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ABSTRACT

Brassinosteroids (BRs) are the most important growth hormones which are steroidal in nature play crucially involved 
in growth and progressions of the plant. In recent years, advancements done in accessibility of biological possessions 
and approaches led to the most applicable mechanisms involved in BRs de novo synthesis, translocation and signaling 
pathways. The current researchers are also associated with the flexible roles of BRs. From the previous studies, it was 
manifest that BRs interaction with salicylic acid, abscisic acid, auxin, gibberellin, ethylene, cytokinin, and jasmonic 
acid in controlling numerous morphophysiological processes in plants. In this section, an effort is made to understand 
mysterious development and growth-linked either directly or not directly to BRs signaling and its intra- and inter-
relations with various phytohormones. This, in sequence, will support emerging extrapolative representations to 
moderate various valuable qualities in plants and address current encounters in agriculture.

1. INTRODUCTION

Stresses, either abiotic or biotic, seriously influence agricultural 
profitability and world farming is confronting the test of expanding the 
efficiency keeping in mind the end goal to pace up with the expanding 
nourishment request of the developing populace [1]. These stresses 
incorporate various factors such as of light, ultraviolet radiations, 
temperature (high and low), drought, flood, submergence, heavy metal 
stress, pH alteration, salinity increments, nutrient imbalance, gaseous 
pollutants (ozone, sulfur dioxide), and many other less commonly 
occurring stress. Furthermore, overproduction of reactive oxygen 
species (ROS) also enhanced abiotic stress inducing critical damages to 
the primary metabolites, destructions of biochemical components such 
as of proteins, lipids, carbohydrates, and interferes with the molecular 
process that ultimately halts cellular metabolism. Thus, abiotic stresses 
altered almost all metabolic process of the plant from the beginning 
period of seed germination to development till maturity. The changes 
marked in various stages of the plant growth and ultimately reduced the 
overall yields of plants. Further assist it has been assessed that abiotic 
stresses may negatively impact 70% yield of staple support crops [2,3]. 
Furthermore, expanding salinization of arable land is relied on to bring 
about 30% land-misfortunes before 2028 and half by mid of the 21st 
century [4]. Plant development controllers assume imperative parts 
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in the direction of plant development process and signaling systems, 
either specifically or by implication in an extensive variety of biotic 
and abiotic stress [5,6].

In this context, brassinosteroids (BRs), an important steroidal plant 
regulator involved directly or indirectly in enhancing plant growth 
and development process by regulating various mechanisms. BRs not 
only trigger the germination, cell division, cell elongation, root growth 
development, induction ethylene biosynthesis [7] but also regulate cell 
cycle [8]. Moreover, BRs stimulate the growth of apical meristems 
in potato tubers [9], speeding up of the frequency of cell division in 
Petunia hybrida [10] and cell division and leaf expansion [11]. BRs 
also (directly or indirectly) involved in germination process, enhancing 
photosynthesis, regulating senescence also in the vegetative process 
as well as defensive and mitigating responses to different abiotic and 
stress [12]. Remarkably, BRs may be applied to plants at germinative, 
vegetative as well as flowering stage of plants [13] as foliar spray, seed 
treatment, root application, and also by shotgun approach [14-18]. 
Not only this, interaction of BRs with other phytohormone facilitates 
growth and metabolism of plants. Hence, BRs make plant life 
easier not only by alleviating stresses but also by regulating various 
physiological parameters.

1.1. BRs: An Overview
BRs belong to the class of polyhydroxylated plant steroid hormones 
reassemble with animal steroid hormones and well-known for 
regulating various physiological functions such as developmental 
process involved in embryogenesis, seed and microspore 
germination, regulation of cell division and differentiation, 
development and growth of thecae and pollen tubes, and initiates 
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flowering and regulated leaf senescence [19]. Many studies have 
already conducted to understand BRs biosynthesis, structure, 
degradation, signaling and involvement of BRs in various 
physiological and developmental processes [20-22]. Endogenous 
regulation of BR is critical for various biological functions in 
plants [23]. The biosynthesis, translocation and metabolism of BR 
are vital modules of metabolic equilibrium actively maintained 
endogenous level of BR in plants. Furthermore, BRs act as a 
master regulator in plant disease resistance, defensive responses to 
pathogen attack but mechanism related these responses is still less 
clear and even contentious and needs extensive research [24-27].

