Available online at http://www.jabonline.in

DOI: 10.7324/JABB.2025.203366

Antifungal potential of entomopathogenic bacteria, *Photorhabdus*, and *Xenorhabdus* (Morganellaceae) against pathogenic fungi

Mary Lalramchuani^{1, 2}, Lal Ramliana^{1*} , Hrang Chal Lalramnghaki¹, Albana L. Chawngthu¹, Van Ramliana¹, Esther Lalhmingliani²

ARTICLE INFO

Article history:

Received on: January 19, 2025 Accepted on: April 04, 2025 Available Online: May 25, 2025

Key words:

Drug-resistant, pathogen, GCMS, secondary metabolites

ABSTRACT

Entomopathogenic bacteria (EPB) are natural pathogens of insects being utilized as biological control agents for insect pests worldwide. In addition to their pathogenicity against insects, they are known to inhibit the growth of several microbes. In this study, EPB of the genus, *Photorhabdus* and *Xenorhabdus*, were investigated for their pathogenicity against *Fusarium solani* (CCK3A1), *Fusarium keratoplasticum* (ATCC 36031), *Candida albicans* (ATCC 2091), and *Aspergillus fumigatus* (ATCC 204305). The antagonistic effect of cell suspension was analyzed by calculating percent inhibition from the co-cultured plate of bacteria and fungus within 192 hours of incubation at 25°C where the highest percent inhibition was observed with *X. vietnamensis* (RF) against *A. fumigatus* (ATCC 204305). Moreover, the activity of ethyl acetate extract of bacterial metabolites against pathogenic fungi was analyzed using the disk diffusion method where *Photorhabdus hindustanensis* (TS) isolates exhibited the highest inhibition against *A. fumigatus* (ATCC 204305). The components of ethyl acetate extract were analyzed using gas chromatography—mass spectrometry in which Pyrrolo [1,2-a] pyrazine-1,4-dione hexahydro-3-(phenylmethyl), benzeneacetic acid, and n-Hexadecanoic acid were found to be the most abundant compounds. This study provides information regarding the potential of *Photorhabdus* and *Xenorhabdus*, including their secondary metabolites against several pathogenic fungi. It further provides insights to overcome the current global drug resistance crisis among several pathogenic fungi, as well as new reference data for the future development and application of antifungal agents.

1. INTRODUCTION

Fungal infections are one of the most common and devastating problems worldwide. Over 150 million cases of serious fungal infections occur worldwide each year, and approximately 1.7 million people die as a result [1,2]. These estimates have continuously risen due to societal and medical improvements that have aided in spreading fungal illnesses over the years. As a result, fungal infections are becoming a global problem for human health due to increased overuse and prophylactic application of antifungals to immunocompromised individuals promoting the emergence of multi-drug-resistant fungi [1,3]. Apart from human infection, over 19,000 fungi are known to infect economically important crops worldwide accounting for over 30% of all crop diseases [4].

The genus *Fusarium*, belonging to the Nectriaceae family, is characterized as an imperfect fungus with a global distribution capable of infecting animals, plants, and humans. Keratitis, onychomycosis,

*Corresponding Author Lal Ramliana, Department of Zoology, Pachhunga University College, Mizoram University, Aizawl, India. E-mail: lrl_zoo @ yahoo.co.in eumycetoma, skin lesions, and disseminated infections are all connected with *Fusarium* infection in humans [5]. Apart from human infection, it is a broad-spectrum fungus species that has been shown to infect peas, beans, potatoes, and different cucurbits [6]. Because of the significant death rate caused by *Fusarium* and the growing resistance to the currently used antifungal medicines (azoles), a novel therapy is required [7].

The genus *Candida* is a member of the Saccharomycetaceae family. There are currently around 150 *Candida* species, with approximately 20 species known to cause infections in humans [8]. In a healthy person, *Candida albicans* colonizes the oral mucosa, vagina, skin, as well as gastrointestinal tract asymptomatically as a commensal fungus, accounting for more than 80% of asymptomatic human vaginal and oral yeast strains [9,10]. Eventually, it possesses different properties, both commensal and pathogenic, that become part of the human natural microbiome and invade tissues and organs when the immune system is impaired [11,12]. The rapid rise of various antifungal resistance among *Candida* spp. is a serious health concern worldwide and a better understanding of resistant mechanisms with the identification of a new drug target could reduce the current situation of developing resistance upon prolonged exposure to antifungal agents [13,14].

¹Department of Zoology, Pachhunga University College, Mizoram University, Aizawl, India.

²Department of Zoology, Mizoram University, Aizawl, India.

The genus Aspergillus, a fungus belonging to the family Trichocomaceae, is a common mold in the environment and the leading cause of aspergillosis in people. It is a deadly pathogen that can kill people with weakened immune systems, underlying diseases, or transplants [15–17]. Also, Aspergillus hampers plant photosynthesis by impeding the production of carotenoid and chlorophyll, resulting in albinism or virescence in the infected plants [18]. Resistance to existing antifungal medications, azoles, emerged as a global concern in Aspergillus fumigatus infection with a prevalence of 6.6%-28% [19]. The prevalence of fungal disease has led to the rapid rise of resistance in economically important fungi resulting in the difficulty of effective treatment. Apart from human concerns, chemical fungicides are still the most effective and widely used for controlling fungal infections. However, because of their harmful effects on people and other nontarget creatures, they are also harmful to the environment and even pose risks to the health condition of humans [20]. Hence, biological control, which includes the employment of antagonistic organisms, including their secondary metabolites and volatile organic compounds (VOCs), is a crucial candidate and alternative agent to chemical fungicides [21].

Since the penicillin era, microbial metabolites have still been a crucial source in the development of novel drugs for animals and humans. Photorhabdus and Xenorhabdus, belonging to the family Morganellaceae, are an obligate symbiosis with entomopathogenic nematodes (EPNs) of the genus Heterorhabditis and Steinernema, respectively [22–24]. When the nematode infects the insect larvae, it releases the bacterial symbionts inside the hemocoel of the insect resulting in the production of broad-spectrum compounds; the compounds are lethal to insect larvae as well as antagonists to bacteria, fungi, nematodes, protozoa, and cancer cells [25]. The EPNs are distributed worldwide and are being utilized for the biological control of insect pests with a high success rate [26]. The secondary metabolites isolated from fermented culture media of Photorhabdus spp. and Xenorhabdus spp., including methanol and ethyl acetate extracted compounds, were found to be effective in suppressing several pathogenic bacteria [27–29] and fungi [30–32] to a great extent.

Despite technological breakthroughs in pharmaceutical manufacturing, there is still a need to develop new prospective antifungals due to the rapid development in resistance to current antifungal drugs. The antifungal activity of *Photorhabdus* and *Xenorhabdus* bacteria has garnered attention due to their potential as biocontrol agents against various phytopathogenic fungi. Both genera produce secondary metabolites that exhibit significant antifungal properties, making them valuable in agricultural practices. Therefore, this study was carried out to determine the potential of *Photorhabdus* and *Xenorhabdus* against pathogenic fungi against *F. solani* (CCK3A1), *Fusarium keratoplasticum* (ATCC36031), *C. albicans* (ATCC 2091), and *A. fumigatus* (ATCC204305). The VOCs present in the ethyl acetate extract of the bacterial isolates were also characterized using gas chromatography–mass spectrometry (GC-MS) analysis.

2. MATERIALS AND METHODS

2.1. Source of Symbiotic Bacteria

Four species of symbiotic bacteria, i.e., *Photorhabdus hindustanensis* (TS), *P. namnaonensis* (TD), *Xenorhabdus vietnamensis* (RF), and *X. stockiae* (PTS), previously isolated from their respective symbionts, *Heterorhabditis indica*, *H. baujardi*, *Steinernema sangi*, and *S. surkhetense* were used for the experiment [33]. The nematodes were locally isolated from Mizoram, India, with geographical coordinates of 22.350 N 93.060 E (*H. indica*), 23.740 N 92.952 E (*H. baujardi*), 23.370 N 93.161 E (*S. sangi*), and 22.960 N 92.612 E (*S. surkhetense*).

Fresh cultures of the bacteria were obtained by spreading a volume of $100~\mu l$ on NBTA medium (nutrient agar supplemented with 0.0025% bromothymol blue and 0.004% triphenyl tetrazolium chloride) followed by incubation at $28^{\circ}C$ for 48 hours [34,35]. A single colony of bacteria that absorbs bromothymol blue dye was selected and streaked on nutrient agar for further characterization.

