [18,58] 
is important as it controls the quantity of plant ACC deaminase left for 
ethylene biosynthesis [59]. When checked using in vitro plate assays of the 
fluorescent strain, P. aeruginosa PJHU15 was found to be positive for the 
production of IAA and phosphate solubilization [60,61]. This fluorescent 
P. aeruginosa was used in consortium with Trichoderma harzianum 
and Bacillus subtilis leading to improvement of plant health inducing 
the systemic resistance and proteome-level changes when challenged 
with Sclerotinia sclerotiorum [3,48,59,62,63]. The consortium was also 
modulated for nutritional and antioxidant quality of pericarps of pea seeds 
[64]. Mutualistic, host associated bacteria were checked on model plant 
Arabidopsis against P. fluorescens and here, commensal and pathogenic 
lifestyles of these host-associated bacteria convergently lost and gained 
in multi-lineage homologous recombination further constituting the early 
step of bacterial differentiation into pathogenic and commensal lifestyles 
[65].

A significant group of players in crop growth, yield, and maintenance 
having capability, as phosphate solubilizing and biocontrol agents 
are termed as plant growth promoting rhizobacteria (PGPR). 
Pseudomonads possess many PGPR traits such as (i) rapid growth 
in vitro and provision for mass production; (ii) utilize seed and 
root exudates rapidly; (iii) colonize and dominate the rhizosphere, 
spermosphere, and even in the interior of plants; (iv) bioactive 
metabolite production (volatiles, siderophores, growth promoting 
substances, and antibiotics); (v) environmental stress resistance, 
and (vi) compete aggressively with other microorganisms. They 
are also responsible for the innate suppressiveness of some soils to 
pathogens [3,53,61,66-68]. The pseudomonads exhibited spatial 
separation from the pathogen on the above ground plant parts, either 
in the stem [69] or on the leaf surface [70]. Pseudomonads which have 
been reported to possess PGPR traits are discussed in Table 2.

Pseudomonas brassicacearum, a harmless commensal and a member 
of Pseudomonas fluorescence group containing more than 51 species, is 
known for its plant growth promotion (PGP) and biocontrol activities. It is 
also closely related to P. corrugata, an opportunistic phytopathogen [71].

3. PLANT DISEASE PROTECTION

3.1. Antibiosis
Fluorescent pseudomonads are known producers of variety of 
antibiotics and act as biocontrol agents [3,17,24,46,71]. The 
biocontrol agents produced by fluorescent pseudomonads include 
pyocyanin [17], pyrrolnitrin [73], phenazine-1-carboxylic acid [29], 
2,4-diacetylphloroglucinol (Phl), and pyoluteorin [74]. P. fluorescens 
SF4c produces more than one functional bacteriocin (such as S-type 
bacteriocin and phage-tail-like bacteriocin-Tailocins) by their regulator 
PrtR gene [75]. Flury et al. (2019) showed the role of insects such as 
cabbage root fly, Delia radicum in different developmental stages by 
harboring persistant root-colonizing P. protegens CHA0 as dispersal 
agents to new host plants [76].

3.2. Toxic Products (HCN Production)
Fluorescent pseudomonads have been long known for their production 
of HCN in disease suppression [77,78]. The rate of HCN production 

has been reported to be relative to the plant species and its root 
exudates which show in reciprocation, beneficial effect on the growth 
of plant [79]. Some of these act as biocontrol by producing HCN have 
also been reported for their ability to induce plant resistance against 
phytopathogenic fungal diseases [80,81], for example, in wheat [82]. 
Ferramola et al. (2020) used the Larrea divaricata Cav. (jarilla) 
proteins to induce the antibody production and used the cross-reactivity 
of antibodies produced against nosocomial pathogen Pseudomonas 
aeruginosa [83].

