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Entomopathogenic bacteria (EPB) are natural pathogens of insects being utilized as biological control agents for insect
pests worldwide. In addition to their pathogenicity against insects, they are known to inhibit the growth of several
microbes. In this study, EPB of the genus, Photorhabdus and Xenorhabdus, were investigated for their pathogenicity
against Fusarium solani (CCK3Al), Fusarium keratoplasticum (ATCC 36031), Candida albicans (ATCC 2091),
and Aspergillus fumigatus (ATCC 204305). The antagonistic effect of cell suspension was analyzed by calculating
percent inhibition from the co-cultured plate of bacteria and fungus within 192 hours of incubation at 25°C where the
highest percent inhibition was observed with X. vietnamensis (RF) against A. fumigatus (ATCC 204305). Moreover,
the activity of ethyl acetate extract of bacterial metabolites against pathogenic fungi was analyzed using the disk
diffusion method where Photorhabdus hindustanensis (TS) isolates exhibited the highest inhibition against A.
Sfumigatus (ATCC 204305). The components of ethyl acetate extract were analyzed using gas chromatography—mass
spectrometry in which Pyrrolo [1,2-a] pyrazine-1,4-dione hexahydro-3-(phenylmethyl), benzeneacetic acid, and
n-Hexadecanoic acid were found to be the most abundant compounds. This study provides information regarding
the potential of Photorhabdus and Xenorhabdus, including their secondary metabolites against several pathogenic
fungi. It further provides insights to overcome the current global drug resistance crisis among several pathogenic
fungi, as well as new reference data for the future development and application of antifungal agents.

1. INTRODUCTION

eumycetoma, skin lesions, and disseminated infections are all

Fungal infections are one of the most common and devastating
problems worldwide. Over 150 million cases of serious fungal
infections occur worldwide each year, and approximately 1.7 million
people die as a result [1,2]. These estimates have continuously risen
due to societal and medical improvements that have aided in spreading
fungal illnesses over the years. As a result, fungal infections are
becoming a global problem for human health due to increased overuse
and prophylactic application of antifungals to immunocompromised
individuals promoting the emergence of multi-drug-resistant fungi
[1,3]. Apart from human infection, over 19,000 fungi are known to
infect economically important crops worldwide accounting for over
30% of all crop diseases [4].

The genus Fusarium, belonging to the Nectriaceae family, is
characterized as an imperfect fungus with a global distribution capable
of infecting animals, plants, and humans. Keratitis, onychomycosis,
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connected with Fusarium infection in humans [5]. Apart from human
infection, it is a broad-spectrum fungus species that has been shown to
infect peas, beans, potatoes, and different cucurbits [6]. Because of the
significant death rate caused by Fusarium and the growing resistance
to the currently used antifungal medicines (azoles), a novel therapy is
required [7].

The genus Candida is a member of the Saccharomycetaceae family.
There are currently around 150 Candida species, with approximately
20 species known to cause infections in humans [8]. In a healthy
person, Candida albicans colonizes the oral mucosa, vagina, skin,
as well as gastrointestinal tract asymptomatically as a commensal
fungus, accounting for more than 80% of asymptomatic human
vaginal and oral yeast strains [9,10]. Eventually, it possesses different
properties, both commensal and pathogenic, that become part of the
human natural microbiome and invade tissues and organs when
the immune system is impaired [11,12]. The rapid rise of various
antifungal resistance among Candida spp. is a serious health concern
worldwide and a better understanding of resistant mechanisms with
the identification of a new drug target could reduce the current
situation of developing resistance upon prolonged exposure to anti-
fungal agents [13,14].