1.2. Historical Background, Chemical Structure, and 
Biosynthesis
Over a 30-year period of time, Mitchell and his coworkers while 
working on various plant, found that extract from pollen of Brassica 
napus has growth promoting activity and isolated new compound 
brassins and had a prominent effect on cell division and elongation 
in the bean second internode bioassay and also increased yields 
when applied on youngest seedlings of various plants. Based on this 
initial finding [28] predicts hormonal nature of brassins due to their 
particular translocatable organic substances extracted from one plant 
and actuated growth when given in ample amount to another plant. 
However, interpretation of the main constituent of brassins was fatty 
acid ester was not correct. The accurate and factual chemical structure 
and the main constituent of brassin were come into existence after 
extensive and laborious effort by USDA workers and consumption of 
huge amount of bee-collected pollen followed by solvent extraction 
and extensive column chromatography [29]. By X-ray crystallography 
technique, pure substance was identified as steroidal lactone named 
brassinolide (BL) [30]. A stereoisomer of BL, 24-epiBL synthesized 
was chemical to overcome the costly extraction process and production 
at large scales [31]. Most important advancement was made that 
positioned the groundwork for elaborating the biosynthetic pathway, 
endogenous level of BRs, mode of action, recognition of the BR 
receptor and other coreceptor involved [32]. Nowadays, cost-effective 
endogenous levels of hormones in plant were detected using by ELISA 
method [33-35].

BRs structure can be framed as C27 and C28 with alkyl functional 
group of the side chains. A transfused A/B ring framework containing 
2-OH at the position of ring A and 6-ketone group on the position at 
ring B is required for biochemically functional BRs [36]. The chemical 
alignment (22R, 23R, and 24S) for the most distinguished BR up to this 
point is shown in Figure 1. In addition, BRs contrast from BL inside 
the boxed territory (an) and (b) on the premise of a 5α-cholestane 
skeleton [37].

Exhaustive stereochemistry studies illuminated whole paths of the 
transformation of campesterol to BL through teasterone, typhasterol, 
and castasterone [39]. Steroidal plants are consolidated by the 
isoprenoid biosynthetic pathway by means of acetyl-CoA, mevalonate, 
isopentenyl pyrophosphate, geranyl pyrophosphate, and farnesyl 
pyrophosphate [Figure 2]. Squalene is incorporated by an abbreviated 
version of two farnesyl pyrophosphate particles, which is then 
changed over by means of squalene-2,3-epoxide to cycloartenol. The 
transformation of squalene-2,3-epoxide to cycloartenol is particular to 
plants. Cycloartenol is the critical antecedent of plant sterols; current 
exertion has demonstrated that Arabidopsis contains a useful lanosterol 
synthase and hence a substitute pathway to plant sterols by means of 
lanosterol [40].

2. POSITIVE ROLE OF BRs IN ABIOTIC STRESS

Wide investigation on improving the function of BRs and related 
compounds involved in abiotic stresses to plants had been already 
done. In this section, discussion will consider the possible role of BRs 
in various stresses, induction of antioxidant system, mode of action 
and also crosstalk of BRs with other stress mitigating molecules, 
phytohormone, and various signaling pathways involved.

2.1. Temperature Stress
In the present environmental scenario, both chilling stress and high 
temperature have negative impact on the crop plants. BRs and related 
composites evoke antioxidant defense system and ultimately improve 
plant growth and metabolism in different plants exposed to both 
high [41] and low temperature [42]. Plant exposed to chilling stress BR 
reduce the ion outflow [43], whereas, 24-epiBL felicitate enzymatic 
activity (antioxidant) in grapevines exposed to chilled treatment [44]. 
Under chilling (4°C) conditions, exogenous application of 24-epiBL 
eased the lethal effect of H2O2 through by activating antioxidant 
defense system such as CAT, APX, and superoxide dismutase (SOD) 
in Brassica juncea seed [45]. Furthermore, in cucumber exogenous 
application of 24-epiBL mitigate chilling-induced reticence of 
photosynthesis by dropping ROS generation and enhanced activities 
of SOD, APX. The reduction in chilling injury, ion leakage, membrane 
integrity, and enhanced osmoprotectant, phenylalanine ammonia-lyase 
activity due to ameliorative effect of ample concentration of BR (3.0 
and 6.0 µM) exogenously applied to tomato plants [42]. Furthermore, 
the physiological and molecular impact of 24-epiBL on tomato plants 
are more tolerant to high temperature as compared to an untreated 
plant.