3.3. Niche Domination (by Competing for Nutrients Available 
at Root Niches)
Plant exudates dictate the plant dependent rhizosphere microflora. 
The surface surrounding rhizosphere acts as carbon sink [3,49,83] 
providing various nutrients (including important elements, water, and 
other secondary metabolites such as antimicrobials, enzymes, vitamins, 
mucilage, and plant growth regulators). Thus resulting in influx 
of diversity of micro- and macro-organisms (pathogens included) 
at the rhizosphere site and resulting in competition for nutrients 
and consequently at this niche. The fast adaptability of fluorescent 
pseudomonads and other beneficial microorganisms (PGPR) to such 
condition make them effective competitors against pathogens. Most 
of these PGPR are flagellated and respond with chemotactic responses 
for plant exudates reaching root surfaces faster than others [26,84].

Many pseudomonads such as P. psychrotolerans CS51 and 
P. aeruginosa AJD 2 have been studied recently for their genome-wide 
ability to encode PGP traits [86,87]. Singh et al. (2019) have compiled 
an excellent overview of different PGPR strains of Pseudomonas spp. 
and their mediated tolerance responses for different heavy metals [89].

3.4. Cellular Communication
Cellular communication or quorum sensing (QS) within the spatially 
structured P. fluorescens rhizospheres communities was found to 
be possible. QS signaling is dependent on cell density, their spatial 
distribution and mass transfer [91]. N-acyl homoserine lactone (AHL) 
based QS signaling molecules is predominantly seen among Gram-
negative bacteria. Pseudomonad motility on semi-solid surfaces 
is mediated by type IV pili and peritrichous flagella [53,93] and 
Pyoverdine seems to be playing a major role in this locomotion as the 
mutations in pvdQ (which codes for stages of pyoverdine biosynthesis) 
resulted in bacterial motility loss [95].

3.5. Pseudomonas spp. Producing Rhamnolipids
The rhamnolipids are a group of biosurfactants and their production is 
regulated by the QS molecules. These biosurfactants (Rhamnolipids) 
have some extreme properties such as antimicrobial properties 
(antibacterial, antifungal, and antiviral) [72,90,91]. These surfactants 
are important in cell-to-cell interaction (or Quorum sensing), bacterial 
cell motility, cellular differentiation, and water channels formation 
these are the characteristics of the Pseudomonas biofilm. In comparison 
to the chemical surfactants, biological biosurfactants are more valuable 
for the environment and different industrial uses [97,101,103]. 
Rhamnolipids are widely used in agriculture, pharmaceutical, pesticide 
removal, improvement in oil recovery, household cleaning, and food 
industry. P. aeruginosa rhamnolipid shows the wide range of the bacteria 
such as A. faecalis, E. coli, Micrococcus luteus, Mycobacterium phlei, 
Serratia Marcescens, and S. epidermidis. P. aeruginosa rhamnolipids 
are also show the antifungal activity against the Aspergillus niger, 
Aureobasidium pullulans, Chaetomium globosum, and Penicillium 
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Table 2: Pseudomonads as PGPR and plant responses

Bacteria Enzymatic activity Host plant Plant responses References

P. polymyxa Indole-3-acetic acid Wheat grass Increased growth over uninoculated
Control

Holl et al., (1988) [69]

P. putida ACC deaminase Tomato Inoculated tomato seed increased plant 
resistance in 55 days to nine consecutive days 
of flooding and increased resistance to salinity

Grichko and Glick, (2001) 
[94]

P. asplenii ACC deaminase Rape seeds Significant increase in fresh and dry weight 
and biomass yield

Reed and Glick, (2005) [95]

P. putida Indole-3-acetic acid Canola Two–threefold increases in the
length of seedling roots

Ahmad, Ahmad and Khan, 
(2005) [96]

P. fluorescens ACC deaminase Maize Increased root length and fresh
weight under saline conditions

Kausar and Shahzad, (2006) 
[97]

P. fragi Hydrogen cyanide Wheat 
seedlings

Significantly increases the germination 
percentage, germination rate, plant biomass 
and nutrient uptake

Selvakumar et al., (2008) 
[98]

