
© 2017 Ajar Nath Yadav, et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-
ShareAlike Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/). 

Beneficial microbiomes: Biodiversity and potential biotechnological 
applications for sustainable agriculture and human health

Ajar Nath Yadav1*, Rajesh Kumar2, Sunil Kumar1, Vinod Kumar1, TCK Sugitha3, Bhanumati Singh4, 
Vinay Singh Chauahan4, Harcharan Singh Dhaliwal1, Anil Kumar Saxena5

1Department of Biotechnology, Akal College of Agriculture, Eternal University, Sirmour-173101, India, 2Department of Food Technology, Akal College of 
Agriculture, Eternal University, Sirmour-173101, India, 3Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore- 641003, 
India, 4Department of Biotechnology, Institute of Life Science, Bundelkhand University, Jhansi-284128, India, 5ICAR-National Bureau of Agriculturally Important 
Microorganisms, Kushmaur, Mau Nath Bhanjan, Mau-275103, India

ARTICLE INFO

Article history: 
Received on: July 25, 2017 
Accepted on: September 13, 2017 
Available online: November 09, 2017

Key words:  
Biodiversity, 
Biofortification, 
Malnutrition, 
Microbiomes, 
Probiotic

ABSTRACT

The beneficial microbes plays an important role in medical, industrial, and agricultural processes. The precious 
microbes belong to different groups including archaea, bacteria, and fungi which can be sort out from different habitat 
such as extreme environments (acidic, alkaline, drought, pressure, salinity, and temperatures) and associated with 
plants (epiphytic, endophytic, and rhizospheric) and human. The beneficial microbes exhibited multifunctional plant 
growth promoting (PGP) attributes such as N2-fixation, solubilization of micronutrients (phosphorus, potassium and 
zinc), and production of siderophores, antagonistic substances, antibiotic, auxin, and gibberellins. These microbes 
could be applied as biofertilizers for native as well as crops growing at diverse extreme habitat. Microbes with PGP 
attributes of N2-fixation, P-, and K-solubilization could be used at a place of NPK chemical fertilizers. Agriculturally, 
important microbes with Fe-  and Zn-solubilizing attributes can be used for biofortification of micronutrients in 
different cereal crops. The biofertilizers are an eco-friendly technology and bioresources for sustainable agriculture 
and human health. In general, the concentrations of micronutrient in different crops are not adequate for human 
nutrition in diets. Hence, consumption of such cereal-based diet may result in micronutrient malnutrition and related 
severe health complications. The biofortification approach is getting much attention to increase the availability of 
micronutrients, especially Fe and Zn in the major food crops. The beneficial microbes can be used as probiotic as 
functional foods for human health. Probiotics microbes such as Bifidobacterium, Lactobacillus, Methanobrevibacter, 
Methanosphaera, and Saccharomyces are increasingly being used as dietary supplements in functional food products. 
The microbes with beneficial properties could be utilized for sustainable agriculture and human health.

1. INTRODUCTION

Extreme environments represent unique ecosystems which harbor 
novel biodiversity of microbes with the ability to survive at diverse 
environmental conditions. India is one among 12 mega-biodiversity 
countries and 25 hotspots of the richest and highly endangered eco-
regions of the world. The microbiomes of have been reported in diverse 
environmental habitat such high/low temperature, hypersalinity, water 
deficiency, and high/low pH. To survive under such extreme conditions, 
these organisms referred to as extremophiles have developed adaptive 
features which permits them to grow optimally under one or more 
environmental extremes, while polyextremophiles grow optimally 
under multiple conditions. These extremophiles can grow optimally 
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in some of the earth’s most unreceptive environments of temperature 
(−2°-20°C - psychrophiles; 60°-115°C - thermophiles), salinity (2-5M 
NaCl  -  halophiles), and pH (<4 acidophiles and >9  -  alkaliphiles). 
Among diverse extreme habitats, thermal springs represent unique 
ecological niches and harbor both mesophilic and thermophilic 
members of archaea and bacteria [1-3]. Phylogenetic characterization 
of microbiota has been undertaken for geothermal springs worldwide. 
The different thermal springs such as Bakreshwar, Balarampur, 
Chumathang, Manikaran, and Vashisht are present in India, which 
represent an unusual niche for thermophilic microbes (60-100°C), which 
can be potential sources of novel genes, allele, and microbiota [4-6]. 
Prospecting low-temperature habitats have led to the isolation of a 
great diversity of psychrophilic/psychrotrophic microbiomes. The 
Indian Himalayas represent cold habitat a niche for selection of novel 
psychrotrophic microbes for different biotechnological, agricultural, 
and industrial applications. Psychrophilic microorganisms are 
potential bioresources of novel pigments (as food additives), 
extracellular enzymes (amylase, cellulase, chitinase, laccase, lipase, 
pectinase, protease, xylanase, β-galactosidase, and β-glucosidase), 
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exopolysaccharide production, and antifreeze compounds, which 
can be valuable in agriculture as inoculants (plant growth promoting 
[PGP] microbes) or biocontrol agents in extreme cold and high altitude 
habitats [7-9]. Microbial research in hypersaline environments has also 
attracted the interest of researchers due to various biotechnological 
and agricultural applications. Soda lakes and deserts represent the 
most stable naturally occurring alkaline environments on Earth. The 
different hypersaline lakes such as Sambhar Lake (Rajasthan), Chilka 
Lake (Odisha), and the Great Rann of Kutch (Gujarat) are typical 
saline environments in India, and novel and efficient microbiomes 
from hypersaline environments have been reported and characterized 
for its biotechnological applications in agriculture, industry, and 
medicines [10,11].

