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ABSTRACT

Entomopathogenic bacteria (EPB) are natural pathogens of insects being utilized as biological control agents for insect 
pests worldwide. In addition to their pathogenicity against insects, they are known to inhibit the growth of several 
microbes. In this study, EPB of the genus, Photorhabdus and Xenorhabdus, were investigated for their pathogenicity 
against Fusarium solani (CCK3A1), Fusarium keratoplasticum (ATCC 36031), Candida albicans (ATCC 2091), 
and Aspergillus fumigatus (ATCC 204305). The antagonistic effect of cell suspension was analyzed by calculating 
percent inhibition from the co-cultured plate of bacteria and fungus within 192 hours of incubation at 25°C where the 
highest percent inhibition was observed with X. vietnamensis (RF) against A. fumigatus (ATCC 204305). Moreover, 
the activity of ethyl acetate extract of bacterial metabolites against pathogenic fungi was analyzed using the disk 
diffusion method where Photorhabdus hindustanensis (TS) isolates exhibited the highest inhibition against A. 
fumigatus (ATCC 204305). The components of ethyl acetate extract were analyzed using gas chromatography–mass 
spectrometry in which Pyrrolo [1,2-a] pyrazine-1,4-dione hexahydro-3-(phenylmethyl), benzeneacetic acid, and 
n-Hexadecanoic acid were found to be the most abundant compounds. This study provides information regarding 
the potential of Photorhabdus and Xenorhabdus, including their secondary metabolites against several pathogenic 
fungi. It further provides insights to overcome the current global drug resistance crisis among several pathogenic 
fungi, as well as new reference data for the future development and application of antifungal agents.
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1. INTRODUCTION 
Fungal infections are one of the most common and devastating 
problems worldwide. Over 150 million cases of serious fungal 
infections occur worldwide each year, and approximately 1.7 million 
people die as a result [1,2]. These estimates have continuously risen 
due to societal and medical improvements that have aided in spreading 
fungal illnesses over the years. As a result, fungal infections are 
becoming a global problem for human health due to increased overuse 
and prophylactic application of antifungals to immunocompromised 
individuals promoting the emergence of multi-drug-resistant fungi 
[1,3]. Apart from human infection, over 19,000 fungi are known to 
infect economically important crops worldwide accounting for over 
30% of all crop diseases [4].

The genus Fusarium, belonging to the Nectriaceae family, is 
characterized as an imperfect fungus with a global distribution capable 
of infecting animals, plants, and humans. Keratitis, onychomycosis, 

eumycetoma, skin lesions, and disseminated infections are all 
connected with Fusarium infection in humans [5]. Apart from human 
infection, it is a broad-spectrum fungus species that has been shown to 
infect peas, beans, potatoes, and different cucurbits [6]. Because of the 
significant death rate caused by Fusarium and the growing resistance 
to the currently used antifungal medicines (azoles), a novel therapy is 
required [7].

The genus Candida is a member of the Saccharomycetaceae family. 
There are currently around 150 Candida species, with approximately 
20 species known to cause infections in humans [8]. In a healthy 
person, Candida albicans colonizes the oral mucosa, vagina, skin, 
as well as gastrointestinal tract asymptomatically as a commensal 
fungus, accounting for more than 80% of asymptomatic human 
vaginal and oral yeast strains [9,10]. Eventually, it possesses different 
properties, both commensal and pathogenic, that become part of the 
human natural microbiome and invade tissues and organs when 
the immune system is impaired [11,12]. The rapid rise of various 
antifungal resistance among Candida spp. is a serious health concern 
worldwide and a better understanding of resistant mechanisms with 
the identification of a new drug target could reduce the current 
situation of developing resistance upon prolonged exposure to anti-
fungal agents [13,14].
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The genus Aspergillus, a fungus belonging to the family 
Trichocomaceae, is a common mold in the environment and the 
leading cause of aspergillosis in people. It is a deadly pathogen that 
can kill people with weakened immune systems, underlying diseases, 
or transplants [15–17]. Also, Aspergillus hampers plant photosynthesis 
by impeding the production of carotenoid and chlorophyll, resulting 
in albinism or virescence in the infected plants [18]. Resistance to 
existing antifungal medications, azoles, emerged as a global concern 
in Aspergillus fumigatus infection with a prevalence of 6.6%–28% 
[19]. The prevalence of fungal disease has led to the rapid rise of 
resistance in economically important fungi resulting in the difficulty of 
effective treatment. Apart from human concerns, chemical fungicides 
are still the most effective and widely used for controlling fungal 
infections. However, because of their harmful effects on people and 
other nontarget creatures, they are also harmful to the environment 
and even pose risks to the health condition of humans [20]. Hence, 
biological control, which includes the employment of antagonistic 
organisms, including their secondary metabolites and volatile organic 
compounds (VOCs), is a crucial candidate and alternative agent to 
chemical fungicides [21].

