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ABSTRACT

Based on the previous available documents involving molecular events during plant somatic embryogenesis, this 
report aims to review the advances that have been made for the past several years in the area of molecular mechanism 
of plant somatic embryogenesis. To begin with, studies suggest that the induction and differentiation of embryos 
from somatic tissue directly or through callusing involves the interaction of various cellular and molecular factors. 
Several intra- and extra-cellular proteins such as germins and germins-like proteins, lipid transfer proteins, heat-
shock proteins, and late embryogenesis abundant proteins are known to regulate the induction of somatic embryos 
from the somatic cell. Simultaneously, regulation and expression of specific genes such as housekeeping genes 
OsIAA in rice; hormone-responsive genes Dcarg-1, Dchsp-1, DcECP31, DcEMB1 in carrot; and AtECP63, Mt 
somatic embryo-related factor 1 in arabidopsis have been identified to play key roles during the process of somatic 
embryogenesis. These genes are known to express differentially for synthesis of new proteins during induction and 
development of somatic embryo. In addition, several transcription factors such as leafy cotyledon genes, agamous-
like15 (AGL15) gene, ethylene-responsive element-binding protein (EREBPs), knotted1-like homeobox proteins, 
and RWP-RK group of plant-specific transcription factors are equally known that efficiently control the molecular 
events of somatic embryogenesis. Further, it is also now established that epigenetic factors such asDNA methylation, 
histone deacetylation/methylation, and microRNAs also influence the molecular mechanism of plant somatic 
embryogenesis.

1. INTRODUCTION

The process of embryogenesis has always been an important part of 
biological study which involves differentiation and development of 
a mature embryo from a fertilized egg cell. However, an alternative 
way of production of embryos from plant somatic cells without the 
involvement of gametes fusion known as somatic embryogenesis 
occurs in nature and also has been possible to achieve under in vitro 
conditions. Historically, the first study of somatic embryogenesis in 
plant was documented with carrot cell suspension cultures [1,2].

In general, plant somatic cells can restart in vitro embryogenesis when 
these cells are exposed to a wide range of severe abiotic stressors [3], 
and moreover, somatic cells could be induced to form somatic embryos 
by treating with abiotic stress-causing agents such as salt, hypochlorite, 
osmotic pressure, and heavy metal ions or high temperature in Daucus 
carota and in Arabidopsis [4]. In addition, synthetic auxins such 
as 2,4-D are also known as the most effective inducers of somatic 
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embryogenesis in general and monocots in particular because it 
probably triggers both auxin-responsive genes and stress responses 
simultaneously [5].

Of late, somatic embryogenesis has emerged as a model system to 
understand the in vitro physiological and biochemical processes 
that occur during plant developmental processes. In recent years, 
considerable approaches have been made to identify the possible 
cellular and molecular factors that control the transition of a 
differentiated somatic cell into somatic embryo.

Moreover, understanding the interacting factors that initiate somatic 
embryogenesis still remains to be investigated. However, with the 
advent of new molecular techniques, several studies have been 
initiated to understand the molecular regulation of plant somatic 
embryogenesis. For instance, many embryo marker genes, including 
babyboom1 (BBM1), leafy cotyledon1 (LEC1), and LEC2 have been 
identified using cDNA subtraction [6].

Further, microarray technology was also employed to identify key 
genes required to enhance somatic embryogenesis in Arabidopsis [7]. 
These genes encode proteins that play integral roles in hormone 
perception and signaling indicating the effects of differential gene 
expression during in vitro embryogenesis [8].
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Although much progress has been made in the past decade to understand 
the molecular regulation of plant somatic embryogenesis [8-17], these 
molecular events underlying early somatic embryo development 
remain still unclear. Based on the available past and recent reports, this 
review is thus an effort to understand the cellular and molecular factors 
that influence the events of somatic embryogenesis in plant.

2. REGULATORY ROLE OF CELLULAR PROTEINS 
DURING SOMATIC EMBRYOGENESIS

Somatic embryogenesis depends on several regulatory substances and 
some of these regulatory substances accumulate in the culture medium. 
Several studies have indicated that these cellular proteins either play 
an inductive [18,19] or inhibitory [20] roles in triggering embryogenic 
responses in plants.

