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Sigma factors are necessary for the initiation of transcription by RNA polymerase in bacteria and plastids of
plants. In plants, a small family of nuclear genes is responsible for encoding the sigma factor proteins. In this
study, a genome-wide identification and expression analysis of leaf gradient in millet (Setaria italica) were
performed to characterize sigma factor genes and their proteins. By applying several bioinformatics tools, we
identified chromosome locations of seven sigma factor genes in millet and their protein 3D structures. All these
proteins contained three conserved domains of 6-70 family. These sigma factor genes have a closer phylogenetic
relationship with their orthologs in maize than that in rice. The digital gene expression (DGE) analysis along the
millet leaf developmental gradient indicated that Sisigl, Sisig5, Sisig6 showed extremely high expression levels
in leaf middle and tip regions. Combining the conservation analysis of residues of each sigma factor protein with
the DGE profiles of these proteins, it reveals that Sisigb plays the housekeeping role compared with other Sisig
proteins. Our study will facilitate the future research on crop evolution and the functional studies of sigma factor
genes in millet.

1. INTRODUCTION

plastids of higher plants [4]. In the model dicot plant Arabidopsis

RNA polymerases play an important role in the first step
of gene expression -transcription. As one of RNA polymerase
subunits, sigma factors (Sigs) are necessary for RNA polymerase
to recognize and bind the promoter and for controlling the rate of
gene transcription [1, 2]. Sigs have been grouped into ¢-70
families and ¢-54 families [3]. So far, all known plant plastid
Sigs belong to the o-70 group [4]. Although plant Sigs are
encoded by a small family of nuclear genes, they determine
whether the plastid RNA polymerase can bind to a specific
promoter and thus set the first checkpoint to control the plastome
gene expression [5]. Multiple Sigs have been found in the
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thaliana, six Sigs (SIG1-SIG6) have been identified and
characterized [6]. In model monocot crop rice (Oryza sativa), Six
Sigs, OsSIG1 (Os-SigA), OsSIG2A, OsSIG2B, 0sSIG3, OsSIG5
and OsSIG6, have also been found [7, 8, 9] or predicted from the
rice genome and the full-length cDNA sequencing project [10].
However, only two Sig genes (GRMZM2G143392 and
GRMZM5G830932) have been identified in maize (Zea mays) [11,
12, 13]. In this study, six different gene loci representing seven
distinct Sig genes of Setaria italic (Sisigs) were found through blast
search of the genome of foxtail millet. Foxtail millet is self
pollinating and its genome is relatively small, and therefore very
suitable for whole genome research. In 2012, the complete genome
sequencing of foxtail millet was successfully completed, making it
as a model for the study of C, photosynthesis and facilitating the
study of crop morphology, physiological and biochemical and
comparative functional genomics.

©2016 Hongyun Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlike

Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Moreover, research has been done on millet by using the
second generation of high-throughput sequencing technology [14].
The results provide genomic data for gene discovery and the
genetic improvement of millet. The results also greatly enrich the
genomic research containing comparative genetics and functional
genomics [15]. All these studies provide reliable data resources for
the study of Sisig genes. However, compared with the main crops
of rice, wheat and maize, research on molecular genetics of millet
started relatively late and most research findings are
preliminary[16]. In order to obtain a better understanding of millet
Sisigs that are critical for the expression of plastid genes, we
performed a bioinformatic study and high-throughput digital gene
expression (DGE) profiling on Sisig gene family in this important
crop. The data from our studies will facilitate the future molecular
and genetic studies in foxtail millet.

2. MATERIALS AND METHODS

2.1. Identification of the sigma factor genes in Setaria italica

The protein sequences of six Arabidopsis Sigs were
downloaded from Phytozome
(http://phytozome.jgi.doe.gov/pz/portal.html). The ID numbers of
six rice Sig genes were obtained from oryzabase
(http://www.shigen.nig.ac.jp/rice/oryzabase/) and their protein
sequences  were downloaded from  NCBI  database
(http://www.ncbi.nlm.nih.gov/). To obtain all the Sisig genes,
BLASTP searches were conducted in the Phytozome
(http://www.phytozome.net/) and NCBI databases by using the
rice and Arabidopsis Sig proteins as queries. Full-length genomic
DNA, CDS (Coding DNA Sequence) and protein sequences of
Sisigs of Setaria italica were downloaded from Phytozome.
Besides, nine sig genes of maize were also obtained from
Phytozome. According to the phylogenetic relationships between
Sig protein sequences of A. thaliana, millet, rice as well as maize,
the Sig genes of maize, rice and millet were renamed.