Water-deficient/low-moisture conditions coupled with high 
temperatures in arid deserts lead to enrichment of microbial 
communities that can survive extreme variations in temperature and 
drought. Such environments encompass typically poor soils with 
low organic content and limited amounts of bioavailable inorganic 
nutrients. The desert microbiomes are not only responsible for the 
productivity, biogeochemical cycling of elements, and ecosystem 
balance but also for soil neogenesis and improvement of soil structure. 
The drought-tolerant microbes from hot deserts have been isolated 
and characterized for PGP under the rainfed conditions [12,13]. 
Extremes of high (alkaline) and low (acidic) pH also influence the 
buildup of microbial population and in turn soil productivity. If the 
soil is acidic, the availability of essential micronutrients such as P, Ca, 
Mg, and molybdenum are affected. Very few reports are available on 
the diversity and distribution of microbiomes in acidic soils [14,15]. 
Another useful extreme environment is the mangrove ecosystems which 
is mostly nutrient-deficient, especially in terms of N2 and P. Inspite of 
this, mangroves can be highly productive, which can be attributed to 
microbial activity leading to major nutrient transformations [16].

The plant microbiomes can be grouped as rhizospheric microbes 
(living in soil near the roots), epiphytic microbes (colonizing on 
the phyllosphere), and endophytic microbes (residing inside tissue). 
In general, there are three kinds of plant-microbes interactions 
are considered, i.e.,  epiphytic, endophytic, and rhizospheric. The 
rhizosphere is the zone of soil influenced by roots through the 
release of substrates that affect microbial activity. The rhizospheric 
microbes have the ability to attach to the root surfaces allowing 
these to derive maximum benefit from root exudates. The population 
and abundances of rhizospheric microbes have been affected by 
several factors such as soil type, soil pH, and other environmental 
conditions surrounding any plants. A  number of microbial 
species belonging to different genera such as Acinetobacter, 
Arthrobacter, Aspergillus, Azospirillum, Bacillus, Burkholderia, 
Enterobacter, Flavobacterium, Haloarcula, Halococcus, Haloferax, 
Methylobacterium, Paenibacillus, Penicillium, Piriformospora, 
Pseudomonas, Rhizobium, and Serratia were revealed from the 
rhizosphere of different crop plants [12,17-22].

The phyllosphere is a common and special niche for synergism between 
microbes and plant. The plant part, especially, leaves are exposed to 
dust and air currents, resulting in the establishments of typical flora 
on their surface aided by the cuticles, waxes, and appendages, which 
help in the anchorage of microbes. The phyllospheric microbes may 
survive or proliferate on leaves depending on the extent of influences 
of material in leaf diffusates or exudates. The phyllospheric microbes 
may perform an effective function in controlling the airborne 
pathogens inciting plant disease. Microbes on leaf surface are said to 
be extremophiles as they can tolerate low/high temperature (5–55°C) 

and UV radiation. Many microbes such as Achromobacter, Bacillus, 
Beijerinckia, Burkholderia, Flexibacterium, Methylobacterium, 
Micrococcus, Micromomospora, Nocardioides, Pantoea, 
Penicillium, Planomonospora, Pseudomonas, Streptomyces, and 
Xanthomonas have been reported in the phyllosphere of different 
crop plants [15,23-27].

The microbes isolated from inside the plant tissues (endophytes) 
are referred to those microorganisms, which colonize in the inner 
of the plant parts, namely, root, stem, or seeds without causing any 
harmful effect on the host plant. Endophytic microbes enter in host 
plants mainly through wounds, naturally occurring as a result of 
plant growth or through root hairs and at epidermal conjunctions. 
Endophytes may be transmitted either vertically (directly from parent 
to offspring) or horizontally (among individuals). Microbes reach 
the rhizosphere by chemotaxis toward root exudates components 
followed by attachment. The preferred site of attachment and 
subsequent entry are the apical root zone with a thin-walled surface 
root layer, such as the cell elongation zone and the root hair zone 
with small cracks caused by the emergence of lateral roots. Microbial 
traits putatively involved in endophytic colonization of plant roots. 
For penetration, the microbes have to produce cellulolytic enzymes 
required to hydrolyze the exodermal walls, such as endoglucanases 
and endopolygalacturonidases [22]. Endophytic microbes exist within 
the living tissues of most plant species in the form of symbiotic 
to slightly pathogenic. A  large number of endophytic microbial 
species such as Achromobacter, Burkholderia, Burkholderia, 
Curtobacterium, Enterobacter, Gluconoacetobacter, Herbaspirillum, 
Klebsiella, Microbiospora, Nocardioides, Pantoea, Planomonospora, 
Pseudomonas, Serratia, and Streptomyces have been identified from 
different host plants [22,28-33].

