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ABSTRACT 

The discovery of new antimicrobial agents is necessary due to the emergence of multi-drug bacterial 
resistance. The aim of this work was to study the direct and indirect antimicrobial activity of a Beninese 
sample of Cymbopogon giganteus essential oil (EOCG) on multi-drug resistant clinical bacteria, its chemical 
composition, and its cytotoxicity. Direct antimicrobial activity was tested by determination of minimal 
inhibitory concentration (MIC), and indirect activity, by determining Fractional Inhibitory Concentration 
Index using checkerboard [fractional inhibitory concentration indices (FICI); synergy: FICI ≤ 0.5; additivity:  
0.5 < FICI ≤ 1]. EOCG composition was determined by GC-MS and GC-FID and cytotoxicity was determined 
by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphényltetrazolium bromide (MTT) assay. p-Menthane derivatives 
(54.87%) and limonene (12.07%) were detected as major compounds by GC analysis. Our results confirmed 
the direct antimicrobial activity of EOCG, but here on clinical resistant strains (MIC from 0.125% v/v to 0.5% 
v/v). We also show synergistic effects between EOCG and amoxicillin with FICI ranges of 0.12–0.5 against 
two Escherichia coli resistant clinical strains, synergistic to additive effects between EOCG and colistin or 
oxacillin/ampicillin, respectively, against Pseudomonas aeruginosa PA544 and Staphylococcus epidermidis 
SECN361 (two resistant clinical isolates). Our results also indicate that EOCG had low cytotoxicity  
(IC50: 67.06 ± 2.694 μg/ml).

1. INTRODUCTION
The emergence of multi-drug resistant bacteria (MDR) over the 
last years constitutes nowadays a major issue of national and 
international concern. This emergence of antimicrobial resistance 
is due to incorrect and irrational use of antibiotics [1]. Bacterial 
strains have developed resistance to most useful antibiotic classes 
by using different strategies such as elimination by efflux pumps 
or reduction in outer membrane permeability, production of 
antibiotic-modifying or -hydrolyzing enzymes, and mutation in 

antibiotic targets [2,3]. The discovery of new antimicrobial agents 
with a new mechanism of action represents a major challenge. 

Medicinal herbs and their related products are usually employed in 
developing countries to treat a wide variety of diseases. 

Essential oils (EOs) are complex odoriferous mixtures of volatile 
and scent-laden compounds like monoterpenes, sesquiterpenes, 
and their derivatives such as aldehydes and phenols [4]. The 
composition differs between species and seasons of the year 
[5]. They are known for their antibacterial, antifungal, antiviral, 
insecticidal, and antioxidant properties [6]. Some studies also 
showed that some EOs may restore the antibacterial efficacy of 
antibiotics on resistant strains and represent an attractive and 
commercially interesting alternative in fighting these multi-
resistant bacteria [7].
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Cymbopogon genus belongs to the Poaceae family, whose species 
are widely distributed in the tropical and subtropical regions of 
Africa, Asia, and America where they are used as medicinal drugs 
in many countries for various diseases [8]. Cymbopogon giganteus 
(CG) is a grass, which can grow up to 2–3 m, spread in tropical 
Africa. Several extracts of CG have been used in traditional 
medicine: EO was used to treat boils, stomach pain, and toothache 
[9] while aqueous decoction of leaves was used to treat headaches, 
common cold, conjunctivitis, sickling, cellular diseases, or for 
tranquilizing epileptic seizures [10]. This EO, also called “Ahibero 
EO” or “Citronelle de Madagascar” is widely commercialized, most 
often in external use, for its antiseptic and antifungal properties. 
The composition of EOCG has been previously investigated. 
Limonene and p-menthane derivatives were detected as the main 
components of this EO from various origins [11,12]. Many studies 
showed the good antimicrobial properties of EOCG against a wide 
range of reference strains [11.13], but not on clinical strains nor in 
combination with antibiotics.

The main objective of this study was to analyze the composition 
of CGEO originating from Benin and collected in the Parakou area 
and evaluate its antibacterial properties alone or in combination 
with antibiotics against 11 clinical multi-resistant bacteria and 
four references strains as well as to determinate its eventual 
cytotoxicity.