© 2025 Mary Lalramchuani ez a/. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-

ShareAlike Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).


https://crossmark.crossref.org/dialog/?doi=10.7324/JABB.2025.203366&domain=pdf
https://orcid.org/0000-0002-1986-8761
https://orcid.org/0000-0002-7574-2952

Lalramchuani et al.: Antifungal Potential of Photorhabdus and Xenorhabdus Against Pathogenic Fungi 2025;13(4):76-88 77

The genus Aspergillus, a fungus belonging to the family
Trichocomaceae, is a common mold in the environment and the
leading cause of aspergillosis in people. It is a deadly pathogen that
can kill people with weakened immune systems, underlying diseases,
or transplants [ 15-17]. Also, Aspergillus hampers plant photosynthesis
by impeding the production of carotenoid and chlorophyll, resulting
in albinism or virescence in the infected plants [18]. Resistance to
existing antifungal medications, azoles, emerged as a global concern
in Aspergillus fumigatus infection with a prevalence of 6.6%-28%
[19]. The prevalence of fungal disease has led to the rapid rise of
resistance in economically important fungi resulting in the difficulty of
effective treatment. Apart from human concerns, chemical fungicides
are still the most effective and widely used for controlling fungal
infections. However, because of their harmful effects on people and
other nontarget creatures, they are also harmful to the environment
and even pose risks to the health condition of humans [20]. Hence,
biological control, which includes the employment of antagonistic
organisms, including their secondary metabolites and volatile organic
compounds (VOCs), is a crucial candidate and alternative agent to
chemical fungicides [21].

Since the penicillin era, microbial metabolites have still been a
crucial source in the development of novel drugs for animals and
humans. Photorhabdus and Xenorhabdus, belonging to the family
Morganellaceae, are an obligate symbiosis with entomopathogenic
nematodes (EPNs) of the genus Heterorhabditis and Steinernema,
respectively [22-24]. When the nematode infects the insect larvae,
it releases the bacterial symbionts inside the hemocoel of the
insect resulting in the production of broad-spectrum compounds;
the compounds are lethal to insect larvae as well as antagonists to
bacteria, fungi, nematodes, protozoa, and cancer cells [25]. The EPNs
are distributed worldwide and are being utilized for the biological
control of insect pests with a high success rate [26]. The secondary
metabolites isolated from fermented culture media of Photorhabdus
spp. and Xenorhabdus spp., including methanol and ethyl acetate
extracted compounds, were found to be effective in suppressing several
pathogenic bacteria [27-29] and fungi [30-32] to a great extent.

Despite technological breakthroughs in pharmaceutical manufacturing,
there is still a need to develop new prospective antifungals due to
the rapid development in resistance to current antifungal drugs. The
antifungal activity of Photorhabdus and Xenorhabdus bacteria has
garnered attention due to their potential as biocontrol agents against
various phytopathogenic fungi. Both genera produce secondary
metabolites that exhibit significant antifungal properties, making them
valuable in agricultural practices. Therefore, this study was carried
out to determine the potential of Photorhabdus and Xenorhabdus
against pathogenic fungi against F. solani (CCK3Al), Fusarium
keratoplasticum (ATCC36031), C. albicans (ATCC 2091), and A.
Sfumigatus (ATCC204305). The VOCs present in the ethyl acetate
extract of the bacterial isolates were also characterized using gas
chromatography—mass spectrometry (GC-MS) analysis.

2. MATERIALS AND METHODS

2.1. Source of Symbiotic Bacteria

Four species of symbiotic bacteria, i.e., Photorhabdus hindustanensis
(TS), P. namnaonensis (TD), Xenorhabdus vietnamensis (RF), and X.
stockiae (PTS), previously isolated from their respective symbionts,
Heterorhabditis indica, H. baujardi, Steinernema sangi, and S.
surkhetense were used for the experiment [33]. The nematodes were
locally isolated from Mizoram, India, with geographical coordinates
of 22.350 N 93.060 E (H. indica), 23.740 N 92.952 E (H. baujardi),
23.370 N 93.161 E (8. sangi), and 22.960 N 92.612 E (S. surkhetense).

Fresh cultures of the bacteria were obtained by spreading a volume of
100 ul on NBTA medium (nutrient agar supplemented with 0.0025%
bromothymol blue and 0.004% triphenyl tetrazolium chloride)
followed by incubation at 28°C for 48 hours [34,35]. A single colony
of bacteria that absorbs bromothymol blue dye was selected and
streaked on nutrient agar for further characterization.