Abiotic stresses, such as acidity, alkalinity, drought, extremes of low 
and high temperature, heavy metals, and soil salinity, cause severe yield 
loss in agricultural crops. There are many reports on microbial diversity 
from extreme environments, for example, low temperature [9,34-36], 
high temperature [3-6,37], saline soil [38], drought [39], acidic 
soil [39], and alkaline soil [11,39]. Microbe isolated and sort out from 
extreme environments may have exhibited PGP attributes, and thus, 
these abiotic stress tolerant microbes can be applied for plant growth 
under respective abiotic stress conditions.

The microbiomes associated with different crops possess 
multifunctional PGP attributes, and these microbes promote the growth 
of plant directly by production of plant growth regulators (indole-
3-acetic acid, cytokinins, gibberellins, and abscisic acid); biological 
nitrogen fixation; solubilization of phosphorous, potassium and zinc; 
or indirectly by production of ACC deaminase, ammonia, antibiotics 
(2,4-diacetylphloroglucinol, kanosamine, neomycin A, phenazine-
1-carboxylic acid, pyocyanin, pyoluteorin, and pyrrolnitrin), 
hydrocyanic acid (HCN), lytic enzymes (chitinase, lipase protease, 
β-1,3-glucanase), and siderophores [16]. Currently, there has been an 
increased curiosity in the development of new functional foods and their 
assimilation in a healthy diet. Such products, and especially probiotics, 
exert a beneficial effect on host-gut microbiota after consumption and 
may be proficient to prevent several diseases. Probiotics are defined as 
live microbiomes which when administered in ample amounts confer a 
health benefit on the host. The present review revealed about microbes 
reported from different source including extreme microbiomes, plant 
microbiome, human microbiomes, and its biotechnological application 
in agriculture, industry, and for human health. Microbiomes having 
multifunctional PGP attributes can be utilized as bio-inoculants for 
sustainable agriculture.
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2. BIODIVERSITY OF BENEFICIAL MICROBIOMES

The extreme environments possess the potential and novel microbial 
diversity. Among diverse microbiomes, actinobacteria, firmicutes, 
and proteobacteria are omnipresent in the environment and play 
a noteworthy role in agriculture, medicine, and industry. Extreme 
environments can be a source for novel species of microbes, as they can 
tolerate extremes of pH, temperature, salinity, and moisture stress. The 
different groups of microbes have been reported as plant microbiomes 
(epiphytic, endophytic, and rhizospheric) and from different natural 
and extreme environments worldwide. The microbiomes belong to all 
three domains archaea, eubacteria, and fungi, which included different 
phylum mainly: Archaea (Crenarchaeota and Euryarchaeota), bacteria 
(Actinobacteria, Bacteroidetes, Chloflexi, Cyanobacteria, Firmicutes, 
and Proteobacteria), and fungi (Ascomycota and Basidiomycota) 
(Fig.  1). The proteobacteria were further grouped as α-, β-, γ-, and 
δ-proteobacteria.

The low-temperature habitat represents hot spots of biodiversity, and 
several novel cold-adapted microbial species have been sort out from cold 
environments including Cellulophaga algicola [40], Cryobacterium 
roopkundense [41], Exiguobacterium soli [42], Flavobacterium 
frigidarium [43], Flavobacterium psychrolimnae [44], Glaciimonas 
frigoris [45], Hymenobacter roseosalivarius [46], Lacinutrix 
jangbogonensis [47], Massilia eurypsychrophila [48], Octadecabacter 
arcticus [49], Oleispira antarctica [50], Pedobacter 
arcticus [51], Pseudomonas extremaustralis [52], Psychrobacter 
pocilloporae [53], Psychromonas ingrahamii [54], Sphingobacterium 
psychroaquaticum [55], and Sphingomonas glacialis [56]. Along with 
novel species of psychrotrophic microbes, some microbial species 
such as Arthrobacter nicotianae, Brevundimonas terrae, Paenibacillus 
tylopili, and Pseudomonas cedrina have been isolated and characterized 
for multifarious PGP attributes at low temperatures from cold deserts 
of NW Himalayas [7]. In a study by Yadav et al. [8], the microbial 
species Alishewanella sp., Aurantimonas altamirensis, Bacillus 
baekryungensis, Bacillus marisflavi, Desemzia incerta, Paenibacillus 
xylanexedens, Pontibacillus sp., Providencia sp., Pseudomonas 
frederiksbergensis, Sinobaca beijingensis, and Vibrio metschnikovii 
have been isolated and characterized for low-temperature tolerance 
and PGP attributes first time from high altitude and low-temperature 
environments of Indian Himalayas. Wheat associated psychrotrophic 
bacteria such as Arthrobacter methylotrophus and Pseudomonas 
rhodesiae have been reported first time from wheat growing in North 
hills zone of India [28]. In a specific search of economically important 
Bacillus and Bacillus derived genera (BBDG) at low temperature, 
various BBDGs such as Bacillus psychrosaccharolyticus, Bacillus 
amyloliquefaciens, Bacillus altitudinis, Bacillus muralis, P. tylopili, 
Paenibacillus pabuli, Paenibacillus terrae, and Paenibacillus lautus 
with efficient PGP attributes have been reported first time by Yadav 
et al. [57].