2.1. Germins and Germins-like Proteins (GLPs)
GLPs belong to one of the most abundant groups of extracellular proteins 
found in embryogenic tissues, and these proteins were first discovered 
in wheat during germination [21]. Several studies have further 
demonstrated that the transcription of GLP encoding genes regulates in 
embryogenic lines of Caribbean pine, white lupin, and wheat [22-24] 
and their expression was evident only in embryogenic cells [17].

In another study, cell wall bound GLPs were found to be present in the 
pre-globular somatic embryos, whereas absent in non-embryogenic 
callus of Pinus carribea, and in subsequent studies, the presence of 
GLPs was treated as molecular markers of somatic embryogenesis. 
It was further suggested that GLPs may be probably involved in 
initiation and termination of cell wall expansion during somatic 
embryogenesis [9].

2.2. Lipid Transfer Proteins (LTPs)
The LTPs are tryptophan lacking small size (7–13 kDa) proteins and 
expression of LTPs genes was observed to be exclusively associated 
with the differentiation of first outer tissue layer or protoderm formation 
of somatic embryos [25]. This outer protoderm layer probably plays a 
regulatory role in controlling cell expansion during the development 
of embryos [15,26].

In addition, LTPs proteins expression was observed not only in 
embryogenic cell cultures but also in the shoot apex of seedlings, 
developing flowers, and maturing seeds. The expression of LTPs genes 
was further found to be uniform all the time in the pro-embryogenic 
masses, whereas in the non-embryogenic cell lines, their expressions 
were seen either limited or not at all. Moreover, the LTP expression level 
in cotton cell lines appears high before induction of embryogenesis as 
well as during the globular stage, while this expression declines during 
post-globular stages [17,27].

2.3. Arabinogalactan Proteins (AGPs)
AGPs are cell wall proteoglycans with a hydroxyproline-rich core 
protein and contain more than 90% carbohydrates such as arabinose 
and galactose along with the little amount of other sugars [28]. These 
proteins have been found widely distributed in higher plants and 
contribute multiple roles during cellular growth and development [29].

AGPs are known to promote embryogenesis in a broad range of 
angiospermic plants such as carrot [30,31], Euphorbia [32], wheat [33], 
chicory [34], and also in gymnospermic species such as Picea abies [35] 
and Pinus [16,19]. Significantly, embryogenesis also could be recorded 

in non-embryogenic cell lines when purified AGPs in nanomolar 
concentration extracted from carrot embryogenic suspension cultures 
were applied exogenously to non-embryogenic cells [36,37].

2.4. Heat-Shock Proteins (HSPs)
Many HSPs are known to be synthesized and accumulated during 
somatic embryo development in response to hormones such as 
2,4-D [38,39]. In general, it is suggested that the heat-shock treatment 
arrests the growth of globular stage embryo, but such treatments 
have been failed to prove effective for other developmental stages of 
somatic embryogenesis [11,40-42].

The stage-specific syntheses of HSPs were initially reported in carrot 
embryogenic cultures [40] and simultaneously, also in tobacco cell 
suspension cultures [41]. In further studies, two cDNAs (Mshsp18-1 
and Mshsp18-2) were isolated from alfalfa suspension cultures that 
were involved in synthesis for small HSPs belonging to hsp17 family. 
Hence, these studies together indicate that HSPs must play decisive 
roles during the development of plant cell [9,43].

2.5. Late Embryogenesis Abundant proteins (LEA)
At the molecular level, there is an expression of specific genes whose 
products are accumulated and are capable of surviving the period 
of desiccation during maturation of zygotic embryo. Since these 
proteins have been found to be abundant during the later stages of 
embryo maturation, therefore, these genes are known as LEA protein 
genes [9]. During initial studies, some of the LEA genes such as Dc3, 
Dc8, DcECP31, DcECP40, and DcEMB1 were exclusively found to 
occur and characterized in carrot somatic embryogenesis [15,44].