2.2. Low Temperature
Detailed alleviating effects of BRs on the chilling stress presented by 
different researchers and in various literature. In detailed study, it was 
observed that EpiBL- treatment to tomato seedlings enhanced tolerance 
against heat shock (HS) by improving ionic leakage and enhancement 
defense system [41]. BR also alleviated low irradiances in Oryza 
sativa by enhancing soluble protein content as well as chlorophyll 
content. In Arabidopsis, exogenous use of BL was reported to uphold 
root elongation and lateral root germination [46].

2.3. Drought Stress
Drought recognized as the most severe abiotic stresses presently, 
affecting agriculture by reducing photosynthetic pigments synthesis, 
stomatal conductance and photosynthesis machinery that lead to 
declined growth of plants [47]. BL mitigate adverse effects and 
enhanced salt tolerance in Zea mays by improving soluble proteins 

Figure 1: The chemical structure of brassinolide with the steroid rings labeled 
as A, B, C, and D [38]
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content, proline content, and antioxidant activities [48]. BR treatment 
of seedlings of two varieties of wheat (Sakha 69  -drought-resistant) 
and (Giza 164-drought-sensitive) grown in drought stress condition 
showed enhanced high relative leaf content, increased the content 
of proline, upregulation of water stress-inducible proteins and also 
de novo synthesis of specific polypeptides [49].

2.4. Salinity Stress
Approximately, 45 million hectares of irrigated land reported 
to be smashed by salinity stress and is increasing day-by-day 
worldwide  [50,51]. The negative effects of salinity include toxicity 
induced by ion accumulation, osmotic stress, nutrient-imbalance 
and homeostasis/deficiency, amplified cell-turgor loss, reduced leaf 
water potential, disturbed physiological/biochemical processes, 
and excessive ROS generation [51]. In Cucumis sativus seedlings, 
exogenous BL application markedly reduced salinity stress, increased 
seed viability, and reduced electrolyte leakage by enhancing SOD, 
POD, and CAT activity. Furthermore, exogenous spraying of 24-epiBL 
to salinity-exposed Phaseolus vulgaris enriched the MSI, RLWC due 
to enhanced antioxidative enzymes and proline content [52].

2.5. Metalloid Stress
In sustainable agriculture, metal/metalloid stress is a serious concern 
directly related with environment. Agricultural soils exposed to different 
metal pollutants from industrial wastes, agricultural wastes, presence 
of heavy metals, sewage waste disposal, etc., which led to decrease 
the overall efficiency of plant. Application of BRs to Cd heavy metals 
of different concentration (3.0–12 mg/kg) to Solanum lycopersicum 
plants upgraded cell reinforcement framework (antioxidant system) 
ultimately enhanced organic product yield and quality [53]. Improved 
Cd-  tolerance in P. vulgaris was also reported which may be due to 
the activity of 24-epiBL (5 µM)-mediated increased activity of the 
antioxidative system, proline content and maintains the membrane 

stability index [52]. Likewise, application of 24-epiBL mitigates Ni 
heavy metal stress in Brassica juncea by improving defense enzymes 
and proteins [54].

2.6. Osmotic Stress
Abiotic stresses such as drought and salinity stress freezing 
dehydration directly create osmotic pressures while chilling indirectly 
imposes osmotic stress. Plants showed different responses by altering 
various physiological and developmental processes when faced low 
temperature and dehydration condition. To overcome such harsh 
condition plants accumulate non-toxic osmoprotectants such as 
proline which is regulated by 1-pyrroline-5-carboxylate synthase 
(P5CS) and proline dehydrogenase (PDH). The expression of P5CS 
and PDH are down-regulated by an increased level of abscisic acid 
(ABA). The downregulation of effect P5CS is minimized by BL but 
fail to stimulate PDH. Homo-BL showed ameliorative effect drought 
tolerant (C306) and drought susceptible (HD2329) wheat exposed to 
various stress conditions. Exogenous application of homo-BL also had 
increased water content, nitrate reductase activity, photosynthesis and 
photosynthetic pigment and membrane stability under stress [55].