Thermal springs represent extreme niches of microbiomes as 
bioresources of biotechnologically important microbes with potential 
applications in industry and agriculture. In the past few decades, 
several attempts have been made for isolation and characterization 
of microbiomes of thermal springs present in worldwide. Novel and 
efficient thermophilic microbes have been isolated and characterized 
from thermal extreme environments of world such as Thermotoga 
elfii [58], Thermotoga hypogeal [59], Thermoanaerobacter 
uzonensis [60], Bacillus thermophilus [61], and Herbinix 
luporum [62]. In the study by Yadav et al. [39], 195 isolates from Indian 
hot water springs (Manikaran, Balarampur, Vashisht, Chumathang, 

and Bakreshwar) have been isolated and characterized for different 
beneficial attributes of hydrolytic enzymes production and PGP under 
normal as well as high-temperature conditions. The many niche-
specific Bacillus and Bacillus and derived genera (BBDG) have been 
reported from thermal spring, for example, Bacillus fusiformis (B-10) 
from Bakreshwar and Brevibacillus from Vashisht and Balrampur [39].

Soil salinity is an important limiting factor for PGP of crops, 
especially in arid and semi-arid regions worldwide. Haloarchaea 
thrive in hypersaline environments and have ability to survive 
with salt concentrations approaching saturation. The microbiomes 
of saline habitats have been isolated and identified to be present 
in halobacteriaceae family such as Haloarcula argentinensis, 
Halobacterium sp., Halococcus hamelinensis, Haloferax 
alexandrines, Haloferax larsenii, Haloferax volcanii, Halolamina 
pelagic, Halostagnicola kamekurae, Haloterrigena thermotolerans, 
Natrinema sp., and Nanoarchaeum mannanilyticum. The haloarchaea 
have been isolated from many halophilic plants growing in hypersaline 
region of Rann of Kutch and characterized for different PGP 
attributes under hypersaline conditions [38,63,64]. In study by Yadav 
et  al. [8], a large number of halophilic or halotolerant species such 
as Bacillus halodurans (ABSL-8), Bacillus methanolicus (ABSL-11), 
Ammoniphilus sp. (ABSL-2), Halobacillus trueperi (ABSL-21), 
Bacillus vallismortis (ABSL-23), and Halobacillus dabanensis 
(ABSL-29) from Sambhar lake, Marinococcus halophilus (ABK-3) 
from Rann of Kutch, and Pontibacillus sp. (AB-2) from Chilka lake 
have been reported and characterized for different potential attributes 
for agriculture, industry, and human welfare.

3. BENEFICIAL MICROBES FOR SUSTAINABLE 
AGRICULTURE

Plant microbiomes are agriculturally important bioresources for 
agriculture as beneficial microbes may enhance plant growth and 
improve plant nutrition uptake through solubilization of P, K, and 
Zn, nitrogen fixation, and other mechanisms including siderophore 
production (microbes-mediated biofortification of Fe in different 
crops). Beneficial microbes may increase crop yields, remove 
contaminants, inhibit pathogens, and produce fixed nitrogen or 
novel substances. The growth stimulation by plant microbiomes can 
be a consequence of biological nitrogen fixation, production of plant 
growth regulators such as IAA, gibberellic acids, and cytokines, and 
biocontrol of phytopathogens through the production of antibiotic, 
antifungal, or antibacterial agents, Fe-chelating compounds 
production, nutrient competition and induction of acquired host 
resistance, or enhancing the bioavailability of minerals. Sustainable 
agriculture requires the use of strategies to increase or maintain 
the current rate of food production while reducing damage to the 
environment and human health. The use of plant microbiomes 
as PGP agents/biofertilizers is an eco-friendly alternative to 
conventional agricultural technology. There are several ways 
in which different PGP microbes have been reported to directly 
facilitate the proliferation of their plant hosts. The PGP microbes 
can fix atmospheric nitrogen and supply it to plants. The plant 
microbiomes with multifarious PGP ability synthesize several plant 
growth regulators that can act to enhance various stages of plant 
growth; they may have mechanisms for the P, K, and Zn that will 
become more available for plant growth and development; and 
they may synthesize some less well-characterized, low-molecular-
mass compounds or enzymes that can modulate plant growth and 
development. The indirect plant growth mechanism occurs when 
microbes prevent the growth of other plant pathogenic microbes 
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by mechanisms of production of ammonia, hydrogen cyanide, Fe-
chelating compounds (siderophores), β-1, 3-glucanase, chitinases, 
cellulase, lipase, antibiotics, and different fluorescent pigment. 
World agriculture faces a great loss every year incurred from 
infection by pathogenic organisms. The most promising way to 

increase crops productivity is the application of microbe for control 
of disease (Table 1).