P. fluorescens ACC deaminase Groundnut 
plants

Improved the saline resistance and yield
 
Siddikee et al., (2010) [99]P. putida UW4 Indole-3-acetic acid and ACC

deaminase
Canola Under saline conditions, protected the 

seedling of canola from growth inhibition

P. aeruginosa Hydrogen cyanide Wheat Control fungus diseases and enhance defense 
against phyto-pathogen

Rana et al., (2011) [100]

P. chlororaphis Siderophore production Maize Increased root shoot biomass and seed 
germination rate

Hayat, Ahmed and Sheirdil, 
(2012) [101]

P. fluorescens Psd Tryptophan
Monooxygenase

Sorghum (var. 
Sudex chari)

Increased root shoot biomass and seed 
germination rate

Kochar, Upadhyay and 
Srivastava, (2011) [102]

P. fluorescens EBC191 Indoleacetonitrilase, Nitrile hydrolase NA NA Kiziak et al., (2005) [103]

Pseudomonas sp. K-9 Phenylacetaldoxime
Dehydratase

NA NA Kato and Asano, (2005) 
[104]

P. putida WCS358 Cell envelope components
Flagella

Arabidopsis Inducement of systemic resistance Meziane et al., (2005) [57]

P. fluorescens WCS374 Lipopolysaccharides Radish Inducement of systemic resistance Leeman et al., (1995) [105]

P. fluorescens WCS417 Lipopolysaccharides Arabidopsis
Carnation
Radish

Inducement of systemic resistance Van Peer and Schippers, 
(1992); Leeman et al., (1995); 
Van Wees et al., (1997) 
[105–107]

P. putida WCS358 LPS
or pseudobactin

Arabidopsis
Bean
Tomato

Inducement of systemic resistance Meziane et al., (2005) [57]

P. putida BTP1 Iron-regulated metabolites
N-alkylated benzylamine
Derivative

Bean Inducement of systemic resistance Ongena et al., (2005) [108]

P. fluorescens CHA0
P. fluorescens WCS374
P. putida WCS358
P. putida WCS358
P. putida WCS358
P. putida WCS358

Pseudobactin siderophore Tobacco
Radish
Arabidopsis
Bean
Eucalyptus
Tomato

Inducement of systemic resistance Maurhofer et al., (1994); 
Leeman et al., (1996); 
Meziane et al., (2005); Ran 
et al., (2005) [57,63,84,109]

P. aeruginosa 7NSK2
P.aeruginosa 7NSK2
P. fluorescens P3 pchBA

Salicylic acid Bean
Tobacco
Tobacco

Inducement of systemic resistance and root 
exudates

Maurhofer et al., (1994); De 
Meyer and Höfte, (1997); 
De Meyer, Audenaert and 
Höfte, (1999) [84,110,111]

P. putida WCS358 Cell envelope components Flagella Arabidopsis Inducement of systemic resistance Meziane et al., (2005) [57]

P. fluorescens WCS374 Lipopolysaccharides Radish Inducement of systemic resistance Leeman et al., (1995) [105]

P. fluorescens WCS417 Lipopolysaccharides Arabidopsis
Carnation

Inducement of systemic resistance Van Peer and Schippers, 
(1992) Leeman et al., 
(1996); Van Wees et al., 
(1997) [106,107,109]

(Contd...)
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P. aeruginosa 7NSK2 Pyocyanin and pyochelin
(and/or salicylic acid)

Tomato Inducement of systemic resistance Audenaert et al., (2002) 
[112]

P. fluorescens WCS374 Unknown Radish Inducement of systemic resistance Leeman et al., (1996) [109]

P. fluorescens WCS417 Unknown Radish Inducement of systemic resistance Iavicoli et al., (2003) [113]

P. fluorescens CHA0 Antibiotics
2,4-Diacetyl- phloroglucinol

Arabidopsis
Tomato

Disease suppression Siddiqui and Shaukat, 
(2003) [114]

P. fluorescens Q2-87 2,4-Diacetyl phloroglucinol Arabidopsis Inducement of systemic resistance Weller et al., (2004) [115]