Further, the study reveals that LEA gene Dc8 expression was also 
involved in the process of somatic embryogenesis but was not 
dependent on it [45]. Similarly, another LEA gene EMB1 cDNA from 
carrot was also seen to express only in embryogenic tissues during 
the transition of globular and torpedo stage embryos and accumulates 
specifically in the meristematic regions [46].

2.6. Lectins and Storage Proteins
Lectins are carbohydrate-binding proteins that are commonly found 
in microbes, animals, and plants [47]. Citrin, a citrus seed storage 
protein shows differential expression during embryogenesis and the 
citrin encoding gene expresses at the early globular stage in the zygotic 
embryos, whereas these transcripts accumulate during the later stages 
of somatic embryogenesis [48]. In addition, differential expression of 
lectins was also recorded during various stages of somatic and zygotic 
embryo development in alfalfa. These results thus indicate that the 
lectins and other storage proteins are significantly involved during 
plant embryogenesis [9].

3. REGULATORY ROLE OF GENES DURING SOMATIC 
EMBRYOGENESIS

Various structural and functional genes are known today that 
are significantly associated with the regulation of plant somatic 
embryogenesis, and these regulatory genes have been further identified 
and characterized.

3.1. Cellular-Housekeeping Genes
In general, housekeeping genes of the cells are mainly associated with 
regulation of important cellular metabolic activities, but these genes 
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were also found to exhibit significant roles during the process of 
embryogenesis [49]. It was observed that a globular embryo-specific 
gene elongation factor-1a, CEM1 was found in the active and dividing 
cells [50], while another gene CEM6, specifically expresses during 
the pre-globular and globular stages of carrot somatic embryogenesis. 
These results further suggest that probably these genes specifically 
contribute in cell wall biogenesis during embryogenesis [15,51].

3.2. Hormone-Responsive Genes
It is documented that hormones play the key roles in mediating the 
signal transduction pathway leading to the reprogramming of gene 
expression. These phytohormones are generally involved in switching 
on/off the specific target genes during the developmental stages of 
somatic embryogenesis through coordinated interactions with other 
signaling pathways that are involved in cell development [11].

3.2.1. Auxin-inducible genes
It is suggested that reactivation of cell division in somatic plant cells 
is the most essential part for the establishment of embryogenic callus 
and somatic embryo formation. Simultaneously, it is also proved that 
the exposure of high auxin pulse treatment serves as a triggering factor 
to induce cell division in the epidermal cells, and it probably promotes 
their further differentiation into somatic embryos [52-55].

In the molecular study of carrot somatic embryogenesis, the transcript 
of auxin-regulated specific gene Dcarg-1 was found to occur only 
during the early induction period of somatic embryos while during the 
later stages of somatic embryogenesis, expression was not observed. 
However, in another study, other auxin-responsive gene Dchsp-1 
expresses constantly during the entire period of carrot somatic 
embryogenesis [39].

In addition, OsIAA1, an early auxin-inducible gene was characterized 
from the rice and also suggested that the gene OsIAA1 may be involved 
putatively in cell division [56]. In further study, expression pattern of 
three carrot cDNA clones coding for the three isoforms of the enzyme 
glutamine synthetase (GS) (CGS102, CGS103, and CGS201) was 
investigated during somatic as well as zygotic embryogenesis [57].

Moreover, transcript levels of CGS102 and CGS201 were found to 
be increased during the early stages of somatic embryogenesis and 
also during the seed development, whereas CGS103 expression was 
recorded only in the later stages of seed development and senescent 
leaves. Interestingly, its expression was not observed in somatic 
embryos or young leaves. In addition, the expression of CGS102 and 
CGS201 was found to decline in the presence of medium supplemented 
with glutamine as nitrogen source, indicating transcriptional regulation 
of GS activity. This also signifies the involvement of a common 
regulatory system for nitrogen metabolism in somatic and zygotic 
embryogenesis [9,15,57].

3.2.2. Abscisic acid (ABA)-inducible genes
It is established that an exogenous application of ABA causes 
induction of somatic embryogenesis and exogenous ABA treatment 
probably enhances the endogenous cellular level of indole-3-acetic 
acid [58,59]. Further, ABA-inducible genes have been also isolated 
and characterized that express specifically in embryos or embryogenic 
cells [60,61]. During the early embryogenesis stages, a carrot 
homolog of ABI (C-ABI3) gene appears to regulate the expression of 
embryogenic cell protein genes, and these proteins later were found 
to be involved in the process to achieve the somatic cell embryogenic 
competency [16].