Nitrogen is the one of the major limiting factors for plant growth, and 
the application of N2-fixing microbes as biofertilizers has emerged 

Fig. 1: Phylogenetic tree showed the relationship among beneficial microbiomes for agriculture, industry, and human health. 16S/5.8S rRNA gene sequences 
obtained from NCBI database, sequence alignment was performed using the CLUSTAL W program, and trees are constructed using maximum likelihood method 

with an algorithm using MEGA4 software. One thousand bootstrap replicates were performed. Bootstrap values are indicated on the branches.
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Table 1: Microbes with PGP attributes for agricultural application for the amelioration of diverse abiotic stresses.

Plant growth promoting microbes Abiotic stress Response Reference

Achromobacter xylosoxidans 249 Salinity stress Growth and SOD activity [73]

Aeromonas hydrophila MAS‑765 Salinity stress Alleviate salinity, growth [74]

Aeromonas vaga BAM‑77 Alkalinity stress Growth and yield [75]

Aeromonas vaga BAM‑77 Salinity stress Growth and yield [75]

Arthrobacter sulfonivorans IARI‑L‑16 Cold stress Growth and alleviation [8]

Azospirillum brasilense NO40 Drought and heat stress Improved homeostatic [76]

Azospirillum brasilense Sp245 Drought and heat stress Coleoptiles growth [77]

Azospirillum brasilense Sp245 Drought and heat stress Grain yield, mineral quality [78]

Azospirillum brasilense Sp245 Cold stress Affected dry weight [79]

Azospirillumlipoferum AZ1, AZ9, AZ45 Drought and heat stress Alleviate the drought stress [80]

Bacillus aerophilus BSH15 Acidic stress Growth and alleviate acidity [81]

Bacillus alcalophilus BCZ14 Drought and heat stress Growth, yield, stress [81]

Bacillus altitudinis IARI‑HHS2‑2 Cold stress Growth and yield [28]

Bacillus altitudinis BNW15 Alkalinity stress Growth and alleviate alkalinity [81]

Bacillus amyloliquefaciens BNE12 Salinity stress Growth and alleviate salinity [81]

Bacillus amyloliquefaciens IARI‑HHS2‑30 Cold stress Growth and alleviation [82]

Bacillus aryabhattai BCZ17 Drought and heat stress Growth, yield, stress [81]

Bacillus endophyticus BNW9 Alkalinity stress Growth and alleviate alkalinity [81]

Bacillus licheniformis HSW‑16 Salinity stress Growth and productivity [83]

Bacillus nanhaiensis IARI‑THD‑20 Alkalinity stress Growth and alleviation [15]

Bacillus safensis W10 Drought and heat stress Plant growth and yield [84]

Burkholderia phytofirmans PsJN Drought and heat stress Growth and grain yield [85]

Cellulomonas turbata AS1 Cold stress Growth and yield [86]

Flavobacterium psychrophilum HHS2‑37 Cold stress Growth and yield [28]

Klebsiella sp. SBP‑8 Salinity stress Plant growth and yield [87]

Lysinibacillus fusiformis IARI‑THD‑4 Acidic stress Growth and yield [15]

Micrococcus roseus SW1 Acidic stress Growth and yield [88]

Paenibacillus polymyxa BNH18 Cold stress Growth, alleviate cold [81]

Paenibacillus xylanexedens BNW24 Alkalinity stress Growth and alleviate alkalinity [81]

Pantoea intestinalis DSM 28113T Drought and heat stress Alleviate drought stress [89]

Piriformospora indica (Pi) Drought and heat stress Drought resistance, growth [90]

Planococcus salinarum BSH13 Acidic stress Growth and alleviate acidity [81]

Pseudomonas fluorescens 153 Salinity stress Salinity stress, growth [91]

Pseudomonas lurida M2RH3 Cold stress Growth and nutrient uptake [92]

Pseudomonas poae IARI‑NIAW2‑1 Drought and heat stress Growth, yield [13]

Pseudomonas putida AKMP7 Drought and heat stress Growth, alleviate heat stress [93]

Pseudomonas putida 108 Salinity stress Salinity stress, growth [91]

Pseudomonas rhizosphaerae IARI‑DV‑26 Alkalinity stress Growth and alleviation [81]

Pseudomonas sp. NARs9 Cold stress Germination, shoot, root lengths [94]

Rhodobacter sphaeroides IARI‑NIAW1‑7 Drought and heat stress Growth, yield [13]

Serratia marcescens 73 Salinity stress Growth and SOD activity [73]

Sporosarcina sp. BNH20 Cold stress Growth, alleviate cold [81]

Staphylococcus arlettae BNW27 Alkalinity stress Growth and alleviate alkalinity [81]