2. MATERIALS AND METHODS

2.1. Antimicrobial Assays

2.1.1. Culture media and bacterial strains
The 11 clinical and references strains tested are listed in Table 1. 
Minimal inhibitory concentrations (MICs) were determined by 

broth microdilution method following Clinical and Laboratory 
Standards Institute recommendations in cation-adjusted Mueller-
Hinton broth (CA-MHB, Becton, Dickinson and Company, 
Franklin Lakes, NJ). Susceptibility was categorized according 
to the European Committee on Antibiotic Susceptibility Testing 
(EUCAST version 6.0) interpretive criteria (http://www.eucast.
org/clinical_breakpoints/; assessed 12 December 2016). All 
organisms were maintained in CA-MHB containing 20% (v/v) 
glycerol at −80°C. Before testing, the suspensions were transferred 
to Mueller Hinton Agar and aerobically grown overnight at 37°C.

2.1.2. Antibiotics
The following antibiotics were used as microbiological standards 
(with abbreviations and potencies shown in brackets): colistin 
sulfate (CST; 79.64%); ampicillin (AMP; 87.99%); oxacillin 
(OXA; 90%); amoxicillin (AMX; 90%) from Sigma-Aldrich 
(St Louis MO); moxifloxacin (MXF; 90%); ciprofloxacin (CIP; 
85%) from Bayer, Leverkusen, Germany; tobramycin (TOB; 
100%) from Teva, Wilrijk, Belgium; meropenem as Meronem  
(MEM; 74%) from AstraZeneca, Brussels, Belgium; linezolid 
(LZD; 100%) from Pfizer Inc., New York, and vancomycin  
(VAN; 100%) was obtained as VANCOCIN from GlaxoSmithKline, 
Belgium.

2.1.3. Determination of MIC and fractional inhibitory 
concentration indices (FICI)
The MIC was established using resazurin microdilution 
assay [14]. For this purpose, EOs were diluted to the highest 
concentration (1% v/v) with tween 80 (1% v/v) in MHB-CA to 
enhance EO solubility and then multi-fold dilutions were made 
to get a concentration range from 1% down to 0.013% v/v in 

Table 1: Bacterial strains used in this study.
Bacterial strains Resistance phenotype Origin

P. aeruginosa (PA544) Resistant to colistin Erasme Hospital, Belgium

P. aeruginosa (PA384) Resistant to ciprofloxacin, meropenem, and tobramycin St-Luc Hospital, Belgium

P. aeruginosa (PA434) Resistant to ciprofloxacin and tobramycin Military Hospital, Belgium

P. aeruginosa (PA372A) Resistant to ciprofloxacin, meropenem and tobramycin St-Luc Hospital, Belgium

P. aeruginosa (PA413) Intermediate to meropenem, sensitive to ciprofloxacin, tobramycin, 
and colistin

Erasme Hospital, Belgium

P. aeruginosa (PA417) Intermediate to meropenem, sensitive to ciprofloxacin, tobramycin, 
and colistin

Erasme Hospital, Belgium

S. aureus (SA618Bis) Resistant to ampicillin, oxacillin, vancomycin, moxifloxacin, and 
ciprofloxacin

P. Appelbaum, Hershey Medical Center, Hershey, PA.

Staphylococcus epidermidis  
(SE CN361)

Resistant to ampicillin, oxacillin, linezolid, moxifloxacin, and 
ciprofloxacin

P. Appelbaum, Hershey Medical Center, Hershey, PA.

Staphylococcus epidermidis  
(SE CN362)

Resistant to ampicillin, oxacillin, moxifloxacin, and ciprofloxacin P. Appelbaum, Hershey Medical Center, Hershey, PA

Escherichia coli (EC 06AB003) Resistant to amoxicillin Laboratory of Bacteriology, Cliniques Universitaires 
UCL de Mont-Godinne

Escherichia coli (EC G5) Resistant to amoxicillin Laboratory of Bacteriology, Cliniques Universitaires 
UCL de Mont-Godinne