2.7. Involvement of BRs in Modulation of Antioxidants Defense 
System Under Stress
The generations of various ROS are usual in the regular aerobic 
metabolism in plants. Although stresses cause disturbance in ROS 
generation and their minimal scavenging ultimately lead to a 
physiological condition recognized as oxidative stress. Therefore, due 
to excessive oxidative stress, consequences include alteration of major 
biomolecules, nutrient imbalances, cell death, and retarded growth 
and development [56,48]. Plants developed many complex defense 
mechanisms to survive under outrageous unforgiving ecological 
conditions. Plant tolerance includes the incitement of multipart 
metabolic exercises incorporating legitimate adjust in antioxidative 

Figure 2: Biosynthetic pathway of the plant sterol precursor, cycloartenol, from mevalonate
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pathways and ROS-searching plans [57]. The defense system 
comprises the enzymatic and non-enzymatic components that are 
compulsory for osmotic alteration, maintenance of membranes, and 
ROS-scavenging [Figure 3] [56].

3. CROSSTALK OF BRS WITH OTHER 
PHYTOHORMONE(S)

BRs fulfill assorted capacities due to its association with various 
phytohormones, for example, abscisic corrosive, auxin, cytokinin, 
ethylene, gibberellin, jasmonic corrosive, polyamines (PA) and 
salicylic corrosive (SA), and to modify untold parts of plant 
development and formative procedures [58,59]. The disentangling of 
these unpredictable mechanisms of BR signaling and its relationship 
with molecular frameworks will be of articulated impact in enhancing 
present day agribusiness rehearses [Figure 4].

3.1. BRs and ABA
As well-known ABA inhibits seed germination and promotes seed 
dormancy during embryo maturation while antagonistically, BR 
stimulates seed germination [60]. However, detailed molecular 
mechanism needs extensive studies to recognize the whole mechanism 
of crosstalk [61]. Moreover, BR and ABA have been recommended 
to assume opposing parts in controlling seed germination and post-
germinative development forms [62]. ABA hinders, while BR-
upgrades seed germination and post-germinative development forms. 
As of late, mutant examinations showed a synergistic relationship 
among BR and ABA in inciting reactions, for example, H2O2 creation, 
respiratory burst oxidase homolog 1 (RBOH1) quality articulation, 
NADPH oxidase action and in interceding heat and oxidative salt 
tolerance [63]. More advanced studies showed that ABA biosynthesis 
assumes a key part in supporting tolerance in BR-initiated pathways 
in plants.

3.2. BRS and Auxins
Crosstalk between BR and auxin regulates innumerable phases 
of plant growth and developmental routes [64-66]. Interactive 
effects of BRs and auxin involved physiological process such as 
hypocotyl elongation or root development. However, still, BR 
interaction with auxin in regulating stress responses has remained 
indefinable  [67]. In Arabidopsis, the BR level required for 
development is interceded by BRAVIS RADIX (BRX) which is 
provoked by auxin showing that BRX demonstrations at the nexus 
of an input circle in Arabidopsis  [68]. Surprisingly, the CPD gene 
and DWF4 gene required for BR biosynthesis are likewise controlled 
by BRX  [23] showing a connection between BR biosynthesis and 
in auxin signaling [68]. In addition to dwarfism, the maize BR 
biosynthetic mutants have the presence of pistils in the tassel flowers 
and reduced tiller branch outgrowth [69]. Moreover, a connection 
among BR and auxin in plant development and improvement has 
been built up through cooperation among BIN2 and auxin reaction 
factors (ARF2). Recently, it was exhibited that the BR signaling part 
BIN2 can specifically collaborate with an auxin signaling segment 
ARF2, an individual from the auxin response factor group of 
transcriptional controllers [70]. Besides, rice genome secures seven 
YUCCA genes which encode the rate constraining catalysts for auxin 
biosynthesis  [71] which are down-managed under drought stress. 
Furthermore, in yucca mutants, 40% higher transcript level in BR 
upregulation of genes has been reported [72] revealed the BR and 
auxin crosstalk point. Despite the fact that the relationship of BR and 
auxin has been all around archived basically in plant development 

and formative procedures, nonetheless, promote examinations are 
essential to comprehend the component of auxin and BR crosstalk 
associated with tolerance.

3.3. BRs and Jasmonic Acid
To enhance abiotic tolerance, synergistic connection of BR and JA 
assume key parts in the plant growth. It has likewise been shown that 
BR improves JA level in rice under stress [73], which unequivocally 
advances the declaration of thionin qualities encoding antimicrobial 
peptides demonstrating a potential crosstalk point with these two 
phytohormones. Strikingly, hindrance of JA incited accumulation of 
anthocyanins by brassinazole in Arabidopsis has been additionally 
detailed by BRs motioning on the JA pathway [74]. The transcript 
levels of JA biosynthesis quality and JA-initiated signaling gene 
were down-controlled when the BR focus was low. Be that as it 
may, on high BR focus, the transcript levels of JA biosynthesis and 
signaling gene were up-controlled. These results were, moreover, 
endorsed through exogenous foliar application with JA which incited 
the down-control of BR biosynthesis and signaling gene, OsDWF4 
and OsBRI1 [27], showing counter communication among BR and 
JA in the rice roots. In addition, it has additionally been watched 