Staphylococcus epidermidis IARI‑THW‑28 Acidic stress Growth and yield [15]

as one of the most efficient and eco-friendly sustainable methods 
for increasing the growth and yield of crop plants. The chemical 
nitrogen fertilizers may be replaced by microbes having nitrogen-

fixing ability which could lead to more productive and sustainable 
agriculture without harming the environment. The plant microbiomes 
and microbes from different habitat in normal as well as extreme 
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conditions are known to fix atmospheric nitrogen. There are many 
groups of microbes reported as nitrogen fixation with associative or 
free livings such as Arthrobacter, Azospirillum, Azotobacter, Bacillus, 
Enterobacter, Gluconoacetobacter, Herbaspirillum, Klebsiella, 
Pseudomonas, and Serratia (Table 1) [65-69].

Among different major essential macronutrient, phosphorus (P) 
is one of best sources for biological growth and development of 
crops. Microorganisms offer a biological rescue system capable of 
solubilizing the insoluble inorganic P of soil and make it available 
to the plants. The ability of many microbes to convert insoluble P 
to an accessible form (orthophosphate) is an important trait in PGP 
microbes for increasing plant yields for sustainable agriculture. 
The rhizospheric P-solubilizing microbes could be a promising 
bioresource for PGP agents in agriculture. Phosphate solubilization 
is a common trait among microbes associated with different crops. 
The plant microbiomes from wheat, rice, maize, and legumes and 
microbiomes of extremes habitat were able to solubilize mineral P in 
plate assays. There are many reports on microbe having capability to 
solubilized phosphorus under the normal and different abiotic stresses 
conditions, which belong to Arthrobacter, Azotobacter, Burkholderia, 
Enterobacter, Halolamina, Pantoea, Pseudomonas, Citrobacter, and 
Azotobacter (Table 1) [63,70-72].

Phytase (myo-inositol 1,2,3,4,5,6-hexakisphosphate 
phosphohydrolase) is a hydrolytic enzyme which hydrolyzes phytate 
(myo-inositol 1,2,3,4,5,6-hexakisphosphate; IP6) complexes into 
myoinositol, inorganic phosphate, and divalent cations. This is produced 
by bacteria [95], fungi [96], and plants [97] with tremendous diversity 
in various agro-climatic and environmental conditions. Four classes of 
phytases, namely, (HAPhy), (BPPhy), (PAPhy), and (CPhy), have been 
reported in the literature based on catalytic and sequence features [98]. 
These have also been categorized as 3-phytase and 4/6-phytase based 
on initial site of action and liberation of inorganic phosphate from 
phytate structure [99]. Several applications of phytases and phytase-
producing microbes have been reported leading to tremendous 
opportunities in using these microbes for beneficial purposes. Bacterial 
isolates and their consortiums for PGP have been well documented in 
several reports [95,100]. Although microbes promote the growth of 
plants by different means, the presence of enough organic phosphorus 
(as phytate) in soil increases the significance of phytate-hydrolyzing 
microbes in soil for efficient utilization of this source of phosphorus 
by plants as it is a major element determining proper health of plant. 
An application of phytase-producing bacterial isolates (Advenella sp., 
Cellulosimicrobium sp., Acromobacter sp., Tetrathiobacter sp., and 
Bacillus sp.) has been resulted in improved growth of plants. Studies 
on potential PGP attributes in phytase-positive bacterial isolates have 
revealed multiple attributes of PGP including the production of plant 
growth hormones and siderophores, solubilization of phosphorus, and 
inhibition of plant pathogenic fungal growth [95,100]. These attributes 
with additional phytase production potential make these microbes more 
useful as they also reduce the use of phosphorus fertilizers, thereby 
decreasing environmental phosphorus pollution and contribute toward 
sustainable agriculture. Reducing environmental phosphorus pollution 
is of great importance in areas of intensive livestock production of 
monogastric animals, where unavailable phosphate excreted and 
deposited in nearby water bodies leading to its eutrophication. Excess 
phosphorus in such places causes algal blooms and death of aquatic 
life therein [99]. Phytase-producing microbes or neutral phytases 
have a potential role to be used as a supplement in meals of aquatic 
animals [101,102].

The indirect mechanism of plant growth occurs when one type of 
microbes prevents the detrimental effects of other type of microbes 
having pathogenic capability. These beneficial PGP microbes 
have ability to produced siderophores (Fe-chelating compounds), 
chitinases, antibiotics, different fluorescent pigment, and hydrogen 
cyanide production [103,104]. Biological controls are eco-friendly 
and cost-efficient and involved in improving the soil consistency and 
maintenance of natural soil flora. To act efficiently, the biocontrol 
agent should remain active under large range of conditions, namely, 
high/low temperature, pH, and salinity. The production of siderophores 
by microbe is beneficial to plants because it can inhibit the growth of 
plant pathogens and also for uptake of Fe to plant and finally to seed 
which said to be a best way for biofortification of Fe in different cereal 
crops. Siderophores have been implicated for both direct and indirect 
enhancement of plant growth by PGP microbes.