2.2. Computational and bioinformatic analysis of the sigma
factor genes and proteins

The Size (aa), MW(Da) and PI of corresponding protein
sequences were computed on the website of expasy
(http://web.expasy.org/compute_pi/).  The  information  of
chromosomal location of Sisig genes were obtained from
Phytozome and the chromosome location image of sigma factor
genes was generated by Maplinspect software [17]. To predict the
exon-intron structure of the sigma factor genes, the genomic
sequence of each gene was compared with its coding sequence
(CDS) and was identified on GSDS (http://gsds.cbi.pku.edu.cn/)
[18]. For a more intuitive understanding, these protein sequences
of Sisig genes were submitted to the 3D LigandSite server
(http://www.sbg.bio. ic.ac.uk/3dligandsite/)  predict three-
dimensional models [19]. The Structural evaluation and
stereochemical analyses were assessed by using RAMPAGE
Ramachandran plot analysis
(http://mordred.bioc.cam.ac.uk/~rapper/rampage.php) [20].

Furthermore, the TargetP server (http://www.cbs.dtu.dk/services/
TargetP/) was used to predict the subcellular location of Sisig
proteins [21]. The conserved motifs of Sisig protein sequences of
foxtail millet were analyzed on MOTIF search server
(http://www.genome.jp/tools/motif/) with the parameters: E-value
of Pfam is 3e-10. Besides, the conserved sites of sigma factor
protein sequences were analyzed on the Consurf server
(http://consurf.tau.ac.il) with the default parameters. MEGA 4.0
was used to compute the evolutionary distances and construct the
phylogenetic trees of Sigs in different plant species by using
Clustal W for the alignment of amino acid sequences of Sigs. The
neighbor-joining (NJ) method was applied to this analysis [22].

2.3. Expression analysis of millet sigma factor genes along leaf
development gradient by Digital Gene Expression Profile
(DGE)

Total RNA was extracted from leaf sheath (LS), leaf base
area (LB), leaf middle area (LM) and leaf tip area (LT) by using
TRIzol (Life Technologies, USA) in accordance with the
manufacture’s protocol. After RNase-free DNase treatment (Life
Technologies, USA), the total RNA was checked for protein
contamination and reagent contamination with a Nanodrop
spectrophotometer and for RNA purity and degradation by agarose
gel electrophoresis. mMRNA was enriched by oligo(dT) magnetic
beads (Theromo-fisher, USA). Three separate replicates for each
leaf region were used.

Provided by a service from LC Sciences (Houston,
USA), 12 DGE libraries in total were constructed in parallel using
lllumina RNA ligation method (lllumina, San Diego, USA). A
library with average length 350 bp, were fixed onto Illumina
sequencing chip for cluster generation and performed deep-
sequencing using Illumina Genome Analyzer.

The raw data containing adaptor sequences, tags with
low quality sequences and unknown nucleotides N were filtered to
obtain clean reads with 36 nt in length. Clean reads were then
conducted for quality assessment, saturation evaluation and
statistical analysis for experimental repeatability. These include
classification of total and distinct reads, sufficiency analysis of
transcripts coverage and correlation analysis of three parallel
biological replicates. For annotation, all clean tags were mapped to
the transcripts sequence of S. italica from the JGI Comparative
Plant Genomics Portal (http://phytozome.jgi.doe.gov) by bowtie,
only 1 bp mismatch is allowed. The number of perfect clean reads
corresponding to each gene was calculated and normalized to the
number of reads per kilobase of exon model per million mapped
reads (RPKM). The RPKMs of the seven millet sigma factor genes
were then picked out and compared statistically.