Further, all LEA genes show high sequence homology and are 
regulated by ABA. In general, LEA genes play significant roles in 
desiccation tolerance in different species. However, the main features 
of the LEA genes involve by their premature induction and expression 
by exogenous ABA treatment, and thus, ABA-inducible genes such as 
Dc3, Dc8, DcECP31, DcECP40, and DcEMB1 in carrot and AtECP31 
and AtECP63 from Arabidopsis were identified and found to express 
during late stages of the embryo development. It was further observed 
that ABA-inducible LEA genes expression increases during the torpedo 
stage of somatic embryos but not during the seedling stage  [39,62]. 
These results thus indicate that regulation of LEA genes is caused 
by ABA in association with some other unknown embryo-specific 
factors [9].

3.2.3. Ethylene-inducible genes
Based on the previous studies, ethylene is known to act positively 
during somatic embryogenesis in many species such as Coffea 
canephora [63], Oncidium sp. [64], Medicago sativa [65], Pinus 
sylvestris [66], and Quercus ilex [67]. However, in some other plant 
species such as black spruce [68] and Leucojum aestivum [69] ethylene 
behaves negatively during somatic embryo development.

It is thus established fact that ethylene plays a crucial role during 
somatic embryo maturation, and moreover, Mt somatic embryo-
related factor 1 (MtSERF1) was found to be induced and expressed 
by ethylene in Medicago truncatula embryogenic callus, and it was 
suggested that MtSERF1 promoter region contains putative binding 
sites related to auxin, cytokinin, and ethylene responses. Therefore, 
this indicates that ethylene-signaling pathways probably interact with 
auxin and cytokinin pathways [70,71].

3.3. Maturation and Protein Storage Genes
It is well documented that the expression of various genes 
performs key roles during the maturation stages of somatic embryo 
differentiation. Moreover, the expression of these genes is maturation 
stage-specific and bears similarity with the zygotic embryo 
maturation genes. In a study on carrot somatic embryogenesis, 
Dc2.15 gene expression was found to be maximal at the heart stage 
and torpedo stage [72], while maximum level of other lipoxygenase 
gene expression in soybean was observed during maturation of 
somatic embryos [73]. Similarly, another seed storage citrin protein 
gene shows differential expression during the late stage of somatic 
embryogenesis in citrus [48].

In addition, differential gene expression of lectin and other seed 
storage protein was observed during various stages of somatic 
embryo development in alfalfa, while the globulin-1 gene expression 
was noticed in regenerable Zea mays callus [74]. Moreover, it 
appears that lectins are likely involved in growth regulation during 
embryogenic pattern formation. In another study, accumulation of 
MsLEC1 and MsLEC2 mRNAs was also found to increase during 
the later stages of embryogenesis in alfalfa; therefore, these results 
suggest that these genes play significant roles during embryo 
development [9,11,75].

4. ROLE OF TRANSCRIPTION FACTORS DURING 
SOMATIC EMBRYOGENESIS

Based on the previous studies in plant somatic embryogenesis at 
molecular level, various transcription factors have been identified that 
are found to be involved in the process of induction and development 
of somatic embryos in many plant species.
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4.1. Leafy Cotyledons (LEC) Genes
Leafy Cotyledon (LEC) genes such as LEC1, LEC2, and FUSCA3 
(FUS3) are known as transcription factors that regulate plant 
embryogenesis [76], and specifically, LEC2 gene was proved to play 
an important role during the induction phase of somatic embryogenesis 
[77,78]. It is suggested that LEC2 gene probably provides a condition 
which is required to achieve the cellular embryogenic competency 
[16,78]. However, overexpression of LEC2 gene in Nicotiana tabacum 
exhibits abnormal development like ectopic callus production which 
further fails to differentiate into somatic embryos [79].