Since the penicillin era, microbial metabolites have still been a 
crucial source in the development of novel drugs for animals and 
humans. Photorhabdus and Xenorhabdus, belonging to the family 
Morganellaceae, are an obligate symbiosis with entomopathogenic 
nematodes (EPNs) of the genus Heterorhabditis and Steinernema, 
respectively [22–24]. When the nematode infects the insect larvae, 
it releases the bacterial symbionts inside the hemocoel of the 
insect resulting in the production of broad-spectrum compounds; 
the compounds are lethal to insect larvae as well as antagonists to 
bacteria, fungi, nematodes, protozoa, and cancer cells [25]. The EPNs 
are distributed worldwide and are being utilized for the biological 
control of insect pests with a high success rate [26]. The secondary 
metabolites isolated from fermented culture media of Photorhabdus 
spp. and Xenorhabdus spp., including methanol and ethyl acetate 
extracted compounds, were found to be effective in suppressing several 
pathogenic bacteria [27–29] and fungi [30–32] to a great extent.

Despite technological breakthroughs in pharmaceutical manufacturing, 
there is still a need to develop new prospective antifungals due to 
the rapid development in resistance to current antifungal drugs. The 
antifungal activity of Photorhabdus and Xenorhabdus bacteria has 
garnered attention due to their potential as biocontrol agents against 
various phytopathogenic fungi. Both genera produce secondary 
metabolites that exhibit significant antifungal properties, making them 
valuable in agricultural practices. Therefore, this study was carried 
out to determine the potential of Photorhabdus and Xenorhabdus 
against pathogenic fungi against F. solani (CCK3A1), Fusarium 
keratoplasticum (ATCC36031), C. albicans (ATCC 2091), and A. 
fumigatus (ATCC204305). The VOCs present in the ethyl acetate 
extract of the bacterial isolates were also characterized using gas 
chromatography–mass spectrometry (GC-MS) analysis.

2. MATERIALS AND METHODS

2.1. Source of Symbiotic Bacteria
Four species of symbiotic bacteria, i.e., Photorhabdus hindustanensis 
(TS), P. namnaonensis (TD), Xenorhabdus vietnamensis (RF), and X. 
stockiae (PTS), previously isolated from their respective symbionts, 
Heterorhabditis indica, H. baujardi, Steinernema sangi, and S. 
surkhetense were used for the experiment [33]. The nematodes were 
locally isolated from Mizoram, India, with geographical coordinates 
of 22.350 N 93.060 E (H. indica), 23.740 N 92.952 E (H. baujardi), 
23.370 N 93.161 E (S. sangi), and 22.960 N 92.612 E (S. surkhetense). 

Fresh cultures of the bacteria were obtained by spreading a volume of 
100 µl on NBTA medium (nutrient agar supplemented with 0.0025% 
bromothymol blue and 0.004% triphenyl tetrazolium chloride) 
followed by incubation at 28°C for 48 hours [34,35]. A single colony 
of bacteria that absorbs bromothymol blue dye was selected and 
streaked on nutrient agar for further characterization.

2.2. Preparation of Pathogenic Fungi
Standard-type cultured strains, i.e., F. keratoplasticum (ATCC 36031), 
Candida albicans (ATCC 2091), A. fumigatus (ATCC 204305), 
and Fusarium solani (CCK3A1), were used as pathogens for the 
experiment. Fusarium solani (CCK3A1) was locally isolated from 
ginger soft rot tissue and the ITS1 gene sequence was submitted 
to NCBI GenBank with accession number, OR793128. Before 
the experiment, the fungi were grown on a potato dextrose agar 
(PDA) (HiMedia®) and incubated at 25°C to check their purity and 
viability. The fresh cultures were further used for an antagonistic 
test. Determining the activity of ethyl acetate extract, the fungi were 
diluted to 0.05% Tween® 80 solution to obtain a homogenized spore 
suspension [36].