3. RESULTS AND DISCUSSION

3.1. Genome-wide characterization of the sigma factor genes in
foxtail millet

After the foxtail millet genome database was carefully
searched, six gene loci were defined to contain seven Sisig genes
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(Table 1 and Fig. 1). It should be mentioned that there is one gene
locus encoding two genes, i.e. locus Si026193m.g encodes the
genes Sisig2Aa and Sisig2Ab. The amino acid sequence alignment
by Clustal W revealed that the latter contains additional six
successive amino acids (QLNLCF at position 440-445) compared
with the former one. In general, the size of these seven proteins
ranged from 484 to 566aa. When the structures of Sisig genes of
foxtail millet were analyzed on the website of GSDS (Fig. 2), it
was revealed that the number of exons ranged from six to nine: the
Sisigl and Sisig6 had 9 exons; the Sisig3 contained 7 exons;
the other three Sisig genes had six exons each. The Sisig2Aa and

Table 1: Sigma factor genes identified in Setaria italica and their protein properties.
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Sisig2Ab displayed the same gene structure. Based on gene
duplication analysis, there was no segmental duplication event was
identified. According to the subcellular location analyses of Sisig
proteins, all the seven Sisig genes had chloroplast transit peptides
(cTP) (Table 2). This indicated that all the products of these seven
Sisig genes were targeted into chloroplast. This was consistent
with the results by previous studies [4, 5]. Sisig2Aa and Sisig2Ab
contained the same cTP sequence, consisting of 36 amino acids.
Among seven Sisig proteins, Sisig3 had the longest cTP sequence
of 69 amino acids. Sisigl, Sisig2B, Sisigd and Sisig6 each
contained 65, 39, 44, 46 amino acids, respectively.

Gene name Gene loci Transcripts Protein size(aa) pl MW(Da)
Sisigl Seita.6G049900 Seita.6G049900.1 499 9.31 55700.48
Sisig2Ab Seita.8G112700 Si026195m 537 9.50 59572.87
Sisig2Aa Seita.8G112700 Si026193m 543 9.47 60291.74
Sisig2B Seita.9G461200 Seita.9G461200.1 532 9.35 59299.6
Sisig3 Seita.3G124300 Seita.3G124300.1 566 9.61 64546.09
Sisigh Seita.3G126900 484 9.90 55190.18
Sisigb Seita.9G002700 Seita.9G002700.1 554 8.95 63066.89
NOTE: Seita.8G112700 has two splice variants (Si026195m and Si026193m). aa: amino acid; pl:lsoelectric point ; MW: protein molecular weight.
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Fig. 1: Chromosome locations of the sigma factor genes in millet.
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Fig. 2: Gene structures of the millet sigma factor gene family. Exons and introns are shown by filled boxes and single lines, respectively. Untranslated Regions
(UTRs) are displayed by thick blue lines at both ends. Intron phases 0, 1, and 2 are indicated by numbers 0, 1, and 2.
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3.2 Three-dimensional (3D) structures of millet sigma factor

proteins

The three-dimensional models of the seven Sisig proteins
were obtained from the 3D LigandSite server (Fig. 3). Through
alignment with the protein sequences already existed in the
database, the model images of these Sisig proteins were produced
and coloured by rainbow from N to C terminus. These images
provided a more intuitive understanding of the structure of Sisig
proteins. In general, the 3D images of Sisigl, Sisig2Aa, Sisig2Ab,
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Sisig2B and Sisig5 showed the similar dimensional structures,
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Fig. 3 The three-dimensional models of the millet sigma factor proteins
(A: Sisigl; B: Sisig2Aa; C: Sisig2Ab; D: Sisig2B; E: Sisig3; F: Sisigh; G: Sisig6)
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Fig. 4 The Ramachandran plot analyses on 3D models of Sisig proteins
(A: Sisigl; B: Sisig2Aa; C: Sisig2Ab; D: Sisig2B; E: Sisig3; F: Sisig5; G: Sisig6)
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looking like a “U” or “C”. However, the 3D structures of Sisig3
and Sisig6 were irregular. In order to validate that the 3D models
of Sisigs were displayed precisely, the ramachandran plot analyses
using the RAMPAGE server were conducted.

The results showed that 87.9%, 87.6%, 89.8%, 89.4%,
89.0%, 90.8%, and 85.5% of amino acid residues were in the
favored region; 7.8%, 8.8%, 7.3%, 7.6%, 9.4%, 5.6%, and 10.4%
in the allowed region in Sisigl, Sisig2Aa, Sisig2Ab, Sisig2B,
Sisig3, Sisig5, and Sisig6, respectively (Fig.4).

m
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Fig. 5 The conserved motifs of sigma factor proteins in millet.
(Sigma70_r2, Sigma70_r3 and Sigma70_r4, respectively, represented in boxes with blue color).