2.2. Preparation of Pathogenic Fungi

Standard-type cultured strains, i.e., F. keratoplasticum (ATCC 36031),
Candida albicans (ATCC 2091), A. fumigatus (ATCC 204305),
and Fusarium solani (CCK3Al), were used as pathogens for the
experiment. Fusarium solani (CCK3A1) was locally isolated from
ginger soft rot tissue and the ITS1 gene sequence was submitted
to NCBI GenBank with accession number, OR793128. Before
the experiment, the fungi were grown on a potato dextrose agar
(PDA) (HiMedia®) and incubated at 25°C to check their purity and
viability. The fresh cultures were further used for an antagonistic
test. Determining the activity of ethyl acetate extract, the fungi were
diluted to 0.05% Tween® 80 solution to obtain a homogenized spore
suspension [36].

2.3. Antagonistic Effect of Bacterial Suspension

The antagonistic effects of Photorhabdus (TS and TD) and
Xenorhabdus (RF and PTS) were performed as per Chen et al. [30]
with a slight modification. A total of 10 ml of the 48-hour bacterial
culture was spread on a Petri plate consisting of PDA. A sterile blade
was used to cut out approximately 4 mm of fungal mycelia, which
was subsequently collected using fine sterile forceps and inoculated
on a PDA plate consisting of the bacterial symbiont. The control
plate contains PDA that has no bacterial symbiont. The experiment
was carried out in triplicate, and the diameter of fungal growth was
measured and compared with the control plate after 48, 96, and 192
hours. The percent inhibition of the fungus was calculated by using the
following formula [37]:

Dc—Ds

De x 10

Antifungal activity (%) =
where Dc is the diameter of fungal growth in the control plate and
Ds is the diameter of fungal growth in the plate containing bacterial
isolates.

2.4. Preparation of Bacterial Extract

The solvent system extraction of bacterial metabolites was conducted
according to Muangpat et al. [29] with a slight modification. A single
colony was transferred to a 1,000-ml sterile nutrient broth and stored
at 28°C in a shaker incubator for 48 hours. To extract the crude
compound, the same volume of ethyl acetate was added and mixed
well in a 2,000-ml separating funnel. The mixture was left at room
temperature for 24 hours. The ethyl acetate layer was then collected
followed by evaporation using a rotary vacuum evaporator (Rotavapor®
R-100 System-Buchi, Switzerland). The extraction procedure was
performed thrice to maximize the yield of crude extract.

2.5. Activity of Ethyl Acetate Extract

The condensed bacterial extract was adjusted to 500 mg/ml in dimethyl
sulfoxide (DMSO) and kept as a stock solution. A 10-ml bacterial
extract was impregnated onto 6-mm sterile disks and then placed
in the center of the PDA plates comprising the homogenized fungal
spores. The plates were incubated at 25°C for 48 hours depending on
the growth of fungal mycelia. The diameter of the inhibition zone was
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measured and expressed in millimeters. DMSO was used as a negative
control and fluconazole disk was used as a positive control.

2.6. GCMS Analysis of Ethyl Acetate Extract of Bacterial
Isolates

GC-MS analysis of bacterial ethyl acetate extract was carried out using
GC-MS QP2010 model (Shimadzu®), Column, GC, SH-I-5Sil MS
Capillary, 30 m x 0.25 mm x 0.25 um, injection mode: splitless. The
oven temperature was programmed as follows: 45°C for 2 minutes and
then 140°C at 5°C/ minute and finally increased to 280°C and held
isothermally for 10 minutes; 2 ul of each sample was injected and
helium gas was used as a carrier gas with a flow rate of 1 ml/minute.
The ionization of the sample components was carried out at 70 eV.
The National Institute of Standards and Technology database, which
has over 62,000 patterns, was used to describe the components of the
GC-MS mass spectrum.

2.7. Statistical Analysis

Statistical analysis was performed using SPSS software (Version 20.0).
The percent inhibition from the antagonistic activity and diameter of

(TS)

A. fumigatus

the inhibition zone from the disk diffusion test of ethyl acetate extract
was calculated and expressed as mean =+ standard error (SEM). One-
way analysis of variance was used to assess the variation of inhibition.
The confidence level was set at 5%, indicating that the treatment of
bacteria against the fungi will be significant if p < 0.05 with a 95%
confidence interval.