S. aureus (MSSA ATCC 25923) Sensitive to β-lactams American Type Culture collection

S. aureus (MRSA ATCC 33591) Resistant to β-lactams by production of PBP2a and β-lactamases American Type Culture collection

P. aeruginosa PAO1 Wild type American Type Culture collection

P. aeruginosa PAΔpump

(PA0509)

PA01 deleted for expression of MexAB-OprM, MexCD-OprJ, 
MexEF-OprN, and MexXY-OprM efflux pumps

[28]
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50 μl of sterile MHB-CA. An aliquot of 50 μl of the inoculum 
(106 cfu/ml) was added to each well, which contains diluted EO 
and/or antibiotic. Positive and negative growth controls were 
performed for each plate. The plates were incubated aerobically 
at 37°C for 16—20 hours. After that, 30 μl of a 0.02% resazurin 
(Sigma-Aldrich, St Louis MO) aqueous solution was added in 
each well, which allows to easily identify conditions in which 
bacteria had grown (metabolization of blue resazurin into pink 
resorufin). The MIC was considered as the lowest concentration 
where the well did not change color to pink. The checkerboard 
synergy test was done in 96-well plates by multi-fold dilutions of 
antibiotics horizontally with the highest concentration of 2 × MIC 
while EOCG was diluted vertically with the highest concentration 
of 1%. The FICI used to determine the checkerboard test was 
obtained by calculating the sum of the FICs using this formula: 
FICI = FIC A + FIC E. 

FIC A is the MIC of antibiotic in combination/MIC of antibiotic 
alone while FIC E is the MIC of EO in combination/MIC of EO 
alone [15]. Different results can be observed: synergistic for  
FICI ≤ 0.5, additive for 0.5 < FICI ≤ 1, indifferent for 1  
< FICI ≤ 4, and antagonistic for FICI > 4 according to the European 
Committee for Antimicrobial Susceptibility Testing [16]. All 
experiments were done in triplicate.

2.2. Plants

2.2.1. Collection
CG Chiov was collected in Parakou areas (9°20ʹN, 2°37ʹE) in 
November 2016. Crops were identified by Herbier National du 
Bénin (Université Abomey-Calavi) where a voucher specimen 
was deposited under number AA6680/HNB.

2.2.2. EO and extraction
200 g air-dried leaves were submitted to hydro-distillation using 
a Clevenger steam-distillation apparatus for 3 hours. EOs were 
stored at 4°C prior use. The yields were calculated according to 
the starting weight of the plant material before hydro-distillation 
(expressed as percentage w/w of the dry vegetable material).

2.2.3. GC/FID Analysis
Gas chromatography analysis was performed on a FOCUS GC 
(Thermo Finigan; Milan, Italy) equipped with a flame ionization 
detector and a DB-wax column (30 m × 0.25 mm; 0.25 μm film 
thickness; Agilent, Palo Alto, CA). Carrier gas: helium in constant 
flow mode (1.3 ml/min) and the oven temperature program was: 
5 minutes at 45°C, 45°C–250°C (3°C/minute) and 5 minutes at 
250°C. 1 μl of EO diluted in TBME (1%) was injected at 230°C for 
the front inlet and at 260°C for detection. The split ratio was 1:50. 
Calculation of peak area percentage was performed by ChromCard 
(Interscience Technology) using the normalization method.

2.2.4. GC/MS analysis
The GC/MS (Trace GC 2,000 series Thermo Quest, Rodano, Italy) 
was interfaced with Trace MS (Thermo Quest) operating in the 
impact electronic mode at 70 eV and was equipped with DB-wax 
column (30 m × 0.25 mm; 0.25 μm film thickness; Agilent Palo 
Alto, CA). Carrier gas: helium in constant flow mode (1.3 ml/

minute) and the oven temperature program was: 5 minutes at 45°C, 
45°C–250°C (3°C/minute) and 5 minutes at 250°C. 1 μl of EO 
diluted in TBME (1%) was injected at 230°C for the front inlet in 
split-less mode. Mass spectra of the resulting peaks were analyzed 
and term-to-term compared with the NIST/EPA/NIH 98 library. 
The similarity score must be greater than 700. These spectra were 
also compared with a home-made mass spectra library of pure 
compounds under the same conditions. These identifications are 
also supported by comparison with literature and the GC retention 
times relative to a mixture of fatty acid methyl esters “C5–C27” 
on the same DB-wax column [14].