3.3. Analysis on the conserved motifs of the sigma factor
proteins in millet

The positions of the conserved motifs were generated by
MOTIF (Fig. 5 and Suppl. 1). All the seven protein sequences
contained three sigma-70 conserved domains, namely region 2, 3
and 4. Moreover, they were distributed on the C-terminal region of
the proteins, all locating behind the amino acid site of 250. The
conservation of these conserved regions correspond
one-to-one with the same regions of bacterial sigma-70
factor and both species contain a large non-conservative
N-terminal region [5], indicating similar evolutionary origins.

3.4. Evolutionary conservation of amino acid positions in each
Sisig protein

The evolutionary conservation of amino acid
positions in each Sisig protein which was based on the calculation
of phylogenetic relations between homologous sequences
was analyzed by the Consurf server (http://consurf.tau.ac.il/)
with the default parameters (Table 3 and Suppl. 2-8). The result
indicated that there existed differentially conserved degrees of
residues in each protein. For instance, for the highest conserved
scale of residues (100%), Sisig5 accounted for the
largest proportion (36.98%) in the total residues of the protein,
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Table 3: The evolutionary conservation of the residues in each sigma factor protein in millet.

Conservation scale

Percentage of residues in each protein (%)

Sisigl Sisig2Aa Sisig2Ab SiSisig2B Sisig3 Sisigs Sisigb

100% 26.45 13.44 11.73 11.47 27.03 36.98 8.84
90% - 100% 15.43 10.50 9.87 11.47 6.54 0.00 13.72
80% - 90% 8.62 7.55 7.64 6.77 22.61 11.16 9.93
70% - 80% 11.82 6.81 6.89 8.27 12.90 7.64 10.65
60% - 70% 12.22 12.52 12.29 8.27 7.95 19.21 13.00
50% - 60% 9.42 14.92 14.53 16.54 10.60 10.95 14.44
40% - 50% 5.61 18.05 18.06 18.98 6.54 6.41 11.55
30% - 40% 7.02 9.95 11.55 11.65 3.18 5.58 9.57
20% - 30% 2.81 5.89 6.14 6.02 247 2.07 7.58
10% - 20% 0.60 0.37 1.30 0.56 0.18 0.00 0.72
Total 100 100 100 100 100 100 100

while Sisig6 accounted for the least proportion (8.84%) among
Sisig gene family. Similarly, when calculating the most variable
residues (conservation scale <30%) in each protein, it was also
found that Sisig5 accounted for the least proportion (2.07%) in the
total residues of the protein and Sisig6 accounted for the largest
proportion (8.30%) among these proteins, indicating that the
protein Sisigs was evolutionary conserved compared with the
protein Sisigé when considering the conservation of the amino
acid residues of the proteins. This also implied that the Sisigé was
a newly evolved protein. In all, analysis of the conserved sites of
each protein would provide some information on the conservation
degree of each protein and would further give us some hints on the
evolutionary events of Sisig genes.

3.5. Phylogenetic tree construction

The Sig genes from millet, rice and maize were renamed
according to their phylogenetic relationships with those of
Arabidopsis (Suppl. 9). For example, the phylogenetically closest
ortholog of Arabidopsis Atsigl in millet was renamed as Sisigl. It
was found that there are 9 sigma factor genes in maize, which are
1.5 times in number than that in Arabidopsis, rice and millet. It is
speculated that additional steps of gene duplication would occur in
maize during evolution.

Phylogenetic tree construction of millet, rice, maize and
Arabidopsis Sig proteins was generated by the software of
Mega4.0 (Fig. 6). According to the phylogenetic relationship
between Arabidopsis and millet, Sisig genes of millet were
clarified into five types (Table 5): two Sisig2 genes, and Sisigl,
Sisig3, Sisig5 and Sisig6 each in one. Additionally, the orthologs
of Atsig4 were not found in rice, maize and millet, possibly Atsig4
was a newly evolved gene after the monocot-dicot divergence. As
a whole, millet Sisig genes had close phylogenetic relationships
with rice and maize. Moreover, Sisig genes had closer
relationships with their orthologs in maize. It is probably due to
that fact that millet and maize belong to C, plants, while rice
belongs to C; plant. Thus the phylogenetic relationship of Sig
genes could, to some extent, reflect the evolutionary relationships
of these plants. Rice is the typical model gramineous plant for
comparative genomic studies because of its slow evolutionary rate,
making it better to keep the traits of ancestral genome sequences
[23]. Maize and millet both belong to C, monocotyledonous crops.