3. RESULTS

3.1. Antagonistic Effect of Bacterial Isolates Against Pathogenic
Fungi

The cell suspension of bacterial isolates showed inhibition of growth
against pathogenic fungi within 196 hours post-inoculation. The
growth inhibition of bacterial isolates against the pathogenic fungal
strains and the graphical representation of percent inhibition along
with a mean diameter of fungal growth were shown in Figures 1 and 2.

The bacterial isolates exhibited significant variations of activity
against F. solani (df = 3 and 68; F = 54.64; p < 0.05). Photorhabdus
hindustanensis (TS) and P. namnaonensis (TD) isolates exhibited
growth inhibition of 48.86% and 52.17%, respectively, at 192-hour

(RF)

Figure 1. Growth inhibition of cell suspension of bacterial isolates against the pathogenic fungi. A (F. solani),
B (F keratoplasticum), C (C. albicans), and D (4. fumigatus).
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Figure 2. Graphical representation of inhibition activity of bacterial cell suspension against pathogenic fungi. The results were presented
as growth inhibition (%) + SEM and mean growth diameter (Mean + SEM). Bars with uppercase letters indicate significant differences
(p < 0.05) in % inhibition of different isolates at the same incubation time. Bars with different lowercase letters indicate significant differences
(p < 0.05) in % inhibition of each isolate at different incubation times (hour) and the mean growth of fungus. A (¥ solani),
B (F. keratoplasticum), C (C. albicans), and D (4. fumigatus).

post-inoculation. A higher rate of percent inhibition was observed
with X. vietnamensis (RF) and X. stockiae (PTS) isolates with growth
inhibition of 76.04 % and 75.85%, respectively. P. namnaonensis
(TD) isolate did not show significant inhibition activity against F.
solani at different observation times (p > 0.05), while the other
isolates exhibited significant differences at different observation
times (p < 0.05).

In F keratoplasticum, a significant variation of activity was observed
with all the bacterial isolates (df = 3 and 68; F = 5.54; p < 0.05).
Photorhabdus hindustanensis (TS) exhibited a significant increase in
growth inhibition until 96 hours of incubation with 68.40% followed
by a decline in growth inhibition at 192 hours (43.71%). Similarly, an
increase in growth inhibition of 41.04% was observed at 96 hours in P,
namnaonensis (TD) with a slight decrease of 18.81% inhibition at 192-
hour incubation. A significant rise in percent inhibition was observed
with X. vietnamensis (RF) during 192-hour incubation with 74.17%.
However, a comparatively lower inhibition percentage was observed
with X. stockiae (PTS) with a percent inhibition of 45.93% at 192-
hour incubation. All the isolates showed significant growth inhibition
within the first two observation periods (p < 0.05). However, the two
Xenorhabdus isolates (RF and PTS) did not show significant growth
inhibition from 48- to 192-hour incubation (p > 0.05).

In C. albicans, all the isolates showed a rise in percent inhibition during
the observation period. However, there is no significant variation

of activity among the bacterial isolates (df = 3 and 68; F = 0.04; p >
0.05). Both P. hindustanensis (TS) and X. vietnamensis (RF) exhibited
an increase in percent inhibition with 85.66% at 192 hours incubation.
Also, P. namnaonensis (TD) and X. stockiae (PTS) isolates showed an
insignificant percent inhibition of 86.49% and 86.48%, respectively.
This study exhibited high effectiveness of bacterial isolates against C.
albicans. Significant growth inhibition was observed in all the bacterial
isolates between 48 hours and 96 hours (p < 0.05). However, there is no
significant increase in growth inhibition at 192 hours (p > 0.05).