2.3. Cytotoxicity Assay
The evaluation of cytotoxicity was performed using MTT 
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphényltetrazolium bromide] 
(Sigma-Aldrich, St Louis MO) test [17], which determined the cell 
viability by measurement of metabolic activity.

WI38 cells cultured in DMEM medium (5 × 103 cells/ml) were 
seeded into 96-well plates (180 μl/well) and were incubated for 24 
hours. After that, 20 μl of EOs solutions in DMEM medium were 
added to each well in concentrations ranging from 1–0.008 mg/ml. 
The 96-well plates were then incubated for 72 hours. Cytotoxicity 
of Tween 80, which was used to enhance the dispersion of EO in 
the culture medium was also tested and found to be not cytotoxic 
at the highest concentration of 0.1 mg/ml. Camptothecin (Sigma-
Aldrich, St Louis MO) was used as a positive control. After 72 
hours, the medium was rejected and 100 μl of MTT solution 
in RPMI medium (0.3 mg/ml) was added to each well for 45 
minutes of incubation time. After removal of the MTT solution, 
100 μl of DMSO was added in each well to dissolve formazan 
and the optical density was measured at 570 nm with a reference 
wavelength at 620 nm using a spectrophotometer (SpectraMax-
Molecular Devices, Berkshire, UK). All assays were done in 
triplicates. The IC50 values were obtained with GraphPad Prism 
5.0 (GraphPad Software Inc., San Diego, CA).

3. RESULTS AND DISCUSSION
EO extracted from air-dried leaves of a Beninese sample of C. 
giganteus was obtained with 0.57% yield. Bassole et al. [11,18,19]
reported similar yields: 0.5%, 0.52%, and 0.6%, respectively, 
with the air-dried leaves of the same species from Burkina-
Faso and Benin. The GC-FID and GC-MS analyses (Table 2) 
allowed to identify about 85% of the composition of this EO. 

Table 2. Percentage composition of EOCG obtained by hydrodistillation.
Compounds KI Composition (%)

Limonène 710 12.07

Trans-p-mentha 2,8-dien-1-ol 1,131 13.79

Cis-p-mentha 2,8 dien-1-ol 1,172 8.53

Cis-carveol 1,250 9.12

Trans-carveol 1,357 3.44

Carvone 1,225 3.75

Trans-p-Mentha-1(7), 8-dien-2-ol 1,294 15.52

Cis-p-Mentha-1(7), 8-dien-2-ol 1,382 17.03

3,9-Epoxy-p-mentha-1,8(10)-diene 1,057 1.83

Total identified 85.08
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Sixteen components were detected with cis-p-mentha-1(7), 
8-dien-2-ol (17.03%), trans-p-mentha-1(7),8-dien-2-ol (15.52%), 
trans-p-mentha 2,8 dien-1-ol (13.79%), limonene (12.07%), 
cis-carveol (9.12%), and cis-p-mentha 2,8 dien-1-ol (8.53%) 
as major constituents. Comparison of the compositions of our 
sample of EOCG and those described in the literature (from 
Benin or other countries) showed mostly quantitative differences 
in major constituents. Indeed, Kpoviessi et al. [20] obtained cis-
p-mentha-1(7),8-dien-2-ol (8.9%), trans-p-mentha-1(7),8-dien-
2-ol (18.3%), trans-p-mentha 2,8 dien-1-ol (15.5%), limonene 
(8.3%), cis-carveol (7.3%), and cis-p-mentha 2,8 dien-1-ol 
(11.3%) while Alitonou et al. [18] reported cis-p-mentha-1(7),8-
dien-2-ol (17.34%), trans-p-mentha-1(7),8-dien-2-ol (13.95%),  
trans-p-mentha 2,8 dien-1-ol (13.91%), limonene (19.33%), 
and cis-p-mentha 2,8 dien-1-ol (8.10%) as major compounds. 