2.2. Preparation of Pathogenic Fungi

Standard-type cultured strains, i.e., *F. keratoplasticum* (ATCC 36031), *Candida albicans* (ATCC 2091), *A. fumigatus* (ATCC 204305), and *Fusarium solani* (CCK3A1), were used as pathogens for the experiment. *Fusarium solani* (CCK3A1) was locally isolated from ginger soft rot tissue and the ITS1 gene sequence was submitted to NCBI GenBank with accession number, OR793128. Before the experiment, the fungi were grown on a potato dextrose agar (PDA) (HiMedia®) and incubated at 25°C to check their purity and viability. The fresh cultures were further used for an antagonistic test. Determining the activity of ethyl acetate extract, the fungi were diluted to 0.05% Tween® 80 solution to obtain a homogenized spore suspension [36].

2.3. Antagonistic Effect of Bacterial Suspension

The antagonistic effects of *Photorhabdus* (TS and TD) and *Xenorhabdus* (RF and PTS) were performed as per Chen *et al.* [30] with a slight modification. A total of 10 ml of the 48-hour bacterial culture was spread on a Petri plate consisting of PDA. A sterile blade was used to cut out approximately 4 mm of fungal mycelia, which was subsequently collected using fine sterile forceps and inoculated on a PDA plate consisting of the bacterial symbiont. The control plate contains PDA that has no bacterial symbiont. The experiment was carried out in triplicate, and the diameter of fungal growth was measured and compared with the control plate after 48, 96, and 192 hours. The percent inhibition of the fungus was calculated by using the following formula [37]:

Antifungal activity (%) =
$$\frac{\text{Dc-Ds}}{\text{Dc}} \times 10$$

where Dc is the diameter of fungal growth in the control plate and Ds is the diameter of fungal growth in the plate containing bacterial isolates.

2.4. Preparation of Bacterial Extract

The solvent system extraction of bacterial metabolites was conducted according to Muangpat *et al.* [29] with a slight modification. A single colony was transferred to a 1,000-ml sterile nutrient broth and stored at 28°C in a shaker incubator for 48 hours. To extract the crude compound, the same volume of ethyl acetate was added and mixed well in a 2,000-ml separating funnel. The mixture was left at room temperature for 24 hours. The ethyl acetate layer was then collected followed by evaporation using a rotary vacuum evaporator (Rotavapor® R-100 System-Buchi, Switzerland). The extraction procedure was performed thrice to maximize the yield of crude extract.

2.5. Activity of Ethyl Acetate Extract

The condensed bacterial extract was adjusted to 500 mg/ml in dimethyl sulfoxide (DMSO) and kept as a stock solution. A 10-ml bacterial extract was impregnated onto 6-mm sterile disks and then placed in the center of the PDA plates comprising the homogenized fungal spores. The plates were incubated at 25°C for 48 hours depending on the growth of fungal mycelia. The diameter of the inhibition zone was

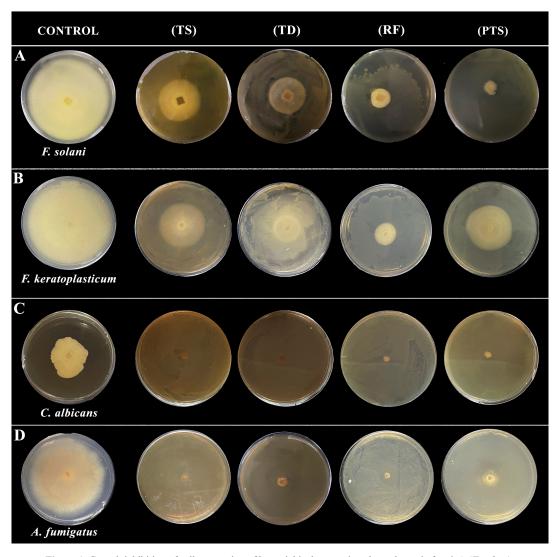
measured and expressed in millimeters. DMSO was used as a negative control and fluconazole disk was used as a positive control.

2.6. GCMS Analysis of Ethyl Acetate Extract of Bacterial Isolates

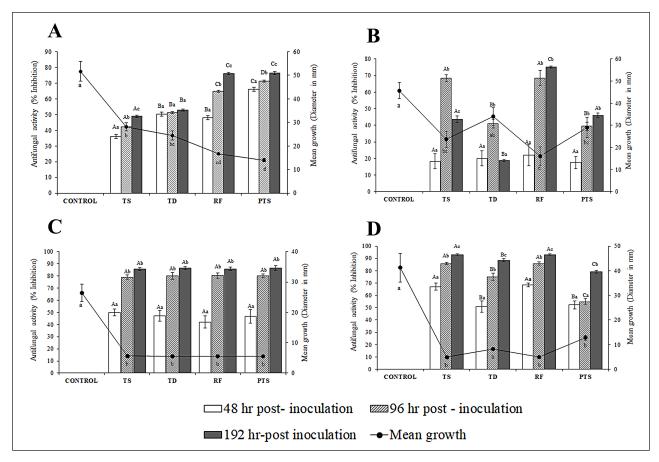
GC-MS analysis of bacterial ethyl acetate extract was carried out using GC-MS QP2010 model (Shimadzu®), Column, GC, SH-I-5Sil MS Capillary, 30 m \times 0.25 mm \times 0.25 µm, injection mode: splitless. The oven temperature was programmed as follows: 45°C for 2 minutes and then 140°C at 5°C/ minute and finally increased to 280°C and held isothermally for 10 minutes; 2 µl of each sample was injected and helium gas was used as a carrier gas with a flow rate of 1 ml/minute. The ionization of the sample components was carried out at 70 eV. The National Institute of Standards and Technology database, which has over 62,000 patterns, was used to describe the components of the GC-MS mass spectrum.

2.7. Statistical Analysis

Statistical analysis was performed using SPSS software (Version 20.0). The percent inhibition from the antagonistic activity and diameter of


the inhibition zone from the disk diffusion test of ethyl acetate extract was calculated and expressed as mean \pm standard error (SEM). Oneway analysis of variance was used to assess the variation of inhibition. The confidence level was set at 5%, indicating that the treatment of bacteria against the fungi will be significant if p < 0.05 with a 95% confidence interval.

3. RESULTS


3.1. Antagonistic Effect of Bacterial Isolates Against Pathogenic Fungi

The cell suspension of bacterial isolates showed inhibition of growth against pathogenic fungi within 196 hours post-inoculation. The growth inhibition of bacterial isolates against the pathogenic fungal strains and the graphical representation of percent inhibition along with a mean diameter of fungal growth were shown in Figures 1 and 2.

The bacterial isolates exhibited significant variations of activity against F. solani (df = 3 and 68; F = 54.64; p < 0.05). Photorhabdus hindustanensis (TS) and P. namnaonensis (TD) isolates exhibited growth inhibition of 48.86% and 52.17%, respectively, at 192-hour

Figure 1. Growth inhibition of cell suspension of bacterial isolates against the pathogenic fungi. A (*F. solani*), B (*F. keratoplasticum*), C (*C. albicans*), and D (*A. fumigatus*).

Figure 2. Graphical representation of inhibition activity of bacterial cell suspension against pathogenic fungi. The results were presented as growth inhibition (%) \pm SEM and mean growth diameter (Mean \pm SEM). Bars with uppercase letters indicate significant differences (p < 0.05) in % inhibition of different isolates at the same incubation time. Bars with different lowercase letters indicate significant differences (p < 0.05) in % inhibition of each isolate at different incubation times (hour) and the mean growth of fungus. A (*F. solani*), B (*F. keratoplasticum*), C (*C. albicans*), and D (*A. fumigatus*).

post-inoculation. A higher rate of percent inhibition was observed with X. vietnamensis (RF) and X. stockiae (PTS) isolates with growth inhibition of 76.04 % and 75.85%, respectively. P. namnaonensis (TD) isolate did not show significant inhibition activity against F. solani at different observation times (p > 0.05), while the other isolates exhibited significant differences at different observation times (p < 0.05).