2.3. Antagonistic Effect of Bacterial Suspension
The antagonistic effects of Photorhabdus (TS and TD) and 
Xenorhabdus (RF and PTS) were performed as per Chen et al. [30] 
with a slight modification. A total of 10 ml of the 48-hour bacterial 
culture was spread on a Petri plate consisting of PDA. A sterile blade 
was used to cut out approximately 4 mm of fungal mycelia, which 
was subsequently collected using fine sterile forceps and inoculated 
on a PDA plate consisting of the bacterial symbiont. The control 
plate contains PDA that has no bacterial symbiont. The experiment 
was carried out in triplicate, and the diameter of fungal growth was 
measured and compared with the control plate after 48, 96, and 192 
hours. The percent inhibition of the fungus was calculated by using the 
following formula [37]: 

Antifungal activity (%) = Dc–Ds  x 10Dc

where Dc is the diameter of fungal growth in the control plate and 
Ds is the diameter of fungal growth in the plate containing bacterial 
isolates.

2.4. Preparation of Bacterial Extract
The solvent system extraction of bacterial metabolites was conducted 
according to Muangpat et al. [29] with a slight modification. A single 
colony was transferred to a 1,000-ml sterile nutrient broth and stored 
at 28°C in a shaker incubator for 48 hours. To extract the crude 
compound, the same volume of ethyl acetate was added and mixed 
well in a 2,000-ml separating funnel. The mixture was left at room 
temperature for 24 hours. The ethyl acetate layer was then collected 
followed by evaporation using a rotary vacuum evaporator (Rotavapor® 

R-100 System-Buchi, Switzerland). The extraction procedure was 
performed thrice to maximize the yield of crude extract.

2.5. Activity of Ethyl Acetate Extract
The condensed bacterial extract was adjusted to 500 mg/ml in dimethyl 
sulfoxide (DMSO) and kept as a stock solution. A 10-ml bacterial 
extract was impregnated onto 6-mm sterile disks and then placed 
in the center of the PDA plates comprising the homogenized fungal 
spores. The plates were incubated at 25°C for 48 hours depending on 
the growth of fungal mycelia. The diameter of the inhibition zone was 
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measured and expressed in millimeters. DMSO was used as a negative 
control and fluconazole disk was used as a positive control.

2.6. GCMS Analysis of Ethyl Acetate Extract of Bacterial 
Isolates
GC-MS analysis of bacterial ethyl acetate extract was carried out using 
GC-MS QP2010 model (Shimadzu®), Column, GC, SH-I-5Sil MS 
Capillary, 30 m × 0.25 mm × 0.25 µm, injection mode: splitless. The 
oven temperature was programmed as follows: 45°C for 2 minutes and 
then 140°C at 5°C/ minute and finally increased to 280°C and held 
isothermally for 10 minutes; 2 µl of each sample was injected and 
helium gas was used as a carrier gas with a flow rate of 1 ml/minute. 
The ionization of the sample components was carried out at 70 eV. 
The National Institute of Standards and Technology database, which 
has over 62,000 patterns, was used to describe the components of the 
GC-MS mass spectrum. 

2.7. Statistical Analysis
Statistical analysis was performed using SPSS software (Version 20.0). 
The percent inhibition from the antagonistic activity and diameter of 

the inhibition zone from the disk diffusion test of ethyl acetate extract 
was calculated and expressed as mean ± standard error (SEM). One-
way analysis of variance was used to assess the variation of inhibition. 
The confidence level was set at 5%, indicating that the treatment of 
bacteria against the fungi will be significant if p < 0.05 with a 95% 
confidence interval.

3. RESULTS

3.1. Antagonistic Effect of Bacterial Isolates Against Pathogenic 
Fungi
The cell suspension of bacterial isolates showed inhibition of growth 
against pathogenic fungi within 196 hours post-inoculation. The 
growth inhibition of bacterial isolates against the pathogenic fungal 
strains and the graphical representation of percent inhibition along 
with a mean diameter of fungal growth were shown in Figures 1 and 2.