So far, the whole genome sequencing works on rice, maize and
millet have been completed [24, 25, 26], and some Sig genes from
Arabidopsis, rice and maize were well characterized. Recent
studies on Arabidopsis provided some evidences on specific roles
of each Atsig gene [5, 6, 27, 28]. In rice and maize, some results
on the studies of Sig genes were also obtained [7, 9, 10, 29, 30].
According to the phylogenetic relationship of Sig proteins between
the millet and the other three plants, specific roles of Sisig genes
could be inferred to some extent. Atsigl is thought to be involved
in light response as high-light stress changes the binding between
Atsigl protein and its target promoters [6]. It was found that
accumulation of rice Ossigl transcripts is significantly higher in
green shoots than in dark-grown shoots or in roots [7]. Further,
Ossigl regulates some gene expressions which are critical for the
establishment of photosystem 1 in rice mature chloroplasts, thus
participating in the maintenance of photosynthesis [10]. Similarly,
the expression pattern of Zmsig1 is aligned with the light-triggered
plastid development processes [29, 30]. The close phylogenetic
relationship between millet Sisigl and sigl genes in Arabidopsis,
rice and maize suggests that Sisigl would also be involved in
light-regulated development and photosynthesis. Indeed, promoter
analysis of Sisigl revealed that there exist a considerable number
of cis-acting elements related to light regulation (Suppl. 8). Atsig5
was identified to bind some target promoters in response to blue
light and various abiotic stresses (high light, high salinity and
osmotic pressure as well as low temperature) [31, 32, 33]. For
example, Atsig5 specifically binds the psbD blue-light responsive
promoter in Arabidopsis. Similarly, Sisigs promoter contains
elements related to stress signals, such as low temperature, salt and
water stresses (Suppl. 8). In addition, Atsig4 plays a specific role
in the transcription of ndhF [34], a plastid gene encoding a subunit
of the plastid NDH complex. However, no sig4 genes were found
in rice, maize and millet. It would be interesting to reveal how
ndhF genes are regulated in these important monocotyledonous
crops. Besides, some specific Sigs such as SIG1, SIG2, and SIG6
are necessary for the expression of cytomin induced chloroplast
genes in Arabidopsis [35, 36]. However, in millet, only Sisig3,
which is phylogenetically distant to these Arabidopsis Sigs, was
found to have promoter elements related to cytokinin. Thus, it is
worthwhile to pay attention to the special function of Sisig3 on
cytomin regulated expression of plastid genes.
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Fig. 6 Phylogenetic tree of foxtail millet, Arabidopsis, rice and maize Sig proteins. The joint unrooted tree was generated using MEGAA4.0 by the neighbor
joining method. Bootstrap values from 1000 replicates were indicated at each branch.Abbreviations: Os, Oryza sativa; At, Arabidopsis thaliana; Si, Setaria

italica and Zm, Zea mays.

3.6. Expression profiling of millet sigma factor genes along leaf
development gradient

The continuous developmental pattern from leaf base to
tip has been well studied in developing grass leaves, such as maize
and rice [37, 38]. Comparative gene expression analysis of C, and
C; crops along leaf gradient will be helpful for addressing how C,
traits are developed. Although sigma factors play essential roles in

the initiation of expression of chloroplast genes and therefore in
the efficiency of photosynthesis, all developmental gradient
studies neglected the leaf sheath and none of these reports
mentioned the behavior of the sigma factor gene family along such
gradient except the one by Aubry et al [39]. In our study (Fig. 7),
we found that six out of seven members of millet Sisig genes
showed the lowest expression levels in leaf sheath area.
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Fig. 7: Expression profiles of millet sigma factor genes along leaf developmental gradient (LS: leaf sheath; LB: leaf base; LM: leaf middle; LT: leaf tip)