In *F. keratoplasticum*, a significant variation of activity was observed with all the bacterial isolates (df = 3 and 68; F = 5.54; p < 0.05). *Photorhabdus hindustanensis* (TS) exhibited a significant increase in growth inhibition until 96 hours of incubation with 68.40% followed by a decline in growth inhibition at 192 hours (43.71%). Similarly, an increase in growth inhibition of 41.04% was observed at 96 hours in *P. namnaonensis* (TD) with a slight decrease of 18.81% inhibition at 192-hour incubation. A significant rise in percent inhibition was observed with *X. vietnamensis* (RF) during 192-hour incubation with 74.17%. However, a comparatively lower inhibition percentage was observed with *X. stockiae* (PTS) with a percent inhibition of 45.93% at 192-hour incubation. All the isolates showed significant growth inhibition within the first two observation periods (p < 0.05). However, the two *Xenorhabdus* isolates (RF and PTS) did not show significant growth inhibition from 48- to 192-hour incubation (p > 0.05).

In *C. albicans*, all the isolates showed a rise in percent inhibition during the observation period. However, there is no significant variation

of activity among the bacterial isolates (df = 3 and 68; F = 0.04; p > 0.05). Both *P. hindustanensis* (TS) and *X. vietnamensis* (RF) exhibited an increase in percent inhibition with 85.66% at 192 hours incubation. Also, *P. namnaonensis* (TD) and *X. stockiae* (PTS) isolates showed an insignificant percent inhibition of 86.49% and 86.48%, respectively. This study exhibited high effectiveness of bacterial isolates against *C. albicans*. Significant growth inhibition was observed in all the bacterial isolates between 48 hours and 96 hours (p < 0.05). However, there is no significant increase in growth inhibition at 192 hours (p > 0.05).

Aspergillus fumigatus growth was suppressed by all the bacterial isolates within the observation period with significant variation (df = 3 and 68; F = 8.58; p < 0.05). All the isolates exhibited an increase in percent inhibition during the different incubation times. Both *P. hindustanensis* (TS) and *X. vietnamensis* (RF) isolates showed an insignificant percent inhibition of 93.24% and 93.46%, respectively, at 192-hour post-inoculation. *P. namnaonensis* (TD) and *X. stockiae* (PTS) isolates exhibited a rise in percent inhibition of 88.50% and 79.04%, respectively, at 192 hours of incubation. *P. hindustanensis* (TS), *P. namnaonensis* (TD), and *X. vietnamensis* (RF) showed significant differences in percent inhibition of growth within the different observation times (p < 0.05). However, there is no significant growth inhibition in *X. stockiae* (PTS) within 48–96-hour incubation period (p > 0.05). Furthermore, the comparison of mean growth between the control and bacterial isolates exhibited a

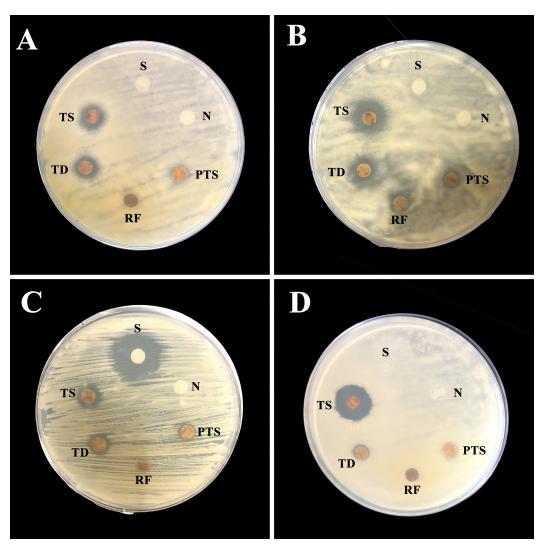
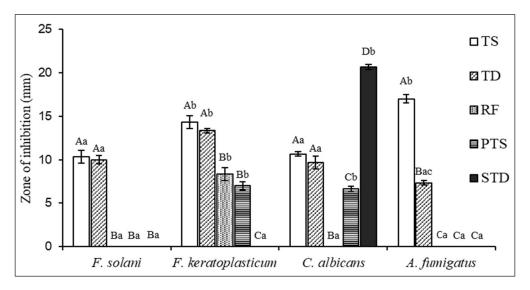

(Continued)

Table 1. List of compounds identified in ethyl acetate extract of bacterial isolates.