P. putida KT2440 Indole compounds, Siderophore 
synthesis, and phosphate 
solubilization

Soybean and 
Corn

Induced systemic resistance in response to 
certain foliar pathogens

Costa-Gutierrez et al. 
(2020) [116]

P. chlororaphis subsp., 
aurantiaca ARS-38

Production of indole acetic acid, 
hydrogen cyanide, lahorenoic acid, 
phenazines (lipopeptide), and a 
hydroxamate-type siderophore

Wheat Increased root and shoot dry weights in 
wheat seedling growth

Mehnaz et al. (2020) [44]

P. psychrotolerans CS51 Auxin biosynthesis, nitrate and nitrite 
ammonification, phosphate-specific 
transport system, and the sulfate 
transport system

Cucumber Endogenous indole-3-acetic acid (IAA) and 
gibberellins (GAs) resulting in enhanced 
cucumber growth (root shoot length) and 
increased the heavy metal tolerance

Kang et al. (2020) [85]

P. syringae pv. 
tomato  (Pst) DC3000

Pathogencity Arabidopsi 
thaliana

Cation-Chloride Co-Transporter 1 (CCC1) Han et al. (2020) [117]

Table 2: (Continued)

Bacteria Enzymatic activity Host plant Plant responses References

chrysogenum [76,78,93,118]. Rhamnolipids are also shows the antiviral 
activity against TMT and Potato X virus [97].

4. INFLUENCE OF PSEUDOMONAS SPECIES

Among the various rhizobacteria, Pseudomonas spp., are 
aggressive rhizospheres and rhizoplane colonizers of different crop 
plants [47] with broad spectrum of antagonistic activity against plant 
pathogens [79,80,82,119,120]. The primary biocontrol mechanism 
of many pseudomonads includes the production of metabolites such 
as HCN, antibiotics, and siderophores [95]. The beneficial effect 
on dry mass of plant shoot was more evident with HCN producing 
Pseudomonas strains [110], especially P. aeruginosa, a PGPR has been 
found to be an effective biocontrol agent of root pathogens [15,81]. 
Many pseudomonads have been reported for such abilities such 
as control of damping off of cotton seedlings caused by R. solani 
using the antibiotic produced by the P. fluorescens [81] and Septoria 
tritici (Mycosphaerella graminicola) suppressed by P. aeruginosa 
strain leci [111]. The siderophore producing pseudomonads with 
mixtures of Bradyrhizobium japonicum strain USDA 110 improved 
nodulation [3,87,124]. P. fluorescens CHAO, isolated in Switzerland, 
has been the most highly studied pseudomonad capable of producing 
different bioactive compounds (such as IAA, siderophores, antibiotics, 
and HCN) making it the best PGPR so far [89,125].

Plants can be protected from various pests and diseases by the 
strains of pseudomonads which induce systemic resistance or 
ISR [3,24,115-117]. The enhancement of plant defensive capacity due 
to specific chemical and biotic stimuli is called induced resistance [95]. 
It was found that PGPR especially fluorescent pseudomonads induced 
systemic resistance (ISR) leading to plant disease suppression [68,69]. 
Pseudomonads beneficial to plants are studied in Table 3.

Costa-Gutierrez et al. (2020) showed the ISR of soybean and corn 
against certain foliar pathogens due to root-colonizing non-pathogenic 
P. putida KT2440 [118]. Gislason and de Kievit (2020) studied all the 

21 sequenced genomes of P. brassicacearum and P. corrugata clade 
for PGP, biocontrol activities, and pathogenicity. They reported the 
extreme similarity among these two groups of beneficial and harmful 
bacteria. The bacterial ability to manipulate plant immune system to 
form harmful/harmless associations, the physiological and genotypic 
state of the host plant, and other stressors (biotic/abiotic) contribute 
to the plant-microbe interactions and results [71]. The strain P. putida 
KT2440 was found to be excellent root colonizer of agronomical 
important crops with ability to activate the ISR against certain plant 
pathogens [118].