Although it was found four sigma factor genes exhibit
escalating pattern along leaf gradient in two independent C,
lineages (Cleome gynandra and maize) [39], only one gene (i.e.
Sisigb) fits this pattern in millet leaf. The gene Sisigl exhibited the
similar expression pattern as that of Sisig5 in general, although its
expression level in leaf sheath area was 1.5 times as high as that in
leaf base area. Five Sisig genes (i.e. Sisig2Aa, Sisig2Ab, Sisig2B,
Sisig3 and Sisig6) shared the same expression patterns along
developmental gradient. They all showed significantly increased
expression levels from leaf sheath area towards leaf basa area, i.e.
the expression levels Sisig2Aa, Sisig2Ab, Sisig2B, Sisig6 in leaf
base area were 3 times as high as in leaf sheath area, even that of
Sisig3 reached 9 fold change. Then the expression levels finally
decrease gradually from leaf base area towards leaf tip area,
suggesting that functional divergence of these genes compared
with that of Sisigl and Sisig5. Additionally, Fig.7 also showed that
expressions of Sisigl, Sisig5 and Sisig6 were significantly up-
regulated in leaf middle and tip areas as their RPKM values
reached over 50, suggesting that these genes are main genes
involved in photosynthesis. The Sisig5 was identified to show the
highest expression levels (64 and 83 RPKM values, respectively)
among the seven sigma factors in leaf middle and tip areas,
revealing that it plays a critical role in regulating genes responsible
for photosynthesis and leaf development. Combining the residue
conservation analysis which identified that Sisig5 protein was the
most conserved protein in amino acid sequence among Sisig
protein family, it could be concluded that Sisigs plays the
housekeeping function to maintain chloroplast development in
millet. To our knowledge, this is the first study to identify the gene
expression patterns of millet Sisig gene family along leaf
development gradient. This work could provide a foundation for
the functional identification of millet sigma factor gene family
and for the study of the relationships among leaf morpho gradient,

developmental gradient and gene expression patterns of this gene
family in the future.

4. CONCLUSION

Although the functional domains of the seven Sisig
proteins all contain conserved region 2, 3, 4, their 3D figures
displayed the slightly different spatial structures among them
which may result in their functional differences. The phylogenetic
study of the sigma factor genes displayed us the phylogenetic
distances of the Sisig genes of millet with their orthologues other
plant species, and from this, specific functions of a Sisig gene
could be inferred from the previous studies on the phylogenetically
closed gene in other plant species.

Millet is a model plant for the research on C,
photosynthesis and it maintains strong tolerance to drought and
barren conditions. Through the study of expression profiling of
millet sigma factor genes along leaf development gradient, it was
found that the gene Sisigl exhibited the similar expression pattern
as that of Sisig5 in general. The highest expression levels of Sisig5
in leaf middle and tip regions among all Sisig genes and the most
conservation of amino acids of Sisig5 protein among these sigma
factor proteins inferred that Sisig5 plays the housekeeping function
to maintain chloroplast development in millet.

With the whole genome of millet been sequenced
already, it facilitates us with in-depth study of millet Sisig gene
family, which would be very helpful for our comprehensive
understanding on the expressions and regulation of the chloroplast-
related genes in this important crop. As the genomic analyses of
Sisig gene family were fulfilled by this study, the next step should
concentrate on characterization of these genes through molecular
and biochemical assays.
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Suppl. 2 Evolutionary conservation of amino acid positions in Sisig 1 protein.
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Suppl. 4 Evolutionary conservation of amino acid positions in Sisig 2Ab protein.
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performed on less than 10% of the sequences.
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Suppl. 5 Evolutionary conservation of amino acid positions in Sisig 2B protein.
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- An exposed residue according to the neural-network algorithm.
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- Insufficient data - the calculation for this site was
performed on less than 10% of the sequences.
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- Insufficient data - the calculation for this site was
performed on less than 10% of the sequences.
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- Insufficient data - the calculation for this site was
performed on less than 10% of the sequences.
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Suppl. 8 Evolutionary conservation of amino acid positions in Sisig 6 protein.
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Suppl. 9 the sigma factor genes identified in Arabidopsis thaliana, rice, and maize.

SPECIES ARABIDOPSIS THALIANA ORYZA SATIVA ZEA MAYS
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Suppl. 10 The promoter cis-acting elements of the sigma factor genes in millet.
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Polyadenyla
AR AATAAT
tion
Oxidative
phosphoryla | TGGGCY TGGGCY TGGGCY TGGGCY
tion
CAAACAC
napA
CNAACAC
Disease-resi
TGTCA TGTCA
stant
Sugar
TTATCC TTATCC
repressive
MACCWAM
MYB GGATA GGATA
C GGATA
MYC CAACGTG
TYTCCCG TYTCCCGC
E2F
cC C
RAVI CAACA CACCTG CAACA
Flavonoid
CNGTTR CNGTTR CNGTTR
biosynthesis
Splice
TGCAGG
junction
Injured NGATT NGATT NGATT NGATT NGATT