Molecular (c, H ₀ O ₂) Molecular (c, H ₀ O ₂) RI (S ₀) <						y F	Ethyl ace	Ethyl acetate extract of bacterial Isolates	of bacteria	il Isolates	-	SEG	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						15 Relative		1 D Relative	<u>-</u>	CF Relative	-	TS Relative	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Compound		Molecular formula	Molecular weight (Da)	RT	abundance (%)		abundance (%)		bundance (%)	RT	abundance (%)	Biological activity
c, G,H ₀ O ₂ 150 20.72 21.2 20.68 2.11 21.28 4.46 20.77 2.4 sid C ₀ H ₀ O ₂ 148 24.22 4.97 NA NA NA NA NA NA c ₁ H ₀ O ₂ 228 32.19 5.9 32.17 3.96 NA NA NA NA NA C ₁ H ₀ O ₂ 226 34.43 1.68 NA NA NA NA NA NA NA C ₁ H ₁₀ O ₂ 226 34.43 1.68 NA NA NA NA NA NA NA C ₁ H ₁₀ O ₂ 226 34.43 1.68 NA	Benzeneacetic acid (Phenylacetic acid)	oid id)	$C_8H_8O_2$	136	18.83	7.87	18.89	8.92	19.79	21.44	18.99	10.78	Antibacterial and antifungal [55,56]
id C ₁ H ₃ O ₂ 228 32.19 5.9 32.17 3.96 NA	2-Propenoic acid, 3-phenyl-, (E)- (<i>trans</i> -cinnamic acid)	, 3-phenyl-, mic acid)	$C_9H_{10}O_2$	150	20.72	2.12	20.68	2.11	21.28	4.46	20.77	2.4	Antibacterial and antifungal [57]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(Z)-3-Phenyl-2-pro (<i>cis-</i> cinnamic acid)	propenoic acid	$C_9H_8O_2$	148	24.22	4.97	NA	NA	NA	NA	NA	NA	Antibacterial, antifungal antioxidant [57,58]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetradecanoic acid (Myristic acid)	id (Myristic	$C_{14}H_{28}O_{\scriptscriptstyle 2}$	228	32.19	5.9	32.17	3.96	NA	NA	32.13	1.67	Antifungal, antioxidant, nematicidal, and larvicidal [59,60]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pentadecanoic acid (Pentadecylic acid)	cid id)	$C_{15}H_{30}O_{2}$	242	33.18	2.22	NA	NA	NA A	NA	NA	NA	Antibacterial, antifungal, and anti- inflammatory [61,62]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9-Octadecenoic acid (Z)-, methyl ester (Oleic acid)	$\operatorname{acid}(Z)$ -, $\operatorname{eic}\operatorname{acid})$	$C_{19}H_{36}O_{\scriptscriptstyle 2}$	296	34.43	1.68	NA	NA	37.84	1.3	37.83	5.86	Antibacterial and antifungal [63-65]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9-Hexadecenoic acid, (Z) (Palmitoleic acid)	acid, acid)	$C_{16}H_{30}O_{2}$	254	35	2.16	NA	NA	NA	NA	NA	NA	Antibacterial, antifungal [66,67]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n-Hexadecanoic acid (Palmitic acid)	(þic	$C_{16}H_{32}O_{2}$	256	35.32	89.6	35.11	16.46	NA	NA	35.21	18.27	Antibacterial, antifungal, and anti-inflammatory [61,62]
$C_{18}H_{18}N_{2}O_{2} \qquad 282 \qquad 36.25 \qquad 3.97 \qquad 36.11 \qquad 1.56 \qquad NA \qquad NA \qquad 36.15 \qquad 1.56$ $C_{11}H_{18}N_{2}O_{2} \qquad 210 \qquad NA \qquad NA \qquad 34.82 \qquad 13.53 \qquad 35.21 \qquad 5.74 \qquad 34.86 \qquad 11.6$ $C_{12}H_{12}N_{2}O_{2} \qquad 226 \qquad 39.43 \qquad 1.29 \qquad 39.23 \qquad 2.24 \qquad 40.21 \qquad 4.94 \qquad 39.44 \qquad 0.82$ $C_{14}H_{16}N_{2}O_{2} \qquad 244 \qquad 41.57 \qquad 5.85 \qquad 41.46 \qquad 10.57 \qquad 41.98 \qquad 4.62 \qquad 41.49 \qquad 11.82$ $C_{19}H_{3}N_{4} \qquad 330 \qquad 42.92 \qquad 1.21 \qquad 42.91 \qquad 1.43 \qquad 42.98 \qquad 1.2 \qquad 42.91 \qquad 0.93$	Piperidine, 1-(cyanoacetyl)-	anoacetyl)-	$C_8H_{12}N_2O\\$	152	35.63	1.36	35.48	0.72	NA	NA	NA	NA	Unknown
$ C_{11}H_{18}N_{2}O_{2} \qquad 210 \qquad NA \qquad NA \qquad 34.82 \qquad 13.53 \qquad 35.21 \qquad 5.74 \qquad 34.86 \qquad 11.6 \\ S_{12}H_{18}N_{2}O_{2} \qquad 226 \qquad 39.43 \qquad 1.29 \qquad 39.23 \qquad 2.24 \qquad 40.21 \qquad 4.94 \qquad 39.44 \qquad 0.82 \\ 39.64 \qquad 1.31 \qquad \qquad$	9-Octadecenoic acid, (E)- (Elaidic acid)	acid, d)	$C_{18}H_{34}O_{2}$	282	36.25	3.97	36.11	1.56	NA	NA	36.15	1.56	Antibacterial, antifungal, and antioxidant [68]
$C_{12}H_{16}N_{2}O_{2} \qquad 226 \qquad 39.43 \qquad 1.29 \qquad 39.23 \qquad 2.24 \qquad 40.21 \qquad 4.94 \qquad 39.44 \qquad 0.82 \\ 39.64 \qquad 1.31 \qquad \qquad$	Pyrrolo [1, 2-a] pyrazine-1, 4-dione, hexahydro-3- (2-methylpropyl)	pyrazine-1, dro-3-)	$C_{11}H_{18}N_2O_2$	210	Z A	NA	34.82	13.53	35.21 35.5	5.74	34.86	11.6	Antimicrobial, antifungal, and antioxidant [69,70]
$C_{14}H_{16}N_{2}O_{2} \qquad 244 \qquad 41.57 \qquad 5.85 \qquad 41.46 \qquad 10.57 \qquad 41.98 \qquad 4.62 \qquad 41.49 \qquad 11.82 \qquad 41.96 \qquad 17.64 \qquad 41.89 \qquad 15.64 \qquad 42.23 \qquad 8.87 \qquad 41.91 \qquad 14.86 \qquad 14.86 \qquad 42.91 \qquad 1.43 \qquad 42.98 \qquad 1.2 \qquad 42.91 \qquad 0.93 \qquad 14.86 \qquad 1.2 \qquad 42.91 \qquad 0.93 \qquad 1.2 \qquad 42.91 \qquad 0.93 \qquad 1.2 \qquad 42.91 \qquad 0.93 \qquad 1.2 \qquad 43.06 \qquad 1.3 \qquad 43.05 \qquad 0.92 \qquad 43.09 \qquad 1.5 \qquad NA \qquad NA \qquad NA$	2,5-Piperazinedione, 3, 6-bis(2-methylpropyl)-	one, 3, ropyl)-	$C_{12}H_{22}N_2O_2$	226	39.43	1.29	39.23	2.24	40.21	4.94	39.44	0.82	Antifungal [71,72]
$C_{19}H_{38}O_4$ 330 42.92 1.21 42.91 1.43 42.98 1.2 42.91 0.93 (1) $C_{24}H_{38}O_4$ 390 43.06 1.3 43.05 0.92 43.09 1.5 NA NA	Pyrrolo [1, 2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)-	pyrazine- hydro-3- -	$C_{14}H_{16}N_2O_2$	244	41.57	5.85	41.46	10.57	41.98	4.62	41.49	11.82	Antimicrobial, antifungal, and antioxidant [69,70]
$C_{24}H_{38}O_4$ 390 43.06 1.3 43.05 0.92 43.09 1.5 NA NA	Hexadecanoic acid, 2-hydroxy-1-(hydroethyl ester	ıcid, ydroxymethyl)	$\mathrm{C_{19}H_{38}O_{4}}$	330	42.92	1.21	42.91	1.43	42.98	1.2	42.91	0.93	Antioxidant, pesticidal, and nematicidal [73]
	Bis (2-ethylhexyl) phthalate (Phthalic acid)	yl) phthalate	$C_{24}H_{38}O_4$	390	43.06	1.3	43.05	0.92	43.09	1.5	NA	NA	Antibacterial, antifungal, and insecticidal [74,75]

						Ethyl a	Ethyl acetate extract of bacterial Isolates	of bacteri	al Isolates			
					TS		TD		RF		PTS	
Z	Compound	Molecular	Molecular weight (Da)	RT	Relative abundance	ET	Relative abundance	Z L	Relative abundance	RT	Relative abundance	Riological activity
16		C ₁₅ H ₂₂ N ₂ O ₃	278	44.29	2.96	44.24	2.61	44.45	1.98	44.22	2.17	Unknown
17	13-Docosenamide, (Z) (Erucamide)	$\mathrm{C_{22}H_{43}NO}$	337	45.53	2.79	45.53	5.91	45.56	2.15	45.52	3.71	Antibacterial and antifungal [76,77]
18	2,5-Piperazinedione, 3-(phenylmethyl)-	$C_{11}H_{12}N_2O_2$	204	45.96	16.9			45.68	1.45			Unknown
19	Cyclo (L-prolyl-L-valine)	$C_{10}H_{16}N_{2}O_{2}\\$	196	NA	NA	33.09	9.49	33.35	16.23	33.1	8.48	Antifungal [78]
20	3,6-Diisopropylpiperazin- 2,5-dione	$C_{10}H_{18}N_2O_2$	198	NA	NA	NA	NA	34.67	5.77	34. 26	2.31	Antimalarial [79]
21	Benzeneethanol, 4-hydroxy	$\mathrm{C_8H_{10}O_2}$	138	NA	NA	NA	NA	23.23	2.91	NA	NA	Antibacterial and antioxidant [80]
22	2-Propenoic acid, hexadecyl ester	$\mathrm{C}_{19}\mathrm{H}_{36}\mathrm{O}_{2}$	296	NA	NA	NA	NA	30.77	0.42	NA	NA	Unknown
23	Benzo[h]quinoline, 2,4-dimethyl	$C_{15}H_{13}N\\$	207	NA	NA	NA	NA	32.2	0.43	NA	NA	Antibacterial and antifungal [81]
24	N, N, N', N'-Tetraethyl-1, 2-di-furan-2-yl-ethane-1, 2-diamine	$C_{18}H_{28}N_2O_2$	304	NA	NA	NA	NA	35.77	1.39	NA	NA	Unknown
25	Benzoic acid, 4-butoxy-3-methoxy-, perhydro- 1-quinolizinylmethyl ester	$C_{22}H_{33}NO_4$	375	NA	NA	N A	NA	NA	NA	35.54	0.79	Unknown
26	4,8,12,16,20,24, 28-Heptamethyl-1, 5,9,13,17,21, 25-heptaoxa-cyclooctacosane-2, 6,10,14,18,22, 26-heptaone	$C_{28}H_{42}O_{14}$	602	Z A	Ϋ́Z	NA	Y X	NA	V V	37.46	1.97	Unknown

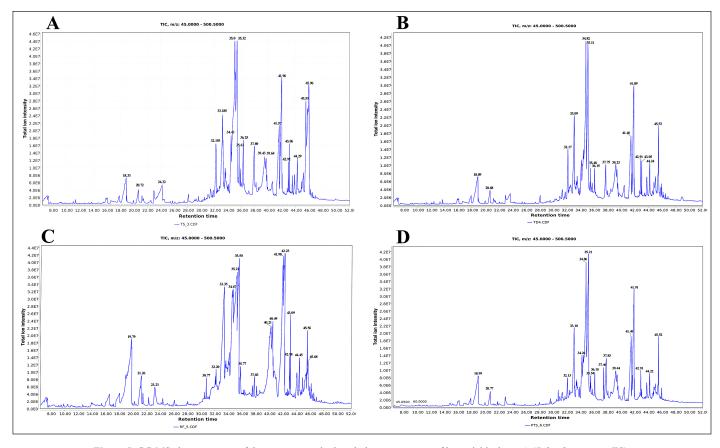

* TS (P. hindustanensis), TD (P. namnaonensis), RF (X. vietnamensis), PTS (X. stockiae), RT (Retention time), NA (Not-applicable).