Aspergillus fumigatus growth was suppressed by all the bacterial
isolates within the observation period with significant variation
(df = 3 and 68; F = 8.58; p < 0.05). All the isolates exhibited an
increase in percent inhibition during the different incubation times.
Both P. hindustanensis (TS) and X. vietnamensis (RF) isolates
showed an insignificant percent inhibition of 93.24% and 93.46%,
respectively, at 192-hour post-inoculation. P. namnaonensis (TD)
and X. stockiae (PTS) isolates exhibited a rise in percent inhibition
of 88.50% and 79.04%, respectively, at 192 hours of incubation. P,
hindustanensis (TS), P. namnaonensis (TD), and X. vietnamensis
(RF) showed significant differences in percent inhibition of growth
within the different observation times (p < 0.05). However, there is
no significant growth inhibition in X. stockiae (PTS) within 48-96-
hour incubation period (p > 0.05). Furthermore, the comparison of
mean growth between the control and bacterial isolates exhibited a
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Figure 3. Antifungal activity of ethyl acetate extract of bacterial isolates against pathogenic fungi. (A) F. solani, (B) F.
keratoplasticum, (C) C. albicans, and (D) A. fumigatus.
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Figure 4. Graphical representation of inhibition activity of ethyl acetate extract of bacterial isolates against
pathogenic fungi. The results were presented as mean growth diameter (Mean + SEM). Bars with different uppercase
indicate significant differences (p < 0.05) of different isolates against each pathogenic fungus. Lowercase letters
indicate significant differences (p < 0.05) of each bacterial isolate against different pathogenic fungi.
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Figure 5. GC-MS chromatogram of the components in the ethyl acetate extract of bacterial isolates. A (P. hindustanensis TS),
B (P. namnaonensisTD), C (X. vietnamensis, RF), and D (X. stockiae, PTS).

significant variation during the observation period (p < 0.05) in all
the pathogenic fungi.

3.2. Antifungal Activity of Ethyl Acetate Extract

The ethyl acetate extracts of bacterial isolates, including the standard
(fluconazole), exhibited significant variations of activity against each
pathogenic fungus, i.e., F. solani (df =4 and 10; F = 139.6; p < 0.05),
F keratoplasticum (df =4 and 10; F = 82.41; p <0.05), C. albicans (df
=4 and 10; F =252.40; p <0.05), and 4. fumigatus (df =4 and 10; F =
631; p <0.05). Among the bacterial isolates, the extract of TS isolate
was found to be most potent where it inhibited the growth of the tested
pathogenic fungi with an inhibition zone of 10.33—17 mm diameter.
The extract of P. namnaonensis (TD) showed a clear zone of inhibition
against F. solani, F. keratoplasticum, and C. albicans with the highest
being recorded with F keratoplasticun (13.33 mm diameter).
However, the extract of Xenorhabdus (RF and PTS) isolates showed
significantly lower activity than the Photorhabdus (TS and TD). The
extract of X. vietnamensis (RF) isolate only inhibited the growth of .
keratoplsticum, with 8.33 mm diameter of inhibition zone. The extract
of X. stockiae (PTS) exhibited comparatively lower activity compared
to the other isolates against the pathogenic fungi, exhibiting negligible
inhibitory activity against £ keratoplasticum and C. albicans with
7 mm and 6.67 mm diameter, respectively. The standard disc of
fluconazole (10 pg) showed inhibition activity against C. albicans
alone, with 20.67 mm in diameter. The highest inhibition of bacterial
extract against the pathogenic fungi was observed with A. fumigatus
(ATCC) where P. hindustanensis (TS) isolate showed a clear inhibition
zone of 17 mm in diameter. The growth inhibition of bacterial extracts

against fungal growth and the graphical representation of inhibitory
activity are shown in Figures 3 and 4.

3.3. GCMS Analysis of Ethyl Acetate Extract of Bacterial Isolates

A total of 26 different compounds were characterized, in which 20, 16,
20, and 17 peaks were exclusively analyzed from P. hindustanensis
(TS), P. namnaonensis (TD), X. vietnamensis (RF), and X. stockiae
(PTS), respectively (Fig. 5). The lists of the corresponding compounds
with their retention time, relative abundance (%), molecular formula,
molecular weight (Da), and biological activity were given in Table 1.

The most prevalent compound in the P. hindustanensis (TS) isolate
was found to be [Pyrrolo(1,2-a) pyrazine-1,4-dione, hexahydro-3-
(phenylmethyl)], which was observed at two peaks with a relative
abundance of 17.64% and 5.85%. A considerable amount of
2,5-Piperazinedione, 3-(phenylmethyl), a saturated long chain fatty
acid (n-Hexadecenoic acid), and benzeneacetic acid were present with
a relative abundance of 16.9%, 9.68%, and 7.87%, respectively.