Similarly, ectopic expression of LEC1 gene in transgenic plants 
induces the formation of somatic embryo-like structures [80] and 
exhibits a differential expression pattern during the entire course of 
somatic embryogenesis in Arabidopsis. It was thus suggested that 
possibly LEC1 gene is involved in the process of differentiation and 
development, rather than in the induction of somatic embryos [81].

4.2. Agamous-like15 (AGL15)
Transcription factor AGL15 belongs to a family of eukaryotic 
transcription factors and are commonly found in yeast, plants, and 
humans. All members of this family contain a conserved MADS-
box motif within their DNA binding domain. In plant somatic 
embryogenesis, AGL15 expression was found to be at a maximal level 
during embryo development, particularly at the beginning of globular 
stage [17], and it was thus suggested that AGL15 can directly bind to 
promoter regions of different target genes [82].

Significantly, embryogenic cultures exhibit high levels of AGL15 
expression [83] and further studies, reveal that consistent ectopic 
expression of AGL15 increases the efficiency of both direct and indirect 
somatic embryogenesis in Arabidopsis thaliana and soybean [83,84], 
while knock-out of AGL15 gene reduces the efficiency of somatic 
embryogenesis [83].

4.3. Ethylene-responsive Element-binding Protein (EREBP)
Ethylene-responsive factor (ERF) belongs to a family of plant-specific 
transcription factors that are involved in the regulation of a set of 
developmental processes [85], and the EREBP has been considered 
as one of the largest families of Arabidopsis transcription factors. It 
is documented that the EREBP includes almost 150 members and 
these are probably involved in various critical processes during plant 
development [17].

ERFs were initially identified as binding factors mediating ethylene 
response [86], and it is established that several members of the ERF family 
regulate somatic embryogenesis. In Medicago, MtSERF1, a homolog 
of A. thaliana ERF, is an ethylene-inducible gene that was found to 
be expressed in zygotic embryos and also involved in the proliferation 
of embryogenic cultures as well as somatic embryogenesis  [70,71]. 
Furthermore, another member, A. thaliana embryomaker (EMK), was 
observed to be functional in early and mature embryos and probably 
has a redundant role in maintaining embryonic cell identity [87].

In additional, another ethylene-inducible BBM gene expression was 
recorded during all stages of zygotic embryos from the globular stage 
to mature seeds in A. thaliana and BBM gene was thus recognized 
as a marker of somatic embryogenesis in cell cultures of Brassica 
napus [88]. Moreover, ectopic expression of BBM gene was found to 
enhance the rate of somatic embryogenesis and other morphogenic 
responses on medium lacking plant growth regulators (PGRs) [88,89]. 

In contrast, overexpression of BBM gene results in the induction of 
indirect somatic embryogenesis in tobacco [90] and poplar Populus 
tomentosa [91] while in Capsicum annum, BBM gene expression 
proves to be recalcitrant [92].

4.4. Homeodomain Transcription Factors
Homeobox genes are the key regulatory genes controlling pattern 
formation and morphological differentiation in multicellular 
organisms. Homeotic genes contain a characteristic conserved 
nucleotide sequence called the homeobox. The encoded homeodomain 
codes a transcription factor involving a conserved 60 amino acid long 
sequence with DNA-binding activities and is also associated with 
pattern formation in plants [93].

4.4.1. Carrot homeobox (CHB)
During initial studies, six homeobox-containing genes (CHB1, CHB2, 
CHB3, CHB4, CHB5, and CHB6) were identified from carrot somatic 
embryos, and specifically, CHB1 gene expression was constantly 
observed in undifferentiated cell clusters. In contrast, CHB2 gene 
expression was found to be enhanced after globular stage and the 
maximum level of expression was seen at heart and during early 
torpedo stage of somatic embryogenesis [94].

In addition, a chromobox gene DcB1 was also isolated and characterized 
from embryogenic cell clusters of carrot and its expression increases 
during early stages of somatic embryos, whereas, low level of 
transcripts were also detected in both torpedo-shaped somatic embryo 
and during seed-setting stage [15,95].