However, Bassole et al. [11] reported composition of EOCG 
from Burkina-Faso with limonene as the dominant compound 
(42%). It has further been shown that the composition of EOCG 
(particularly, the limonene content) can differ with the extraction 
method [21] and collection period or place [20].

Table 3 summarizes the MIC of the EOCG against four reference 
strains (Staphylococcus aureus MSSA ATCC 25923, S. aureus 
MRSA ATCC 33591, Pseudomonas aeruginosa PAO1, and 
its deletion mutant PAO509 (which does not express anymore 
the main RND multidrug efflux pumps) and a series of clinical 
isolates of S. aureus, S. epidermidis, P. aeruginosa, or Escherichia 
coli harboring different resistance phenotypes (see Table 1). The 
results indicate that EOCG was active with an MIC of about 
0.0625%–0.125% v/v against S. aureus MSSA ATCC 25923 

Table 3: Effect of EOCG alone and in combination with different antibiotics.

Strains
MIC

EOCG (%v/v)
Antibiotics

MIC

(mg/l)

Susceptibility 
according to 
EUCAST

FICI

SA ATCC 25923 0.0625–0.125 - - - -

SA ATCC 33591 0.0625–0.125 - - - -

PAO1 0.5 - - - -

PAO509 0.0625–0.5 - - - -

SA618Bis 0.5–0.25 Ampicillin 32 R 0.52–1

Oxacillin 256 R 0.55–1

Moxifloxacin 4 R 1–2

Ciprofloxacin 64 R 0.62–1

SE361 0.25–0.125 Ampicillin 16 R 0.37–1

Oxacillin 64 R 0.12–1

Linezolid 32 R 1

Moxifloxacin 32 R 1–2.5

Ciprofloxacin 32 R 1

SE362 0.25–0.125 Ampicillin 8 R 0.56–1

Oxacillin 4 R 0.53–1

Moxifloxacin 2 R 1–2

Ciprofloxacin 64 R 0.62–1

PA544 0.125 Colistin 256 R 0.31–1

PA417 0.5–0.25 Meropenem 4 I 1

PA413 0.5 Meropenem 4 I 0.62–1

PA372A 0.5 Ciprofloxacin 4 R 1–2

Meropenem 16 R 1

Tobramycin 64 R 1

PA434 0.5 Ciprofloxacin 32 R 0.56–1

Tobramycin 64 R 1

PA384 0.5 Ciprofloxacin 2 R 0.53–1

Meropenem 8 I 0.75–1

Tobramycin 32 R 0.62–1

EC06AB003 0.25 Amoxicillin 4,096 R 0.12–0.5

ECG5 0.25 Amoxicillin 8,192 R 0.15–0.5

PA: Pseudomonas aeruginosa, SA = Staphylococcus aureus, SE = Staphylococcus epidermidis, EC = Escherichia coli; R = Resistant; S = Suceptible; I = Intermediate; 
a MIC = Minimal Concentration Inhibitory
bEUCAST breakpoints: 

http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf
c FICI: Synergistic for FICI ≤ 0.5, additive for 0.5 < FICI ≤ 1, indifferent for 1 < FICI ≤ 4, and antagonistic for FICI > 4 according to the European Committee for 
Antimicrobial Susceptibility Testing (EUCAST 2000)
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and S. aureus MRSA ATCC 33591, suggesting that this activity 
is not modified by the production of β-lactamases and modified 
PBP target (PBP2a). EOCG showed a greater effect on PA0509  
(0.06% v/v) than PAO1 (0.5% v/v) suggesting its sensitivity to 
efflux pumps, as antibiotics. Against clinical isolates, EOCG 
showed activity against Gram-positive bacteria (0.125%–0.25% 
v/v) and Gram-negative bacteria (0.125%–0.5% v/v), whatever 
their resistance mechanisms. Antimicrobial activity of EOCG was 
also reported against other reference bacterial strains but not on 
clinical isolates strains. Indeed, Bassole et al. [11] reported an MIC 
of 2.1 mg/ml against S. aureus ATCC 9144 with lower activities 
for P. aeruginosa CRBIP19.249 (70 mg/ml) being the most 
resistant strain. Several studies have reported that P. aeruginosa 
is the least sensitive bacteria to EOs [22]. The direct antimicrobial 
activity observed could perhaps be explained, at least in part, by 
the presence of a consequent percentage (71.86%) of oxygenated 
compounds such as p-menthane derivatives, carvone, and carveol 
possessing antimicrobial activities [23]. Other essentials oils rich 
in p-mentha-1(7), 8-dien-2-ol which is the major component 
of EOCG have also demonstrated interesting antibacterial  
activities [24].