The most abundant compound in P. namnaonensis (TD) isolate was
found to be n-Hexadecanoic acid, which had a relative abundance of
16.46%, followed by [Pyrrolo (1,2-a) pyrazine-1,4-dione, hexahydro-
3-(phenylmethyl)], which had two peaks with 15.64% and 10.57%
relative abundances. Cyclo (L-prolyl-L-valine) and benzeneacetic acid
were also detected in moderate proportion, with relative abundances
0f'9.49% and 8.92%, respectively.

Benzeneacetic acid was discovered to be the most abundant compound
in the Xenorhabdus vietnamensis (RF) isolate, accounting for 21.44%
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of the total relative abundance. In addition, a notable abundance of
diketopiperazine compounds, such as Cyclo (L-prolyl-L-valine),
Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl),
Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), and
3,6-Diisopropylpiperazin-2,5-dione, were present, which exhibited
16.23%, 10.95%, 8.87%, and 5.77% relative abundance, respectively.

In X stockiae (PTS) isolate, a saturated long-chain fatty acid,
n-Hexadecanoic acid was the most abundant compound with 18.27%
relative abundance. Other compounds that were reasonably abundant
were Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl),
which showed two peaks with relative abundance of 14.86% and
11.82%. A modest amount of Pyrrolo[1,2-a] pyrazine-1,4-dione,
hexahydro-3-(2-methylpropyl), benzeneacetic acid, and Cyclo(L-
prolyl-L-valine) were also detected with relative abundance of
11.60%, 10.78%, and 8.48%, respectively.

Among the available compounds detected by GCMS, the common
chemical compounds found in all the isolates were benzeneacetic
acid, 2-Propenoic acid, 3-phenyl-, (E)- (trans-cinnamic acid),
2,5-Piperazinedione, 3,6-bis(2-methylpropyl), Pyrrolo[1,2-a]
pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), Hexadecanoic acid,
2-hydroxy-1-(hydroxymethyl) ethyl ester, L-Phenylalanyl-L-leucine,
and 13-Docosenamide, (Z) with a compound belonging to the class of
diketopiperazine being the most abundant.

4. DISCUSSION

Natural products (NPs) have sufficient structural intricacy and
scaffold variety. In the recent decade, NPs and their analogs have
made significant contributions to various pharmaceutical industries.
Besides this, NPs face various challenges such as insufficient methods
for isolation, characterization, screening, and optimization, which
decline their pursuit of further drug discovery [38].

A wide range of small compounds produced by Photorhabdus and
Xenorhabdus spp. are known to possess several biological functions in
both the mutualistic and pathogenic phases [39,40]. It was revealed that
the bioactive compounds extracted from the fermented culture media of
Photorhabdus spp. and Xenorhabdus spp., such as methanol and ethyl
acetate, were highly effective in controlling a variety of pathogenic
bacteria [27-29,33]. Furthermore, these bioactive chemicals have
been shown to exhibit a potential biological activity against insect
pests, parasites, and cancer cells [25,41,42]. The pathogenicity of
Photorhabdus and Xenorhabdus against several fungal pathogens was
also investigated using a variety of techniques that involved contact
with cell suspension, cell-free supernatant, and solvent extract as well
as VOCs with a high success rate. [30-32,43-50].

The cell-free filtrate and methanol extract of X. bovienii successfully
inhibited the growth of B. cinerea and P. capsica [46]. Similarly,
effective natural products from X. budapestensis and X. szentirmaii
reduced P. nicotianae colony formation and mycelial development
[47]. Furthermore, Cimen et al. [45] evaluated the activity of
Xenorhabdus spp. and Photorhabdus spp. against C. parasitica,
F. oxysporum, R. solani, and S. sclerotiorum and concluded that
the Xenorhabdus spp. were considerably more active than the
Photorhabdus in inhibiting the fungal pathogens. However, in this
study, variations of antagonistic activity of the bacterial isolates were
observed against different fungal pathogens, which is consistent with
the observation of Ulug [48] where X. cabanillasii and X. szentirmaii
exhibited significant suppression of fungal growth. The variations
among different studies may be attributed to the degree of interaction
of each bacterial isolate against different fungus and culture media
used for the study [39,45].