The bacterial isolates exhibited significant variations of activity 
against F. solani (df = 3 and 68; F = 54.64; p < 0.05). Photorhabdus 
hindustanensis (TS) and P. namnaonensis (TD) isolates exhibited 
growth inhibition of 48.86% and 52.17%, respectively, at 192-hour 

Figure 1. Growth inhibition of cell suspension of bacterial isolates against the pathogenic fungi. A (F. solani),  
B (F. keratoplasticum), C (C. albicans), and D (A. fumigatus). 
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post-inoculation. A higher rate of percent inhibition was observed 
with X. vietnamensis (RF) and X. stockiae (PTS) isolates with growth 
inhibition of 76.04 % and 75.85%, respectively. P. namnaonensis 
(TD) isolate did not show significant inhibition activity against F. 
solani at different observation times (p > 0.05), while the other 
isolates exhibited significant differences at different observation 
times (p < 0.05). 

In F. keratoplasticum, a significant variation of activity was observed 
with all the bacterial isolates (df = 3 and 68; F = 5.54; p < 0.05). 
Photorhabdus hindustanensis (TS) exhibited a significant increase in 
growth inhibition until 96 hours of incubation with 68.40% followed 
by a decline in growth inhibition at 192 hours (43.71%). Similarly, an 
increase in growth inhibition of 41.04% was observed at 96 hours in P. 
namnaonensis (TD) with a slight decrease of 18.81% inhibition at 192-
hour incubation. A significant rise in percent inhibition was observed 
with X. vietnamensis (RF) during 192-hour incubation with 74.17%. 
However, a comparatively lower inhibition percentage was observed 
with X. stockiae (PTS) with a percent inhibition of 45.93% at 192-
hour incubation. All the isolates showed significant growth inhibition 
within the first two observation periods (p < 0.05). However, the two 
Xenorhabdus isolates (RF and PTS) did not show significant growth 
inhibition from 48- to 192-hour incubation (p > 0.05). 

In C. albicans, all the isolates showed a rise in percent inhibition during 
the observation period. However, there is no significant variation 

of activity among the bacterial isolates (df = 3 and 68; F = 0.04; p > 
0.05). Both P. hindustanensis (TS) and X. vietnamensis (RF) exhibited 
an increase in percent inhibition with 85.66% at 192 hours incubation. 
Also, P. namnaonensis (TD) and X. stockiae (PTS) isolates showed an 
insignificant percent inhibition of 86.49% and 86.48%, respectively. 
This study exhibited high effectiveness of bacterial isolates against C. 
albicans. Significant growth inhibition was observed in all the bacterial 
isolates between 48 hours and 96 hours (p < 0.05). However, there is no 
significant increase in growth inhibition at 192 hours (p > 0.05). 

Aspergillus fumigatus growth was suppressed by all the bacterial 
isolates within the observation period with significant variation 
(df = 3 and 68; F = 8.58; p < 0.05). All the isolates exhibited an 
increase in percent inhibition during the different incubation times. 
Both P. hindustanensis (TS) and X. vietnamensis (RF) isolates 
showed an insignificant percent inhibition of 93.24% and 93.46%, 
respectively, at 192-hour post-inoculation. P. namnaonensis (TD) 
and X. stockiae (PTS) isolates exhibited a rise in percent inhibition 
of 88.50% and 79.04%, respectively, at 192 hours of incubation. P. 
hindustanensis (TS), P. namnaonensis (TD), and X. vietnamensis 
(RF) showed significant differences in percent inhibition of growth 
within the different observation times (p < 0.05). However, there is 
no significant growth inhibition in X. stockiae (PTS) within 48–96-
hour incubation period (p > 0.05). Furthermore, the comparison of 
mean growth between the control and bacterial isolates exhibited a 

Figure 2. Graphical representation of inhibition activity of bacterial cell suspension against pathogenic fungi. The results were presented  
as growth inhibition (%) ± SEM and mean growth diameter (Mean ± SEM). Bars with uppercase letters indicate significant differences  

(p < 0.05) in % inhibition of different isolates at the same incubation time. Bars with different lowercase letters indicate significant differences  
(p < 0.05) in % inhibition of each isolate at different incubation times (hour) and the mean growth of fungus. A (F. solani),  

B (F. keratoplasticum), C (C. albicans), and D (A. fumigatus).
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Figure 3. Antifungal activity of ethyl acetate extract of bacterial isolates against pathogenic fungi. (A) F. solani, (B) F. 
keratoplasticum, (C) C. albicans, and (D) A. fumigatus.