Biofertilizers are beneficial microbes which can help plant growth 
and enrichment of the nutrients of the soil by enhancement of the 
availability of the nutrients to the crops. The production of the healthy 
crops so as to meet the demands of the world’s expanding population 
mainly relies on the type of the fertilizers which are basically used to 
supplement all the nutrients to the plants, but more reliability on the 
chemical fertilizers is damaging the environmental ecology as well as 
affecting the human health with great severity. Thus, the use of the 
microbes as biofertilizers is considered as an alternative to chemical 
fertilizers so as to improve the fertility of the soil as well as increasing 
the productivity of the crops. These microbes are considered to be 
the biopotential and a novel tool for providing substantial benefits to 
the agriculture. These microbes colonize the roots and stimulate the 
growth. The PGP microbes possess multifarious PGP attributes, which 
help in plant growth directly by production of plant growth hormones 
and N2-fixation; solubilization of phosphorous, potassium, and zinc; 
or indirectly by production of ACC deaminase, ammonia, antibiotics, 
hydrocyanic acid, lytic enzymes, and siderophores. Extensive works 
on the biofertilizers are available which reveals that these microbes 
have the capability of providing the required nutrients to the crops in 
amounts which are sufficient for the enhancement of yield of the crops. 
Microbes having multifunctional PGP attributes can be utilized as eco-
friendly biofertilizers for sustainable agriculture [13,28,70,105,106].

4. BENEFICIAL MICROBES FOR HUMAN HEALTH

The beneficial microbes from different natural and extreme 
environments as well as associated with plant could be used for 
different processes. Apart from their application in agricultural 
sciences, phytase-producing microbes provide great promises 
for nutritional applications in human food and animal feed. 
Exogenous phytase addition has been used to enhance the mineral 
bioavailability [107], and dephytinization by the addition of exogenous 
phytase in porridges of different cereal crops such as maize, oats 
rice, and wheat  has been shown to improve iron bioavailability in 
human [108]. It has been demonstrated that phytic acid significantly 
reduces (about 86%) bioavailability of Fe from infant cereal diets 
in an in vitro digestion study in a Caco-2 cell model [109], and 
dephytinization markedly improved Fe and Zn bioavailability in 
these diets [110]. Park et al. [111] reported a decrease of 20-40% in 
phytate content in a reaction time of 30-60 min by addition of alkaline 
phytase to whole-wheat bread. Phytate degradation enhanced the Fe 
and Zn availability of bread with a maximum increase of 10 fold in 
the level of dialyzable Fe. According to Sanz-Penella et al. [112], the 
addition of phytase probiotic Bifidobacteria during bread making 
(direct or indirect) significantly reduced the phytic acid concentration 
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in final bread compared to control samples. Fe-dialyzable content in 
samples with Bifidobacteria was increased to 2.3-5.6-fold. The results 
demonstrated the usefulness of phytase-producing Bifidobacteria to 
reduce phytate during bread making and increase Fe-accessibility. 
According to Kumar et al. [113], lower myo-inositol phosphate 
derivatives as hydrolysis products of phytic acid were proved to have 
potential applications in various health-related aspects such as cell 
signalling and Ca2+ mobilization in intracellular spaces with several 
proposed applications as antioxidants [114] and painkillers [115]. 
Inositol hexakisphosphate and inositol application have revealed 
inhibition of cancer by Vucenik and Shamsuddin [116]. Microbial 
phytases produced myo-inositol trisphosphate isomer as an end 
product of phytate hydrolysis and could be used for the synthesis of 
myo-inositol phosphate derivatives under various conditions [113].

Production of various food crops (wild, traditional, or ancient), which 
are genetically very diverse and rich in micronutrients, has decreased 
and even disappeared. Out of 7000 species ever cultivated by humans, 
currently, only 30 plant species account for >95% of the world’s food 
energy supply. Among different cultivated food and cereal crops, 
wheat (Triticum aestivum L.) plays a predominantly imperative role in 
daily energy intake. The modern wheat (T. aestivum L.) cultivars with 
a high-yield capacity are poor sources of Fe and Zn, for convention 
daily desires of humans. Along with different micronutrients such as 
Fe and Zn, wheat is rich in antinutritional compounds (phytic acid 
and phenolic compounds) that reduce biological availability of Fe and 
Zn in the human digestive tract. In general, Fe and Zn concentrations 
in commercial wheat cultivars are 20-35 mg/kg. The concentrations 
of micronutrients are not sufficient for human nutrition in diets with 
wheat constituting the main source of essential minerals. Hence, 
such wheat-based diets consumed over a period of time can result in 
micronutrient malnutrition. Farmers chose to grow more profitable, 
highly productive cereal crops, leading to a decline in the area under 
protein and micronutrient-rich legumes. This tendency is evident in 
a proportional decrease in cereal prices and an increase in price for 
legumes, fruits, vegetables, animal, and fish protein. At present, 
biofortification approach is getting much attention to increase the 
availability of micronutrients, especially Fe and Zn in the major food 
crops. The use of PGP bacteria is becoming an effective approach 
to substitute synthetic fertilizers, pesticides, and supplements. The 
selected efficient PGP bacteria mobilize the nutrients by various 
mechanisms such as acidification, chelation, exchange reactions, and 
release of organic acids [21,117,118].