4.4.2. Knotted1-like homeobox (KNOX)
Another group of homeodomain fold transcription factors consists 
of KNOX family proteins and plays a significant role during plant 
somatic embryogenesis. These proteins regulate a balance between 
cell proliferation and cell differentiation during tissue patterning, and 
therefore, are very important for plant development [96]. Moreover, the 
soybean homeobox-containing gene sphingoid base hydroxylases (SBH) 
expression was apparent during early somatic embryogenesis in soybean, 
while the maximum transcripts level of SBH gene was recorded at the 
cotyledonary stage, and thereafter, its expression decreases [17,97].

Furthermore, HBK2, a homolog of homeobox of KNOX class (HBK) 
was treated as marker and important regulator of somatic embryogenesis 
in P. abies where its expression was seen in somatic embryos, but in 
non-embryogenic cell lines, the expression was lacking [98].

Similarly, expressions of other homolog of HBK (HBK1 and HBK3) 
were found to be upregulated immediately after initiation of somatic 
embryogenesis in a medium lacking PGRs [99]. Interestingly, ectopic 
expression of HBK3 was found to enhance the yield of somatic 
embryos, while the downregulation of HBK3 was seen to inhibit 
embryogenesis [100].

Significantly, the shoot meristemless (STM) member of the 
arabidopsis KNOXI group was also found to be involved in somatic 
embryogenesis and ectopic expression of B. napus STM promotes 
somatic embryogenesis [7,17]. Similarly, in C. canephora, ectopic 
expression of A. thaliana wuschel was observed to promote hormone-
induced formation of callus and 400 times increase in the formation of 
somatic embryos was also recorded [101].

4.4.3. RKD4--(RWP-RK domain 4)
Arabidopsis RKD4 belongs to the RWP-RK group of plant-specific 
conserved transcription factors, and its transcription has been detected 
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in all cells during early embryogenesis. Significantly, it was found that 
expression starts from the late globular stage, and gradually, it restricts 
to the embryo suspensor cells [102].

Moreover, induction of ectopic expression of RKD4 for 8 days was 
found to switch on the embryogenesis-related genes expression which 
further causes to promotion in somatic embryogenesis, whereas 
constitutive ectopic expression of RKD4 results in continuous 
proliferation without differentiation [102].

5. ROLE OF EPIGENETIC FACTORS DURING SOMATIC 
EMBRYOGENESIS

The event of plant somatic embryogenesis was also found to be 
regulated by epigenetic factors and some epigenetic factors such as 
DNA methylation, histone deacetylation/methylation, and microRNAs 
(miRNAs) pathways are known today that control the process of 
somatic embryogenesis in plants.

5.1. Methylation of DNA
Methylation of DNA plays a significant role in somatic embryogenesis 
by causing gene silencing, and it was observed that the promoter 
region of LEC1 gene becomes hypomethylated just before initiation 
of somatic embryogenesis, while the methylation level subsequently 
increases during embryo maturation as well as vegetative growth 
period. Similarly, hypermethylation of a region within the promoter of 
LEC1 gene using RNA-directed DNA methylation downregulates its 
transcription [103], and therefore, indicates that transcription of LEC1 
gene is regulated by methylation of its promoter [17].

Furthermore, application of 5-azacitidine, a methylation inhibitor 
was found to inhibit or block the somatic embryogenesis in carrot 
cultures [104]; however, the drug 5-aza-2′ deoxycytidine promotes 
embryogenesis by inhibiting methyltransferase 1 activity, and it also 
increases transcription of a key embryogenesis regulator STM [7].

5.2. Deacetylation of Histone Protein
Deacetylation of histone protein is also known to cause transcription 
repression, and thus, it serves as an alternative way to prevent the 
untimely onset of somatic embryogenesis. Moreover, it was observed 
that treatment of trichostatin A (TSA), an inhibitor of histone 

deacetylases, produces embryo-like structures from true leaves in 
Arabidopsis [105].

Furthermore, TSA in combination with heat treatment was proved to 
significantly enhance the efficiency of somatic embryogenesis from 
B. napus microspores [106] and suggested that heat stress and histone 
deacetylation jointly converges on the upregulation of embryonic 
regulators to initiate the embryonic program [5].