Figure 4. Graphical representation of inhibition activity of ethyl acetate extract of bacterial isolates against 
pathogenic fungi. The results were presented as mean growth diameter (Mean ± SEM). Bars with different uppercase 

indicate significant differences (p < 0.05) of different isolates against each pathogenic fungus. Lowercase letters 
indicate significant differences (p < 0.05) of each bacterial isolate against different pathogenic fungi. 



Lalramchuani et al.: Antifungal Potential of Photorhabdus and Xenorhabdus Against Pathogenic Fungi 2025;13(4):76-88 83

significant variation during the observation period (p < 0.05) in all 
the pathogenic fungi.

3.2. Antifungal Activity of Ethyl Acetate Extract
The ethyl acetate extracts of bacterial isolates, including the standard 
(fluconazole), exhibited significant variations of activity against each 
pathogenic fungus, i.e., F. solani (df = 4 and 10; F = 139.6; p < 0.05), 
F. keratoplasticum (df = 4 and 10; F = 82.41; p < 0.05), C. albicans (df 
= 4 and 10; F = 252.40; p < 0.05), and A. fumigatus (df = 4 and 10; F = 
631; p < 0.05). Among the bacterial isolates, the extract of TS isolate 
was found to be most potent where it inhibited the growth of the tested 
pathogenic fungi with an inhibition zone of 10.33–17 mm diameter. 
The extract of P. namnaonensis (TD) showed a clear zone of inhibition 
against F. solani, F. keratoplasticum, and C. albicans with the highest 
being recorded with F. keratoplasticum (13.33 mm diameter). 
However, the extract of Xenorhabdus (RF and PTS) isolates showed 
significantly lower activity than the Photorhabdus (TS and TD). The 
extract of X. vietnamensis (RF) isolate only inhibited the growth of F. 
keratoplsticum, with 8.33 mm diameter of inhibition zone. The extract 
of X. stockiae (PTS) exhibited comparatively lower activity compared 
to the other isolates against the pathogenic fungi, exhibiting negligible 
inhibitory activity against F. keratoplasticum and C. albicans with 
7 mm and 6.67 mm diameter, respectively. The standard disc of 
fluconazole (10 µg) showed inhibition activity against C. albicans 
alone, with 20.67 mm in diameter. The highest inhibition of bacterial 
extract against the pathogenic fungi was observed with A. fumigatus 
(ATCC) where P. hindustanensis (TS) isolate showed a clear inhibition 
zone of 17 mm in diameter. The growth inhibition of bacterial extracts 

against fungal growth and the graphical representation of inhibitory 
activity are shown in Figures 3 and 4.

3.3. GCMS Analysis of Ethyl Acetate Extract of Bacterial Isolates
A total of 26 different compounds were characterized, in which 20, 16, 
20, and 17 peaks were exclusively analyzed from P. hindustanensis 
(TS), P. namnaonensis (TD), X. vietnamensis (RF), and X. stockiae 
(PTS), respectively (Fig. 5). The lists of the corresponding compounds 
with their retention time, relative abundance (%), molecular formula, 
molecular weight (Da), and biological activity were given in Table 1.

The most prevalent compound in the P. hindustanensis (TS) isolate 
was found to be [Pyrrolo(1,2-a) pyrazine-1,4-dione, hexahydro-3-
(phenylmethyl)], which was observed at two peaks with a relative 
abundance of 17.64% and 5.85%. A considerable amount of 
2,5-Piperazinedione, 3-(phenylmethyl), a saturated long chain fatty 
acid (n-Hexadecenoic acid), and benzeneacetic acid were present with 
a relative abundance of 16.9%, 9.68%, and 7.87%, respectively.

The most abundant compound in P. namnaonensis (TD) isolate was 
found to be n-Hexadecanoic acid, which had a relative abundance of 
16.46%, followed by [Pyrrolo (1,2-a) pyrazine-1,4-dione, hexahydro-
3-(phenylmethyl)], which had two peaks with 15.64% and 10.57% 
relative abundances. Cyclo (L-prolyl-L-valine) and benzeneacetic acid 
were also detected in moderate proportion, with relative abundances 
of 9.49% and 8.92%, respectively.