Currently, there has been an increased curiosity in the development 
of new functional foods and their assimilation in a healthy diet. Such 
products, and especially probiotics, exert a beneficial effect on host gut 
microbiota after consumption and may be proficient to prevent several 
diseases [119]. Probiotics are defined as live microbiomes which when 
administered in adequate amounts confer a health benefit on the host. 
Bioprocessing has been used to manufacture an ample series of foods 
and food ingredients ever since the initially verified food preservation 
by humans. Beneficial microbiomes (archaea, bacteria, and yeast) are 
widely used to convert raw food materials into many of fermented 
products. Bioprocessing engineering has developed this further, with 
the particular production of food. The genus Lactobacillus and other 
species of Lactobacillus are beneficial microbes of particular interest 
because of their long history of use [120]. The fermented beverages 
are traditional products that act as vehicles of probiotics in human 
diet. The global diversity of the fermented and probiotic foods is 
presented in table. Among different probiotic microbes, the species 
of Lactobacillus were the first bacteria used by man for processing 

foodstuffs [121] and for preserving food by inhibiting invasion by 
other microbiomes that cause foodborne illness or food spoilage [122]. 
The term “Probiotic” is used to describe food supplements, specifically 
designed to improve health, and this concludes the probiotic as a “live 
microbial feed supplement which beneficially affects the host animal 
by improving its microbial balance.”

The procedures of microorganisms by which they act as probiotics 
or do their effects are not properly known, but the many studies 
revealed that they may be involved in modifying the pH value, may 
neutralize the pathogens through production of compounds that exerts 
property of antimicrobial, and may occupy the receptor sites of the 
pathogens as well as chase them for available nutrient [123]. The 
role of functional food which includes the probiotics microorganisms 
in human health is well known. The development of probiotic was 
totally focused on pharmaceutical applications such a intestinal 
disorders, acute diarrhea, lactose intolerance, and so on. Antibodies 
were produced by giving Lactobacillus rhamnosus in infants, and 
those were suffering from diarrhea. Antibodies present in infants 
shorter the duration of the diarrhea [124]. Specific probiotics have 
beneficial immunomodulatory effects for the Helicobacter pylori-
associated gastritis [125], and growth of allergies or decrease in 
allergy symptoms (Table 2) [126].

Probiotics have the property to enhance the immune system. A better 
precise immune response to a Salmonella typhi oral vaccine has been 
described in persons consuming a probiotic containing Lactobacillus 
johnsonii and Bifidobacterium lactis [145], and Lactobacillus 
fermentum showed positive results for influenza [146]. Probiotics 
containing Lactobacillus gasseri, Bifidobacterium longum, and 
Bifidobacterium bifidum concise the duration of common cold and 
reduced fever [147]. Irritable bowel syndrome, one of the most common 
disorders seen by primary care physicians, affects 7-10% of the world 
population. In the absence of an efficient therapy with no side effects, 
well-selected probiotic strains might provide a valuable alternative 
such as Bifidobacterium infantis [148]. The lactose converted into lactic 
acid with use of lactic acid bacteria (Carnobacterium, Enterococcus, 
Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, 
Streptococcus, Tetragenococcus, Vagococcus, and Weisella) ingestion 
of certain active strains may help lactose intolerance individuals tolerate 
more lactose than they would have otherwise. Intestinal discomfort and 
constipation that represents the most ubiquitous problem among the 
general adult people were also checked by a probiotic fermented milk 
containing Bifidobacterium animalis [149]. Lactobacillus paracasei 
improved recovery of skin immune homeostasis [150]. Probiotics 
have also impact on anxiety, mood, and behavior; the first human trials 
suggest that probiotic interventions may modulate mood and stress-
induced gastro-intestinal symptoms [151,152].

5. CONCLUSION AND FUTURE PROSPECT

The plant microbiomes and microbiomes from different extreme 
habitats represent the richest extent of molecular and chemical 
diversity in nature. The explorations of microbial diversity have been 
spurred due to beneficial role of microbes for sustainable agriculture 
(microbes may be used as biofertilizers/bioinoculants), for human 
welfare (microbes with probiotics properties may be used as foods), 
and for industry (microbes may be used for the production of different 
compounds of pharmaceutical importance). The beneficial microbes 
may play an important role in nutrient cycling and environmental 
detoxification. The microbiomes abound in all kind of habitats, 
namely, with extremes of pH, temperature, salinity, and water stress 
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are said to be beneficial for agriculture, and human health as they could 
be used as PGP agents (biofertilizers) for sustainable agriculture and 
biofortification of micronutrients such as Fe and Zn and as probiotics 
as new functional foods.
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