Figure 3. Antifungal activity of ethyl acetate extract of bacterial isolates against pathogenic fungi. **(A)** *F. solani*, **(B)** *F. keratoplasticum*, **(C)** *C. albicans*, and **(D)** *A. fumigatus*.

Figure 4. Graphical representation of inhibition activity of ethyl acetate extract of bacterial isolates against pathogenic fungi. The results were presented as mean growth diameter (Mean \pm SEM). Bars with different uppercase indicate significant differences (p < 0.05) of different isolates against each pathogenic fungus. Lowercase letters indicate significant differences (p < 0.05) of each bacterial isolate against different pathogenic fungi.

Figure 5. GC-MS chromatogram of the components in the ethyl acetate extract of bacterial isolates. A (*P. hindustanensis* TS), B (*P. namnaonensis* TD), C (*X. vietnamensis*, RF), and D (*X. stockiae*, PTS).

significant variation during the observation period (p < 0.05) in all the pathogenic fungi.

3.2. Antifungal Activity of Ethyl Acetate Extract

The ethyl acetate extracts of bacterial isolates, including the standard (fluconazole), exhibited significant variations of activity against each pathogenic fungus, i.e., F. solani (df = 4 and 10; F = 139.6; p < 0.05), F. keratoplasticum (df = 4 and 10; F = 82.41; p < 0.05), C. albicans (df = 4 and 10; F = 252.40; p < 0.05), and A. fumigatus (df = 4 and 10; F =631; p < 0.05). Among the bacterial isolates, the extract of TS isolate was found to be most potent where it inhibited the growth of the tested pathogenic fungi with an inhibition zone of 10.33–17 mm diameter. The extract of *P. namnaonensis* (TD) showed a clear zone of inhibition against F. solani, F. keratoplasticum, and C. albicans with the highest being recorded with F. keratoplasticum (13.33 mm diameter). However, the extract of Xenorhabdus (RF and PTS) isolates showed significantly lower activity than the Photorhabdus (TS and TD). The extract of X. vietnamensis (RF) isolate only inhibited the growth of F. keratoplsticum, with 8.33 mm diameter of inhibition zone. The extract of X. stockiae (PTS) exhibited comparatively lower activity compared to the other isolates against the pathogenic fungi, exhibiting negligible inhibitory activity against F. keratoplasticum and C. albicans with 7 mm and 6.67 mm diameter, respectively. The standard disc of fluconazole (10 µg) showed inhibition activity against C. albicans alone, with 20.67 mm in diameter. The highest inhibition of bacterial extract against the pathogenic fungi was observed with A. fumigatus (ATCC) where P. hindustanensis (TS) isolate showed a clear inhibition zone of 17 mm in diameter. The growth inhibition of bacterial extracts against fungal growth and the graphical representation of inhibitory activity are shown in Figures 3 and 4.

3.3. GCMS Analysis of Ethyl Acetate Extract of Bacterial Isolates

A total of 26 different compounds were characterized, in which 20, 16, 20, and 17 peaks were exclusively analyzed from *P. hindustanensis* (TS), *P. namnaonensis* (TD), *X. vietnamensis* (RF), and *X. stockiae* (PTS), respectively (Fig. 5). The lists of the corresponding compounds with their retention time, relative abundance (%), molecular formula, molecular weight (Da), and biological activity were given in Table 1.

The most prevalent compound in the *P. hindustanensis* (TS) isolate was found to be [Pyrrolo(1,2-a) pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)], which was observed at two peaks with a relative abundance of 17.64% and 5.85%. A considerable amount of 2,5-Piperazinedione, 3-(phenylmethyl), a saturated long chain fatty acid (n-Hexadecenoic acid), and benzeneacetic acid were present with a relative abundance of 16.9%, 9.68%, and 7.87%, respectively.

The most abundant compound in *P. namnaonensis* (TD) isolate was found to be n-Hexadecanoic acid, which had a relative abundance of 16.46%, followed by [Pyrrolo (1,2-a) pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)], which had two peaks with 15.64% and 10.57% relative abundances. Cyclo (L-prolyl-L-valine) and benzeneacetic acid were also detected in moderate proportion, with relative abundances of 9.49% and 8.92%, respectively.

Benzeneacetic acid was discovered to be the most abundant compound in the *Xenorhabdus vietnamensis* (RF) isolate, accounting for 21.44%

of the total relative abundance. In addition, a notable abundance of diketopiperazine compounds, such as Cyclo (L-prolyl-L-valine), Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl), Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), and 3,6-Diisopropylpiperazin-2,5-dione, were present, which exhibited 16.23%, 10.95%, 8.87%, and 5.77% relative abundance, respectively.

In *X. stockiae* (PTS) isolate, a saturated long-chain fatty acid, n-Hexadecanoic acid was the most abundant compound with 18.27% relative abundance. Other compounds that were reasonably abundant were Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), which showed two peaks with relative abundance of 14.86% and 11.82%. A modest amount of Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl), benzeneacetic acid, and Cyclo(L-prolyl-L-valine) were also detected with relative abundance of 11.60%, 10.78%, and 8.48%, respectively.

Among the available compounds detected by GCMS, the common chemical compounds found in all the isolates were benzeneacetic acid, 2-Propenoic acid, 3-phenyl-, (E)- (trans-cinnamic acid), 2,5-Piperazinedione, 3,6-bis(2-methylpropyl), Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester, L-Phenylalanyl-L-leucine, and 13-Docosenamide, (Z) with a compound belonging to the class of diketopiperazine being the most abundant.

4. DISCUSSION

Natural products (NPs) have sufficient structural intricacy and scaffold variety. In the recent decade, NPs and their analogs have made significant contributions to various pharmaceutical industries. Besides this, NPs face various challenges such as insufficient methods for isolation, characterization, screening, and optimization, which decline their pursuit of further drug discovery [38].

A wide range of small compounds produced by *Photorhabdus* and *Xenorhabdus* spp. are known to possess several biological functions in both the mutualistic and pathogenic phases [39,40]. It was revealed that the bioactive compounds extracted from the fermented culture media of *Photorhabdus* spp. and *Xenorhabdus* spp., such as methanol and ethyl acetate, were highly effective in controlling a variety of pathogenic bacteria [27–29,33]. Furthermore, these bioactive chemicals have been shown to exhibit a potential biological activity against insect pests, parasites, and cancer cells [25,41,42]. The pathogenicity of *Photorhabdus* and *Xenorhabdus* against several fungal pathogens was also investigated using a variety of techniques that involved contact with cell suspension, cell-free supernatant, and solvent extract as well as VOCs with a high success rate. [30–32,43–50].

The cell-free filtrate and methanol extract of *X. bovienii* successfully inhibited the growth of B. cinerea and P. capsica [46]. Similarly, effective natural products from X. budapestensis and X. szentirmaii reduced P. nicotianae colony formation and mycelial development [47]. Furthermore, Cimen et al. [45] evaluated the activity of Xenorhabdus spp. and Photorhabdus spp. against C. parasitica, F. oxysporum, R. solani, and S. sclerotiorum and concluded that the Xenorhabdus spp. were considerably more active than the Photorhabdus in inhibiting the fungal pathogens. However, in this study, variations of antagonistic activity of the bacterial isolates were observed against different fungal pathogens, which is consistent with the observation of Ulug [48] where X. cabanillasii and X. szentirmaii exhibited significant suppression of fungal growth. The variations among different studies may be attributed to the degree of interaction of each bacterial isolate against different fungus and culture media used for the study [39,45].

Based on the co-culturing approach analyzed in this study, a highly significant inhibitory activity of all the bacterial isolates against *A. fumigatus* and *C. albicans* was observed. *P. hindustanensis* (TS) isolates showed moderate inhibition against *F. solani* and *F. keratoplasticum*. Similarly, *P. namnaonensis* (TD) isolate caused a fair inhibition of *F. solani* but did not inhibit the mycelial growth of *F. keratoplasticum*. Chen *et al.* [30] observed that the antifungal activity of phase two *Photorhabdus* spp. and *Xenorhabdus* spp. were significantly weak. It is worth mentioning that we observed the same trend where the inhibition rate of *Photorhabdus* isolates (TS and TD) diminished over time against *F. keratoplasticum*. However, *Xenorhabdus* isolates (RF and PTS) showed an increase in the percent inhibition rate against *F. solani* and *F. keratoplasticum* during the different observation periods. Also, Lalramchuani *et al.* [49] observed a significant inhibition of *X. vietnamensis* against *F. oxysporum* by a co-culturing approach.