Benzeneacetic acid was discovered to be the most abundant compound 
in the Xenorhabdus vietnamensis (RF) isolate, accounting for 21.44% 

Figure 5. GC-MS chromatogram of the components in the ethyl acetate extract of bacterial isolates. A (P. hindustanensis TS),  
B (P. namnaonensisTD), C (X. vietnamensis, RF), and D (X. stockiae, PTS).
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of the total relative abundance. In addition, a notable abundance of 
diketopiperazine compounds, such as Cyclo (L-prolyl-L-valine), 
Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl), 
Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), and 
3,6-Diisopropylpiperazin-2,5-dione, were present, which exhibited 
16.23%, 10.95%, 8.87%, and 5.77% relative abundance, respectively.

In X. stockiae (PTS) isolate, a saturated long-chain fatty acid, 
n-Hexadecanoic acid was the most abundant compound with 18.27% 
relative abundance. Other compounds that were reasonably abundant 
were Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), 
which showed two peaks with relative abundance of 14.86% and 
11.82%. A modest amount of Pyrrolo[1,2-a] pyrazine-1,4-dione, 
hexahydro-3-(2-methylpropyl), benzeneacetic acid, and Cyclo(L-
prolyl-L-valine) were also detected with relative abundance of 
11.60%, 10.78%, and 8.48%, respectively.

Among the available compounds detected by GCMS, the common 
chemical compounds found in all the isolates were benzeneacetic 
acid, 2-Propenoic acid, 3-phenyl-, (E)- (trans-cinnamic acid), 
2,5-Piperazinedione, 3,6-bis(2-methylpropyl), Pyrrolo[1,2-a] 
pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), Hexadecanoic acid, 
2-hydroxy-1-(hydroxymethyl) ethyl ester, L-Phenylalanyl-L-leucine, 
and 13-Docosenamide, (Z) with a compound belonging to the class of 
diketopiperazine being the most abundant.

4. DISCUSSION
Natural products (NPs) have sufficient structural intricacy and 
scaffold variety. In the recent decade, NPs and their analogs have 
made significant contributions to various pharmaceutical industries. 
Besides this, NPs face various challenges such as insufficient methods 
for isolation, characterization, screening, and optimization, which 
decline their pursuit of further drug discovery [38].

A wide range of small compounds produced by Photorhabdus and 
Xenorhabdus spp. are known to possess several biological functions in 
both the mutualistic and pathogenic phases [39,40]. It was revealed that 
the bioactive compounds extracted from the fermented culture media of 
Photorhabdus spp. and Xenorhabdus spp., such as methanol and ethyl 
acetate, were highly effective in controlling a variety of pathogenic 
bacteria [27–29,33]. Furthermore, these bioactive chemicals have 
been shown to exhibit a potential biological activity against insect 
pests, parasites, and cancer cells [25,41,42]. The pathogenicity of 
Photorhabdus and Xenorhabdus against several fungal pathogens was 
also investigated using a variety of techniques that involved contact 
with cell suspension, cell-free supernatant, and solvent extract as well 
as VOCs with a high success rate. [30–32,43–50].

The cell-free filtrate and methanol extract of X. bovienii successfully 
inhibited the growth of B. cinerea and P. capsica [46]. Similarly, 
effective natural products from X. budapestensis and X. szentirmaii 
reduced P. nicotianae colony formation and mycelial development 
[47]. Furthermore, Cimen et al. [45] evaluated the activity of 
Xenorhabdus spp. and Photorhabdus spp. against C. parasitica, 
F. oxysporum, R. solani, and S. sclerotiorum and concluded that 
the Xenorhabdus spp. were considerably more active than the 
Photorhabdus in inhibiting the fungal pathogens. However, in this 
study, variations of antagonistic activity of the bacterial isolates were 
observed against different fungal pathogens, which is consistent with 
the observation of Ulug [48] where X. cabanillasii and X. szentirmaii 
exhibited significant suppression of fungal growth. The variations 
among different studies may be attributed to the degree of interaction 
of each bacterial isolate against different fungus and culture media 
used for the study [39,45].