Azelaic acid, a dicarboxylic acid is shown to play the Arabidopsis 
plant signaling specifically promoting the resistance priming by 
salicylic acid (SA) as a part of plant immunity against Pseudomonas 
nitroreducens DSM 9128 [119].

4.1. Lipopolysaccharides
Many reports suggested that pathogenic bacterial cell surface 
components such as the lipopolysaccharides can induce resistance 
(ISR) as reported in P. fluorescens inducement of carnation plants 
against Fusarium oxysporum f. sp. dianthi infections [53]. The LPS 
of P. fluorescens strains was demonstrated to be of important in ISR 
against wilt of radish caused by F. oxysporum f. sp. raphanin [120]. 
However, redundancy of ISR triggering traits in P. fluorescens strains 
was reported for the suppression of Fusarium wilt in radish [121]. In 
A. thaliana, application of isolated LPS of P. fluorescens and P. putida 
has been reported to be involved in ISR against P. syringae pv. tomato, 
triggering ISR which was further found to be having redundancy 
in ISR triggering traits in these strains [12,58,122]. A mutant of P. 
fluorescens strains lacking the 0-antigen no longer triggered ISR and 
the iron-regulated elicitor of ISR in BTP1 (an N alkylatedbenzylamine 
derivative) in bean and tomato [58]. Pseudobactin mediated ISR was 
effective against Tobacco necrosis virus in tobacco with reduction 
in numbers of viral lesions and lesion diameter in comparison to 
pseudobactin-negative mutant of P. fluorescens CHA0 [123].



106    Shaikh, et al.: Journal of Applied Biology & Biotechnology 2020;8(6):101-111

Table 3: Plant beneficial pseudomonads

Strain Origin/ Plant protection Plant-beneficial traits documented Reference

DR54 Sugarbeet Viscosinamide, chitinase Sanguin et al., (2008) [131]

F113 Sugarbeet DAPG, HCN, pyoverdine, ACC deaminase, 
T3SS

Moënne-Loccoz et al., (1998) [132]

KD Wheat T3SS, HCN, pyoverdine Rezzonico et al., (2007) [133]

Pf29A Wheat Pathogen growth inhibition, ISR Barret et al.,(2009) (Barret et al. 2009) [134]

Q2-87 Wheat DAPG, HCN, ACC deaminase Weller, (2007) [135]

Q8r1-96 Wheat DAPG Mavrodi et al., (2006) [136]

SBW25 Sugar beet T3SS, competition, pyoverdine Sanguin et al., (2008) [131]

WCS365 Potato ISR, siderophore, competition, T3SS de Weert et al., (2002) [83]

WCS374 Potato ISR, pseudoverdine, pseudomonine,
salicylate, T3SS

Pieterse et al., (2003) [48]

Pseudomonas spp. Arabidopsis  and Potato Phenazine-production and  Rhizosphere 
colonization

Zboralski et al. (2020) [137]

2P24 Wheat DAPG, HCN, pyoverdine Sanguin et al., (2008) [131]

2-79 Wheat Phenazine-1-carboxylate, pyoverdine, 
anthranalate, T3SS

Cook et al., (1995) [138]

CHA0 Tobacco DAPG, HCN, ISR, pyoluteorin, pyoverdine, 
salicylate, pyrrolnitrin, ISR

Haas and Défago, (2005) [139]

Pf-5 Cotton Pyoluteorin, pyrrolnitrin, DAPG, HCN, 
pyoverdine

Loper, Kobayashi and Paulsen, (2007) [140]

LBUM677 Soybean, Canola and Corn 
gromwell

Increase in plant biomass, total oil content and 
lipid composition

Jiménez et al. (2020) [141]

KT2440 Soybean and Corn Seed germination, root and stem length 
increment under saline conditions

Costa-Gutierrez et al. (2020) [116]

Fluorescent pseudomonads with biocontrol capability (Production of DAPG: 2,4-diacetylphloroglucinol, ACC: 1-aminocyclopropane-1-carboxylate, ISR: Induced systemic resistance, 
HCN: hydrogen)