5.3. Methylation of Histone Protein
Methylation of histone protein also causes the modification of 
chromatin packing, but it depends on the site of methylation in the 
histone molecule and it is documented that methylated histone protein 
causes either an inhibitory or stimulatory effects on gene transcription. 
Moreover, it is suggested that S-adenosylmethionine (SAM)-dependent 
transmethylation causes modulation in the expression of regulators 
that are involved in the cell-cycle program [107].

In addition, several members of the SAM metabolic pathways have 
been also found to be upregulated during early stages of cellular de-
differentiation before the establishment of somatic embryogenesis in 
cotton [108] and also during early embryogenesis in P. abies [109].

5.4. MicroRNAs (miRNAs) Mediated Gene Silencing
miRNAs are known as small, single-stranded, endogenous transcripts 
that may cause target gene silencing by cleavage of target gene mRNA 
or inhibit translation of target mRNA. Furthermore, it is suggested that 
miRNAs interact with the target transcription factors in a co-ordinated 
manner to regulate gene expression during cell differentiation and 
proliferation [110,111].

In addition, miRNAs are also known to play significant roles in the 
regulation of cell proliferation during somatic embryogenesis and 
based on miRNA constitution during successive stages of somatic 
embryogenesis, several members of miRNAs have been identified 
in sweet orange that are unique during early embryo development 
(miR156, 168, and 171), the globular embryo stage (miR159, 164, 
390, and 397), the cotyledonary-stage embryo (miR166, 167, and 398). 
These miRNAs were also found even in cell lines that were lacking 
embryogenic potentials (miR164, 166, and 397) [17,112] [Table 1].

Table 1: Some regulators involved in somatic embryogenesis [17].

Name Functions Species Overexpression phenotypes References

STM Homeobox domain TF B. oleraceae Enhanced efficiency of indirect somatic embryogenesis [7]

azadC Inhibitor of DNA methylation A. thaliana Upregulation of STM and higher yield of somatic embryos [7]

LEC2 B3 domain TF A. thaliana Induction of direct somatic embryogenesis without auxin [81]

AGL15 MADS‑box TF G. max Enhanced indirect embryogenesis [83]

EMK AP2/ERF family TF A. thaliana Enhanced direct and indirect embryogenesis [87]

BBM1 AP2/ERF family TF A. thaliana Direct somatic embryogenesis on seedlings [89]

P. tomentosa Indirect somatic embryogenesis [91]

C. annum Indirect somatic embryogenesis [92]

HBK3 Homeobox domain TF P. abies Increased somatic embryogenesis yield [100]

WUS Homeobox domain TF C. canephora Enhanced efficiency of indirect somatic embryogenesis [101]

RKD4 RWP‑RK domain TF A. thaliana Short‑term expression promotes somatic embryogenesis without auxin [102]
STM: Shoot meristemless, azadC: 5‑Aza‑2′ deoxycytidine, LEC2: Leafy cotyledon 2, AGL15: Agamous‑like15, EMK: Embryomaker, BBM1: Baby boom, WUS: Wuschel, B. oleraceae: 
Brassica oleraceae, A. thaliana: Arabidopsis thaliana, G. max: Glycine max, P. tomentosa: Populus tomentosa, C. annum: Capsicum annum, P. abies: Picea abies, C. canephora: Coffea 
canephora.
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6. CONCLUSION

Based on previous studies involving the results on molecular 
regulation of somatic embryogenesis, it indicates that differential gene 
expression is required for the synthesis of new mRNAs and proteins 
during somatic embryogenesis. Further, several chemical substances 
also act in gene expression as signals and the interactions between 
phytohormone and various cellular factors (regulatory proteins and 
genes, transcription and epigenetic factors) in coordinate manner are 
likely to play an important part during the induction and development 
of somatic embryos.

Simultaneously, many genes have been identified and characterized 
in many plant species which express differentially during somatic 
embryogenesis and synthesize the specific proteins that are required 
for somatic embryo development. In addition, with the advancements 
in the cellular and molecular knowledge and also the advent of new 
techniques, the future study needs to be undertaken to investigate 
additional cellular and molecular factors that might be involved during 
the process of somatic embryogenesis in plants.
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