Antifungal assay, ethyl acetate extract, of *P. hindustanensis* (TS) showed a high inhibition activity against *A. fumigatus* and a moderate inhibition activity against *F. solani*, *F. keratoplasticum*, and *C. albicans*. However, *P. namnaonensis* (TD) showed moderate inhibition activity against *F. solani*, *F. keratoplasticum*, and *C. albicans*, but a very low activity was observed against *A. fumigatus*. The ethyl acetate extract of *X. vietnamensis* (RF) and *X. stockiae* (PTS) exhibited minimal or no inhibition activity against all pathogenic fungi. In contrast, Xenocoumacin 1, derived from *Xenorhabdus nematophila*, exhibits a broad antifungal spectrum against *S. sclerotiorum*, affecting fungal morphology as well as enzymatic activity [50]. The occurrence of these variations in the inhibition activity between the two genera might be attributed to the difference in the active chemical compounds present in the extract of each bacterial isolate [32,45,46].

A variety of compounds with known antifungal properties were characterized using the GCMS analysis from each bacterial extract. Most of the compounds present in the ethyl acetate extract of the bacterial isolates were found to be fatty acid derivatives and peptide compounds. It is noteworthy that the presence of a well-known antifungal compound transcinammic acid (TCA) was observed in the ethyl acetate extract of P. namnaonensis (TD), X. vietnamensis (RF), and X. stockiae (PTS) isolates, while the cinnamic acid in a cis-form was also observed in P. hindustanensis (TS) isolate. Hazir et al. [51] evaluated the potency of four Xenorhabdus spp. and three Photorhabdus spp. against Fusarium carpophilum, F. effusum, Monilinia fructicola, Glomerella cingulate, and Armillaria tabescens. They compare the efficacy of the bacterial metabolites that were previously reported as bioactive compounds of Photorhabdus luminescens [52]. They observed that TCA was the most effective treatment with significant variation. In addition, cinnamic acids offer a novel method of action since they target enzymes specific to fungus and can be used as lead compounds in the design and production of new medications with less harmful effects on higher eukaryotes. Korosec et al. [53] and Sa-Uth et al. [54] revealed a high efficacy (98.62%) of X. stockiae against several plant pathogenic fungi, including Fusarium sp. by enhancing the composition of medium supplemented with sucrose, yeast extract, NaCl, and K,HPO₄.

5. CONCLUSION

This study highlights the potential of the antifungal activity of *Photorhabdus* and *Xenorhabdus* against several pathogenic fungi. While the antifungal properties of these bacteria are promising, further research is necessary to fully understand their mechanisms and optimize their application in agricultural settings. The potential for resistance development in pathogens remains a concern, necessitating ongoing evaluation of these biocontrol agents. These extracted metabolites could be potent antifungal agents to combat

certain pathogenic fungi, which become resistant to the currently available antifungal drugs. Therefore, the information provided in this study will pave the way for further examination of certain beneficial microorganisms including their metabolites for the treatment of different diseases worldwide. Since entomopathogenic bacteria could be a promising alternative agent to combat the current global crisis of antifungal resistance, more efforts and detailed analysis, including appropriate formulations, must be investigated for effective use to control several fungal pathogens.

6. ACKNOWLEDGMENT

The authors acknowledged the support from DBT, Government of India, for the Advance Level Institutional Biotech Hub (BT/NER/143/SP44393/2021, Dated: 18.11.2022). Research facilities were provided by DBT-BUILDER (BT/INF/22/SP41398/2021) of the Department of Biotechnology, Government of India. We are thankful to the Principal, Pachhunga University College, and the Head, Department of Zoology, Pachhunga University College, for providing the necessary research facilities to carry out this work. This work was funded by the National Mission on Himalayan Studies (NMHS) under the Himalayan Fellowship (U/I ID: HSF 2018-19/I-25/03; No. GBPNI/NMHS-2018-19/HSF 25-03/154, Dt. 17.12.2018).

7. AUTHOR CONTRIBUTIONS

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. All the authors are eligible to be an author as per the International Committee of Medical Journal Editors (ICMJE) requirements/guidelines.

8. CONFLICTS OF INTEREST

The authors report no financial or any other conflicts of interest in this work.

9. DATA AVAILABILITY

All the data are available with the authors and will be provided upon request.

10. ETHICAL APPROVALS

This study does not involve experiments on animals or human subjects.

11. PUBLISHER'S NOTE

All claims expressed in this article are solely those of the authors and do not necessarily represent those of the publisher, the editors and the reviewers. This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

12. USE OF ARTIFICIAL INTELLIGENCE (AI)-ASSISTED TECHNOLOGY

The authors declares that they have not used artificial intelligence (AI)-tools for writing and editing of the manuscript, and no images were manipulated using AI.

REFERENCES

 Bongomin F, Gago S, Oladele RO, Denning DW. Global and multinational prevalence of fungal diseases—estimate precision. J Fungi 2017;3(4):57; doi: https://doi.org/10.3390/jof3040057

- Houšť J, Spížek J, Havlíček V. Antifungal drugs. Metabolites 2020;10(3):106; doi: https://doi.org/10.3390/metabo10030106
- Kainz K, Bauer MA, Madeo F, Carmona-Gutierrez D. Fungal infections in humans: the silent crisis. Microb Cell 2020;7(6):143–5; doi: https://doi.org/10.15698%2Fmic2020.06.718
- JainA, Sarsaiya S, Wu Q, Lu Y, Shi J. Areview of plant leaf fungal diseases and its environment speciation. Bioengineered 2019;10(1):409–24; doi: https://doi.org/10.1080%2F21655979.2019.1649520
- Kuruvilla TS, Dias M. Fusarium solani: a causative agent of skin and nail infections. Indian J Dermatol 2012;57(4):308; doi: https://doi. org/10.4103/0019-5154.97680
- Wrather JA, Stienstra WC, Koenning SR. Soybean disease loss estimates for the United States from 1996 to 1998. Can J Plant Pathol 2001;23(2):122–31; doi: https://doi. org/10.1080/07060660109506919
- Al-Hatmi AM, Meletiadis J, Curfs-Breuker I, Bonifaz A, Meis JF, De Hoog GS. *In vitro* combinations of natamycin with voriconazole, itraconazole and micafungin against clinical *Fusarium* strains causing keratitis. J Antimicrob Chemother 2016;71(4):953–5; doi: https://doi.org/10.1093/jac/dkv421
- Macias-Paz IU, Pérez-Hernández S, Tavera-Tapia A, Luna-Arias JP, Guerra-Cárdenas JE, Reyna-Beltrán E. *Candida albicans* the main opportunistic pathogenic fungus in humans. Rev Argent Microbiol 2023;55(2):189–98; doi: https://doi.org/10.1016/j. ram.2022.08.003
- Lewis MAO, Williams DW. Diagnosis and management of oral candidosis. Br Dent J 2017;223(9):675–81; doi: https://doi. org/10.1038/sj.bdj.2017.886
- Sobel JD. Vulvovaginal candidosis. Lancet 2007;369(9577):1961–71; doi: https://doi.org/10.1016/S0140-6736(07)60917-9
- Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, et al. Candida albicans-the virulence factors and clinical manifestations of infection. J Fungi 2021;7(2):79; doi: https://doi.org/10.3390/jof7020079
- Cottier F, Hall RA. Face/Off: the interchangeable side of *Candida albicans*. Front Cell Infect Microbiol 2020;9:471; doi: https://doi.org/10.3389/fcimb.2019.00471
- Costa-de-Oliveira S, Rodrigues AG. Candida albicans antifungal resistance and tolerance in bloodstream infections: the triad yeast-host-antifungal. Microorganisms 2020;8(2):154; doi: https://doi. org/10.3390/microorganisms8020154
- Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics 2020;9(6):312; doi: https://doi. org/10.3390/antibiotics9060312
- Lestrade PP, Bentvelsen RG, Schauwvlieghe AFAD, Schalekamp S, van der Velden W JFM, Kuiper EJ, et al. Voriconazole resistance and mortality in invasive aspergillosis: a multicenter retrospective cohort study. Clin Infect Dis 2019;68(9):1463–71; doi: https://doi. org/10.1093/cid/ciy859
- Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the transplant-associated infection surveillance network (TRANSNET). Clin Infect Dis 2019;50(8):1101–11; doi: https://doi.org/10.1086/651262
- Anjorin AT, Inje T. Effect of total aflatoxin on the growth characteristics and chlorophyll level of sesame (*Sesamum indicum* L.). New York Sci J 2014;7(4):8–13; doi: http://www.sciencepub.net/ newyork/ny0704/002 23713ny070414 8 13.pdf
- Reiss J. Effects of mycotoxins on higher plants, algae, fungi and bacteria. In: Wyllie TD, Morehouse LG (eds). Mycotoxic fungi, mycotoxins, mycotoxicosis. An encyclopaedic handbook, Vol. 3. Mycotoxicoses of man and plants: mycotoxin control and regulatory practices, Marcel Dekker Inc., New York, NY, pp. 119–43, 1978.
- Rivero-Menendez O, Alastruey-Izquierdo A, Mellado E, Cuenca-Estrella M. Triazole resistance in *Aspergillus* spp.: a worldwide problem? J Fungi 2016;2(3):21; doi: https://doi.org/10.3390/ jof2030021