Figure 1: Pseudomonas sp. - Plant interactions. The orange section shows the inducement of systemic resistance in plants and blue sections indicate the cation 
solubilisations



107 Shaikh, et al.: Plant-associated Pseudomonad interactions 2020;8(6):101-111

4.2. Iron-regulated Metabolites
Under iron limiting conditions, most aerobic and facultative 
anaerobic microorganisms (including fluorescent Pseudomonads) 
produce siderophores (low-molecular weight Fe3+ specific chelators). 
The siderophores sequester ferric ions and form ferrated siderophores 
which are, in turn, taken up by microbial cells through surface 
mediated uptake [124]. Siderophores have also been implicated in 
ISR in several systems like bacterial wilt suppression caused by 
Ralstonia solanacearum in Eucalyptus urophylla (due to P. putida 
siderophores) [64]. It was observed that bacterial SA production was 
not involved in ISR by PGPR as SA production was suppressed in the 
rhizosphere probably due to SA being a precursor of SA-containing 
siderophores such as “pseudomonine” in P. fluorescens [125] and 
“pyochelin” in P. aeruginosa [126] thus being utilized to extinction. 
SA has been reported for its complex ISR activity in tobacco, tomato 
and bean but was predominantly seen in mutant that can synthesize 
it but unable to incorporate it in pyochelin [110,127,144]. Many 
antibiotics are produced by the Pseudomonas spp. strains including 
2,4-diacetylphloroglucinol (DAPG) and its role in ISR was 
recently demonstrated in Arabidopsis. Here, DAPG produced by P. 
fluorescens CHA0 elicited ISR against Peronospora parasitica [131]. 
In tomato, P. fluorescens CHA0 induced DAPG mediated ISR 
against the root-knot nematode Meloidogyne javanica (as DAPG-
negative mutant was ineffective and restoration of effectiveness on 
mutant complementation) [132]. DAPG produced by P. fluorescens 
in Arabidopsis was also found to be effective for the ISR against 
P. syringae pv. Tomato [133]. The phenazine antibiotic pyocyanin 
produced by P. aeruginosa was found to be involved in ISR against 
B. cinerea in tomato [126].

The Pseudomonas spp. ability to induce plant responses are summarized 
in Figure 1. There is a need for model designing for understanding 
the microbe [134]. The ability of the bacterial genus in effectively 
establishing itself as plant pathogen and growth promoter has increased 
the value of studies in this regard. The future of this research relies on 
the development of effective microbial combinations and consortia 
providing a stable community which could work effectively against 
plant pathogens and improve the plant growth [111,129,146].

5. CONCLUSION

For understanding of this complex microorganism Pseudomonas, it 
is imperative to understand the mechanisms involved in plant growth 
promotion and different aspects of these interactions. The rhizospheric 
competence is a prerequisite for effective biocontrol applications, root-
microbe, cell-to-cell and microbe-to-microbe interaction, while genetic 
and environmental factors affecting growth will help in elucidation of 
the mechanisms should be adopted. Thus, there is a need for designing 
different strategic approaches and constructing models to improve the 
efficiency of this bacterium. The discovery of strains from diverse 
ecological niches and targeting biosynthetic genes specifically may 
result with the identification of biomolecules and metabolites, detection 
of their mechanisms involved and may further increase the knowledge 
of the topic. Basic genetic engineering methods can be employed 
coupled with multiple modes of action. Exploration of molecular tools 
and techniques to study the interactions of fluorescent Pseudomonads 
with –plants and – pathogens by studying genome expression and 
proteome level changes during interactions can clarify the complex 
rhizosphere biodiversity. Thus, further studies should focus on the 
identification of genes and gene-products in Pseudomonads and 
plants that decide improved biocontrol and efficient colonization of 
rhizospheres. Further studies into ISR in fluorescent pseudomonads 

can open new horizons for research in signaling network and related 
mechanisms involved.
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