Figure 3: Interrelationship between abiotic stress reactive oxygen species 
generation and plant defense system

Figure 4: A generalized model of the hormones interaction under biotic and 
abiotic stress
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that BR biosynthesis controlled by improved JA-antecedent, 
12-oxo-phytodienoic destructive, and subsequently joining BR and JA 
pathway initiation [27].

3.4. BRs and Salicylic Acid
Interaction between BR and SA revealed important role in alleviating 
biotic as well as abiotic stresses. Crosstalk of SA and BR conferred 
salt tolerance to plant with interaction of other stress hormones [75]. 
SA mediated gene NPR1, is an essential module of 24-epibrassinolide-
mediated increase in thermo-  and salinity tolerance in Arabidopsis 
thaliana [75]. It is well known that SA has an ameliorative effect on 
salinity stress and other abiotic stresses [76]. In O. sativa, BR enhances 
tolerance to various biotic factors such as fungal and bacterial pathogen 
(Magnaporthe grisea and Xanthomonas oryzae).

3.5. BRs and Polyamine
Even though the significant progress made past decades, more 
exploration began to investigate the BR and PA crosstalk. Recent 
advancement showed that abiotic and biotic stresses facilitate elevation 
in free PA content by exogenous application of BR which helps to 
mitigate Cu-oxidative stress [77,78]. Besides, BR treatment keeps 
up the ideal measure of spermidine fixation required for typical plant 
development and particularly enhanced the production of putrescine 
required for stress tolerance, however, diminishes the concentration 
of cadaverine which produces oxidative burst to balance substantial 
metal stress [79]. Further, the synergistic application of Cu and BR 
similarly decreases cadaverine redesigning SOD action required for 
resistance [80]. It shows the key part of BR-PA communication in 
giving abiotic stress resistance. In this manner, the utilization of this 
combination is essential for maintaining present day agribusiness and 
to unwind the qualities and translation factors associated with BR and 
PA signaling pathway.

3.6. BRs and Nitric Oxide (NO)
NO assumes indispensable parts in different plant physiological 
procedures, including plant development, advancement, and abiotic 
stresses [81,82]. A few lines of confirmation demonstrate that NO is 
associated with plant signal transduction due to water scarcity, press 
insufficiency, and ABA boost [83,84]. In this area, an exertion was 
made to explain the impacts of NO on BR-actuated ABA aggregation 
in BR-prompted oxidative stress tolerances. Previous studies have 
demonstrated that water scarcity prompts NO production [85,86], 
and NO improves the water stress resilience of plants. One of the 
conceivable components by which NO improves plant resilience to 
water stress is by the direction of ABA biosynthesis [87]. Be that as 
it may, it is not certain whether NO incites ABA biosynthesis in BR 
motioning submerged stress. The exogenous and endogenous level of 
BR expanded the age of NO in the mesophyll cells of maize leaves and 
the BR-incited ABA amassing was considerably decreased proposing 
that BR-initiated ABA gathering is reliant on BR-actuated NO 
generation. Taken together, our outcomes obviously propose that BR-
instigated NO generation intercede ABA biosynthesis, which brings 
about the upgrade of resilience to the oxidative harm caused by water 
push. In addition, considers are important to uncover how NO controls 
BR-prompted ABA biosynthesis.

4. CONCLUSION AND FUTURE PROSPECTS

Environmental stresses well known are the mainly responsible for crop 
loss globally and become more critical day-by-day past few decades. 

An environmental stress generates ROS which adversely affects 
metabolic and physiological process. Diverse strategies were applied 
to mitigate detrimental effect of stress on of which is the application 
of plant growth regulators has been deliberated as a better defensible 
alternative. In this continuation, BRs and linked compounds have been 
widely described to stabilize significances of several abiotic stresses 
including salt and heavy metals. Understanding the basic mechanism 
of BR homeostasis and dealing with its associations with different 
phytohormones will add new degree to BR investigate. Without 
lifting a finger of utilization and improvement of new approaches, it is 
evaluated that in future there will be a critical collection of data of BR 
activity and this could inevitably finish up in going with another age in 
plant formative and stress science.
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