Based on the co-culturing approach analyzed in this study, a highly
significant inhibitory activity of all the bacterial isolates against A.
Sfumigatus and C. albicans was observed. P. hindustanensis (TS) isolates
showed moderate inhibition against F. solani and F. keratoplasticum.
Similarly, P namnaonensis (TD) isolate caused a fair inhibition of F
solani but did not inhibit the mycelial growth of F. keratoplasticum.
Chen et al. [30] observed that the antifungal activity of phase two
Photorhabdus spp. and Xenorhabdus spp. were significantly weak.
It is worth mentioning that we observed the same trend where the
inhibition rate of Photorhabdus isolates (TS and TD) diminished over
time against F. keratoplasticum. However, Xenorhabdus isolates (RF
and PTS) showed an increase in the percent inhibition rate against <.
solani and F. keratoplasticum during the different observation periods.
Also, Lalramchuani et al. [49] observed a significant inhibition of X.
vietnamensis against F. oxysporum by a co-culturing approach.

Antifungal assay, ethyl acetate extract, of P. hindustanensis (TS)
showed a high inhibition activity against 4. fumigatus and a moderate
inhibition activity against F. solani, F. keratoplasticum, and C.
albicans. However, P. namnaonensis (TD) showed moderate inhibition
activity against F. solani, F. keratoplasticum, and C. albicans, but a
very low activity was observed against 4. fumigatus. The ethyl acetate
extract of X. vietnamensis (RF) and X. stockiae (PTS) exhibited
minimal or no inhibition activity against all pathogenic fungi. In
contrast, Xenocoumacin 1, derived from Xenorhabdus nematophila,
exhibits a broad antifungal spectrum against S. sclerotiorum, affecting
fungal morphology as well as enzymatic activity [50]. The occurrence
of these variations in the inhibition activity between the two genera
might be attributed to the difference in the active chemical compounds
present in the extract of each bacterial isolate [32,45,46].

A variety of compounds with known antifungal properties were
characterized using the GCMS analysis from each bacterial extract. Most
of the compounds present in the ethyl acetate extract of the bacterial
isolates were found to be fatty acid derivatives and peptide compounds.
It is noteworthy that the presence of a well-known antifungal compound
transcinammic acid (TCA) was observed in the ethyl acetate extract of
P. namnaonensis (TD), X. vietnamensis (RF), and X. stockiae (PTS)
isolates, while the cinnamic acid in a cis-form was also observed in P,
hindustanensis (TS) isolate. Hazir et al. [51] evaluated the potency of
four Xenorhabdus spp. and three Photorhabdus spp. against Fusarium
carpophilum, F. effusum, Monilinia fructicola, Glomerella cingulate,
and Armillaria tabescens. They compare the efficacy of the bacterial
metabolites that were previously reported as bioactive compounds
of Photorhabdus luminescens [52]. They observed that TCA was
the most effective treatment with significant variation. In addition,
cinnamic acids offer a novel method of action since they target enzymes
specific to fungus and can be used as lead compounds in the design
and production of new medications with less harmful effects on higher
eukaryotes. Korosec et al. [53] and Sa-Uth et al. [54] revealed a high
efficacy (98.62%) of X. stockiae against several plant pathogenic fungi,
including Fusarium sp. by enhancing the composition of medium
supplemented with sucrose, yeast extract, NaCl, and K,HPO,.

5. CONCLUSION

This study highlights the potential of the antifungal activity of
Photorhabdus and Xenorhabdus against several pathogenic fungi.
While the antifungal properties of these bacteria are promising,
further research is necessary to fully understand their mechanisms
and optimize their application in agricultural settings. The potential
for resistance development in pathogens remains a concern,
necessitating ongoing evaluation of these biocontrol agents. These
extracted metabolites could be potent antifungal agents to combat
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certain pathogenic fungi, which become resistant to the currently
available antifungal drugs. Therefore, the information provided
in this study will pave the way for further examination of certain
beneficial microorganisms including their metabolites for the
treatment of different diseases worldwide. Since entomopathogenic
bacteria could be a promising alternative agent to combat the current
global crisis of antifungal resistance, more efforts and detailed
analysis, including appropriate formulations, must be investigated
for effective use to control several fungal pathogens.
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