- Burger J, Mol F, Gerowitt B. The 'necessary extent' of pesticide use?thoughts about a key term in German pesticide policy. Crop Protection 2008;27:343–51; doi: https://doi:10.1016/j.cropro.2007.06.006
- Fernando WD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 2005;37(5):955–64; doi: https://doi.org/10.1016/j.soilbio.2004.10.021
- Koppenhöfer HS, Gaugler R. Entomopathogenic nematode and bacteria mutualism. In: White JF, Torres MS (eds). Defensive mutualism in microbial symbiosis, CRC Press, Boca Raton, FL, pp. 117–34, 2009.
- Thomas GM, Poinar JRGO. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Evol Microbiol 1979;29(4):352–60; doi: https://doi.org/10.1099/00207713-29-4-352
- 24. Adeolu M, Alnajar S, Naushad S, Gupta RS. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacteriales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016;66(12):5575–99; doi: https://doi.org/10.1099/ijsem.0.001485
- Webster JM, Chen G, Hu K, Li K. Bacterial metabolites. In: Gaugler R (ed.). Entomopathogenic nematology. CABI International, London, pp. 99–114, 2002.
- 26. Hominick WM. Biogeography. In: Gangler R (ed.). Entomopathogenic nematology, CABI Publishing, Wallingford, pp. 115–43, 2002.
- Aiswarya D, Karthik Raja R, Gowthaman G, Deepak P, Balasubramani G, Perumal P. Antibacterial activities of extracellular metabolites of symbiotic bacteria, *Xenorhabdus* and *Photorhabdus* isolated from entomopathogenic nematodes. Int Biol Biomed J 2017;3(2):80–8; doi: http://ibbj.org/article-1-110-en.html
- Muangpat P, Yooyangket T, Fukruksa C, Suwannaroj M, Yimthin T, Sitthisak S, et al. Screening of the antimicrobial activity against drug resistant bacteria of *Photorhabdus* and *Xenorhabdus* associated with entomopathogenic nematodes from Mae Wong National Park, Thailand. Front Microbiol 2017;8:1142; doi: https://doi.org/10.3389/fmicb.2017.01142
- Muangpat P, Suwannaroj M, Yimthin T, Fukruksa C, Sitthisak S, Chantratita N. Antibacterial activity of *Xenorhabdus* and *Photorhabdus* isolated from entomopathogenic nematodes against antibiotic-resistant bacteria. PLoS One 2020;15(6):e0234129; doi: https://doi.org/10.1371/journal.pone.0234129
- Chen G, Dunphy GB, Webster JM. Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biol Control 1994;4(2):157–62; doi: https://doi.org/10.1006/bcon.1994.1025
- Orozco JGC, Leite LG, Custódio BC, Silva RSAD, Casteliani AGB, Travaglini RV. Inhibition of symbiote fungus of the leaf cutter ant *Atta* sexdens by secondary metabolites from the bacterium *Xenorhabdus* szentirmaii associated with entomopathogenic nematodes. Arq Inst Biol 2018;85:e0172018; doi: https://doi.org/10.1590/1808-1657000172018
- Chacon-Orozco JG, Bueno CJ, Shapiro-Ilan DI, Hazir S, Leite LG, Harakava R. Antifungal activity of *Xenorhabdus* spp. and *Photorhabdus* spp. against the soybean pathogenic *Sclerotinia sclerotiorum*. Sci Rep 2020;10(1):20649; doi: https://doi.org/10.1038/s41598-020-77472-6
- Lalramchuani M, Lalramliana, Lalramnghaki HC, Vanramliana, Lalhmingliani E. Molecular characterization and antibacterial activities of *Photorhabdus* and *Xenorhabdus* from Mizoram, North-East India. J Pure Appl Microbiol 2023;17(3):1560–77; doi: https:// doi.org/10.22207/JPAM.17.3.18
- Akhurst RJ. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic

- nematodes *Neoaplectana* and *Heterorhabditis*. Microbiology 1980;121(2):303–9; doi: https://doi.org/10.1099/00221287-121-2-303
- Emelianoff V, Le Brun N, Pages S, Stock SP, Tailliez P, Moulia C, et al. Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from Hérault and Gard (Southern France). J Invertebr Pathol 2008;98(2):211–7; doi: https://doi.org/10.1016/j.jip.2008.01.006
- Witasari LD, Wahyu KW, Anugrahani BJ, Kurniawan DC, Haryanto A, Nandika D, et al. Antimicrobial activities of fungus comb extracts isolated from Indo malayan termite (Macrotermes gilvus Hagen) mound. AMB Express 2022;12(1):14; doi: https://doi.org/10.1186/s13568-022-01359-0
- Balouiri M, Sadiki M, Ibnsouda SK. Methods for *in vitro* evaluating antimicrobial activity: a review. J Pharm Anal 2016;6(2):71–9; doi: https://doi.org/10.1016/j.jpha.2015.11.005
- Atanasov AG, Zotchev SB, Dirsch VM, International Natural Product Sciences Taskforce, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021;20(3):200– 16; doi: https://doi.org/10.1038/s41573-020-00114-z
- Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 2009;13(2):224–30; doi: https:// doi.org/10.1016/j.cbpa.2009.02.037
- 40. Goodrich-Blair H, Clarke DJ. Mutualism and pathogenesis in *Xenorhabdus* and *Photorhabdus*: two roads to the same destination. Mol Microbiol 2007;64(2):260–8; doi: https://doi.org/10.1111/j.1365-2958.2007.05671.x
- Grundmann F, Kaiser M, Schiell M, Batzer A, Kurz M, Thanwisai A, et al. Antiparasitic chaiyaphumines from entomopathogenic Xenorhabdus sp. PB61.4. J Nat Prod 2014;77(4):779–83; doi: https://doi.org/10.1021/np4007525
- Dowling AJ, Daborn PJ, Waterfield NR, Wang P, Streuli CH, Ffrench-Constant RH. The insecticidal toxin Makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. Cell Microbiol 2004;6(4):345–53; doi: https://doi.org/10.1046/j.1462-5822.2003.00357.x
- Tu PW, Chiu JS, Lin C, Chien CC, Hsieh FC, Shih MC, et al. Evaluation of the antifungal activities of *Photorhabdus akhurstii* and its secondary metabolites against phytopathogenic *Colletotrichum gloeosporioides*. J Fungi 2022;8(4):403; doi: https://doi.org/10.3390/jof8040403
- 44. Vicente-Díez I, Moreira X, Pastor V, Vilanova M, Pou A, Campos-Herrera R. Control of post-harvest graymold (*Botrytis cinerea*) on grape (*Vitis vinifera*) and tomato (*Solanum lycopersicum*) using volatile organic compounds produced by *Xenorhabdus nematophila* and *Photorhabdus laumondii* subsp. *laumondii*. BioControl 2023;68(5):549–63; doi: https://doi.org/10.1007/s10526-023-10212-7
- Cimen H, Touray M, Gulsen SH, Erincik O, Wenski SL, Bode HB, et al. Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii. Appl Microbiol Biotechnol 2021;105(13):5517–28; doi: https://doi.org/10.1007/s00253-021-11435-3
- Fang XL, Li ZZ, Wang YH, Zhang X. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. J Appl Microbiol 2011;111(1):145–54; doi: https://doi.org/10.1111/j.1365-2672.2011.05033.x
- 47. Böszörményi E, Ersek T, Fodor A, Fodor AM, Földes LS, Hevesi M, et al. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J Appl Microbiol 2009;107(3):746–59; doi: https://doi.org/10.1111/j.1365-2672.2009.04249.x
- 48. Uluğ D. Bacterial allies in agricultural defense: evaluating *Xenorhabdus* and *Photorhabdus* supernatants against *Phytophthora infestans* and *Monilinia laxa*. Dubited 2024;12:2131–8; doi: https://doi.org/10.29130/dubited.1463746