The checkerboard test was used to analyze the combination of 
EOCG with different classes of antibiotics against MDR bacteria. 
The improvement of antibacterial activity of these antibiotics can 
be due to a possible action of the EOCG on the mechanism of 
resistance to a specific antibiotic, an increased effect due to the 
combination of different actions on the bacteria, or an improvement 
of antibiotic concentration at the target site in the presence of EO. 
The results of FICI values obtained for combinations of EOCG and 
antibiotics are given in Table 3. We only analyzed combinations 
between EOCG and antibiotics to which our 11 different strains 
were resistant, or at least intermediate (ampicillin, oxacillin, 
vancomycin, linezolid, moxifloxacin, ciprofloxacin, meropenem, 
tobramycin, colistin, and amoxicillin, see Table 1). 

Our result on the multi-resistant staphylococci clinical species 
(SA618Bis, SECN361, and SECN362) showed that the addition 
of EOCG does not lower the MIC of moxifloxacin.

All other tested combinations on Staphylococcus species 
(aureus and epidermidis) indicated some additive effect, except 
combinations with β-lactams drugs such as ampicillin and oxacillin 
on SECN361 showing a synergistic/additive effect (FICI: 0.12–1). 
Nevertheless, this synergistic activity is not sufficient to reverse 
resistance of this strain to these antibiotics (Table 4).

The results of checkerboard test on multi-resistant P. aeruginosa 
clinical species reveal in general, some additive effects except 
for combination with ciprofloxacin on PA372A where it can be 
considered that no effect was detected, and combination of colistin 
against PA544, a colistin-resistant strain which shows a synergistic/
additive effect (FICI: 0.31–1) with a significant decrease of the 
MIC of colistin, but not enough to revert resistance (Table 4). 

For amoxicillin-resistant E. coli clinical isolates, a synergistic 
effect was observed with amoxicillin on both strains, reversing 
resistance to amoxicillin on EC06A003, but not ECG5  
(Table 4). Several studies also reported a synergistic action when 
an EO was combined with β-lactams drugs against E. coli clinical 

isolated strains [25] but it is the first time that it was shown  
with EOCG. 

The mechanism of synergy between antibiotics and EOs is not 
elucidated yet and is difficult to establish due to the possible 
multitarget actions of EOs and their complex compositions [26]. 
Furthermore, EOs could act non-specifically, affecting membrane 
integrity which could improve the antibiotics uptake [27]. The 
best improvement of antibiotic efficacy was obtained with a 
combination of EOCG and amoxicillin on amoxicillin-resistant 
clinical isolates of E.coli reducing amoxicillin MIC from 32 to 
about 4,000-fold. 

We also analyzed the cytotoxicity of EOCG on a human non-
cancer fibroblast cell line (WI38) by the MTT tests and showed 
its low cytotoxicity (Table 5). This result was in accordance with 
the report of Kpoviessi et al. [20] who found an IC50 higher than 
50 μg/ml on Chinese hamster ovary cells and the WI38 cell line.

4. CONCLUSION
In conclusion, we showed synergistic effects between EOCG and 
amoxicillin against two amoxicillin-resistant Escherichia coli 
strains, synergistic/additive effects between EOCG and colistin 
and oxacillin/ampicillin, respectively, against P. aeruginosa 
PA544 and Staphylococcus epidermidis SE361. However, in 
order to assess the potential of these combinations, further work 
will be essential to understand the mode of action of EOCG and/
or its constituents, its toxicity/safety profile, and the molecular 
mechanisms of observed synergy.
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