Based on the co-culturing approach analyzed in this study, a highly 
significant inhibitory activity of all the bacterial isolates against A. 
fumigatus and C. albicans was observed. P. hindustanensis (TS) isolates 
showed moderate inhibition against F. solani and F. keratoplasticum. 
Similarly, P. namnaonensis (TD) isolate caused a fair inhibition of F. 
solani but did not inhibit the mycelial growth of F. keratoplasticum. 
Chen et al. [30] observed that the antifungal activity of phase two 
Photorhabdus spp. and Xenorhabdus spp. were significantly weak. 
It is worth mentioning that we observed the same trend where the 
inhibition rate of Photorhabdus isolates (TS and TD) diminished over 
time against F. keratoplasticum. However, Xenorhabdus isolates (RF 
and PTS) showed an increase in the percent inhibition rate against F. 
solani and F. keratoplasticum during the different observation periods. 
Also, Lalramchuani et al. [49] observed a significant inhibition of X. 
vietnamensis against F. oxysporum by a co-culturing approach.

Antifungal assay, ethyl acetate extract, of P. hindustanensis (TS) 
showed a high inhibition activity against A. fumigatus and a moderate 
inhibition activity against F. solani, F. keratoplasticum, and C. 
albicans. However, P. namnaonensis (TD) showed moderate inhibition 
activity against F. solani, F. keratoplasticum, and C. albicans, but a 
very low activity was observed against A. fumigatus. The ethyl acetate 
extract of X. vietnamensis (RF) and X. stockiae (PTS) exhibited 
minimal or no inhibition activity against all pathogenic fungi. In 
contrast, Xenocoumacin 1, derived from Xenorhabdus nematophila, 
exhibits a broad antifungal spectrum against S. sclerotiorum, affecting 
fungal morphology as well as enzymatic activity [50]. The occurrence 
of these variations in the inhibition activity between the two genera 
might be attributed to the difference in the active chemical compounds 
present in the extract of each bacterial isolate [32,45,46].

A variety of compounds with known antifungal properties were 
characterized using the GCMS analysis from each bacterial extract. Most 
of the compounds present in the ethyl acetate extract of the bacterial 
isolates were found to be fatty acid derivatives and peptide compounds. 
It is noteworthy that the presence of a well-known antifungal compound 
transcinammic acid (TCA) was observed in the ethyl acetate extract of 
P. namnaonensis (TD), X. vietnamensis (RF), and X. stockiae (PTS) 
isolates, while the cinnamic acid in a cis-form was also observed in P. 
hindustanensis (TS) isolate. Hazir et al. [51] evaluated the potency of 
four Xenorhabdus spp. and three Photorhabdus spp. against Fusarium 
carpophilum, F. effusum, Monilinia fructicola, Glomerella cingulate, 
and Armillaria tabescens. They compare the efficacy of the bacterial 
metabolites that were previously reported as bioactive compounds 
of Photorhabdus luminescens [52]. They observed that TCA was 
the most effective treatment with significant variation. In addition, 
cinnamic acids offer a novel method of action since they target enzymes 
specific to fungus and can be used as lead compounds in the design 
and production of new medications with less harmful effects on higher 
eukaryotes. Korosec et al. [53] and Sa-Uth et al. [54] revealed a high 
efficacy (98.62%) of X. stockiae against several plant pathogenic fungi, 
including Fusarium sp. by enhancing the composition of medium 
supplemented with sucrose, yeast extract, NaCl, and K2HPO4.

5. CONCLUSION
This study highlights the potential of the antifungal activity of 
Photorhabdus and Xenorhabdus against several pathogenic fungi. 
While the antifungal properties of these bacteria are promising, 
further research is necessary to fully understand their mechanisms 
and optimize their application in agricultural settings. The potential 
for resistance development in pathogens remains a concern, 
necessitating ongoing evaluation of these biocontrol agents. These 
extracted metabolites could be potent antifungal agents to combat 
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certain pathogenic fungi, which become resistant to the currently 
available antifungal drugs. Therefore, the information provided 
in this study will pave the way for further examination of certain 
beneficial microorganisms including their metabolites for the 
treatment of different diseases worldwide. Since entomopathogenic 
bacteria could be a promising alternative agent to combat the current 
global crisis of antifungal resistance, more efforts and detailed 
analysis, including appropriate formulations, must be investigated 
for effective use to control several fungal pathogens.
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