- Lalramchuani M, Lalramnghaki HC, Vanlalsangi R, Lalhmingliani E, Vanramliana, Lalramliana. Characterization and screening of antifungal activity of bacteria associated with entomopathogenic nematodes from Mizoram, North-Eastern India. J Environ Biol 2020;41:942–50; doi: https://doi.org/10.22438/jeb/4(si)/ms 1913
- Zhang S, Han Y, Wang L, Han J, Yan Z, Wang Y, et al. Antifungal activity and mechanism of xenocoumacin 1, a natural product from Xenorhabdus nematophila against Sclerotinia sclerotiorum. J Fungi 2024;10:175; doi: https://doi.org/10.3390/jof10030175
- Hazir S, Shapiro-Ilan DI, Bock CH, Leite LG. Trans-cinnamic acid and *Xenorhabdus szentirmaii* metabolites synergize the potency of some commercial fungicides. J Invertebr Pathol 2017;145:1–8; doi: https://doi.org/10.1016/j.jip.2017.03.007
- Bock CH, Shapiro-Ilan DI, Wedge DE, Cantrell CL. Identification of the antifungal compound, trans-cinnamic acid, produced by *Photorhabdus luminescens*, a potential biopesticide against Pecan Scab. J Pest Sci 2014;87:155–62; doi: http://dx.doi.org/10.1007/ s10340-013-0519-5
- 53. Korošec B, Sova M, Turk S, Kraševec N, Novak M, Lah L, *et al.* Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J Appl Microbiol 2014;116(4):955–66; doi: https://doi.org/10.1111/jam.12417
- Sa-Uth C, Rattanasena P, Chandrapatya A, Bussaman P. Modification of medium composition for enhancing the production of antifungal activity from *Xenorhabdusstockiae* PB09 by using response surface methodology. Int J Microbiol 2018;2018:3965851; doi: https://doi. org/10.1155/2018/3965851
- Pan H, Xiao Y, Xie A, Li Z, Ding H, Yuan X, et al. The antibacterial mechanism of phenylacetic acid isolated from Bacillus megaterium L2 against Agrobacterium tumefaciens. Peer J 2022;10:e14304; doi: https://doi.org/10.7717/peerj.14304
- Wang H, Yan Y, Wang J, Zhang H, Qi W. Production and characterization of antifungal compounds produced by *Lactobacillus* plantarum IMAU10014. PLoS One 2012;7(1):e29452; doi: https:// doi.org/10.1371/journal.pone.0029452
- Guzman JD. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 2014;19(12):19292– 349; doi: https://doi.org/10.3390/molecules191219292
- Pontiki E, Hadjipavlou-Litina D, Litinas K, Geromichalos G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules 2014;19(7):9655– 74; doi: https://doi.org/10.3390/molecules19079655
- Mujeeb F, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of *Aegle marmelos*. Biomed Res Int 2014;2014:497606; doi: https://doi.org/10.1155/2014/497606
- Sivakumar R, Jebanesan A, Govindarajan M, Rajasekar P. Larvicidal and repellent activity of tetradecanoic acid against *Aedes aegypti* (Linn.) and *Culex quinquefasciatus* (Say.) (Diptera: Culicidae). Asian Pac J Trop Med 2011;4(9):706–10; doi: https://doi.org/10.1016/ S1995-7645(11)60178-8
- Galdiero E, Ricciardelli A, D'Angelo C, de Alteriis E, Maione A, Albarano L, et al. Pentadecanoic acid against Candida albicans-Klebsiella pneumoniae biofilm: towards the development of an anti-biofilm coating to prevent polymicrobial infections. Res Microbiol 2021;172(7–8):103880; doi: https://doi.org/10.1016/j. resmic.2021.103880
- Ricciardelli A, Casillo A, Corsaro MM, Tutino ML, Parrilli E, van der Mei HC. Pentadecanal and pentadecanoic acid coatings reduce biofilm formation of *Staphylococcus* epidermidis on PDMS. Pathog Dis 2020;78(3):ftaa012; doi: https://doi.org/10.1093/femspd/ ftaa012
- Charlet R, Le Danvic C, Sendid B, Nagnan-Le Meillour P, Jawhara S. Oleic acid and palmitic acid from *Bacteroides* thetaiotaomicronandLactobacillusjohnsoniiexhibitanti-inflammatory and antifungal properties. Microorganisms 2022;10(9):1803; doi: https://doi.org/10.3390/microorganisms10091803

- 64. Ghavam M, Afzali A, Manca ML. Chemotype of damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. Sci Rep 2021;11(1):8027; doi: https://doi.org/10.1038/s41598-021-87604-1
- Jumina J, Lavendi W, Singgih T, Triono S, Steven Kurniawan Y, Koketsu M. Preparation of monoacylglycerol derivatives from Indonesian edible oil and their antimicrobial assay against *Staphylococcus aureus* and *Escherichia coli*. Sci Rep 2019;9(1):10941; doi: https://doi.org/10.1038/s41598-019-47373-4
- 66. Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, et al. Antibacterial fatty acids: an update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res 2021;82:101093; doi: https://doi.org/10.1016/j.plipres.2021.101093
- Guimarães A, Venâncio A. The potential of fatty acids and their derivatives as antifungal agents: a review. Toxins 2022;14(3):188; doi: https://doi.org/10.3390/toxins14030188
- Hanene G, Aouadhi C, Hamrouni S, Mnif W. Antibacterial, antifungal and antioxidant activities of tunisian *Olea europaea* Ssp. *oleaster* fruit pulp and its essential fatty acids. Int J Pharm Pharm Sci 2015;7(1):52–5.
- Kannabiran DK. Bioactivity of pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)- Extracted from *Streptomyces* sp. VITPK9 isolated from the salt spring habitat of Manipur, India. Asian J Pharm 2016;10(04):265–70; doi: https://doi.org/10.22377/ajp.v10i04.865
- Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. An antibiotic agent pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro isolated from a marine bacteria *Bacillus tequilensis* MSI45 effectively controls multi-ddrug-resistant *Staphylococcus aureus*. RSC Adv 2018;8(32):17837–46; doi: https://doi.org/10.1039/C8RA00820E
- 71. Yang EJ, Chang HC. Purification of a new antifungal compound produced by *Lactobacillus plantarum* AF1 isolated from kimchi. Int J Food Microbiol 2010;139(1–2):56–63; doi: https://doi.org/10.1016/j.ijfoodmicro.2010.02.012
- Raut LS, Rakh RR, Hamde VS. In vitro biocontrol scenarios of Bacillus amyloliquefaciens subsp. amyloliquefaciens strain RLS19 in response to Alternaria macrospora, an Alternaria leaf spot phytopathogen of Bt cotton. J App Biol Biotech 2021;9(1):75–82; doi: https://doi.org/10.7324/JABB.2021.9110
- 73. Lalitha S, Parthipan B, Mohan VR. Determination of bioactive components of *Psychotria nilgiriensis* Deb & Gang (*Rubiaceae*) by GC-MS analysis. Int J Pharm Phytochem Res 2015;7(4):802–9.
- Rajamanikyam M, Vadlapudi V, Parvathaneni SP, Koude D, Sripadi P, Misra S, et al. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest. EXCLI J 2017;16:375–87; doi: http://dx.doi.org/10.17179/excli2017-145
- Xu H, He XQ. Natural products-based insecticidal agents 6. Design, semi synthesis, and insecticidal activity of novel monomethyl phthalate derivatives of podophyllotoxin against *Mythimna separata* walker *in vivo*. Bioorg Med Chem Lett 2010;20(15):4503–06; doi: https://doi.org/10.1016/j.bmcl.2010.06.032
- Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S, et al. Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Front Microbiol 2021;12:645484; doi: https://doi. org/10.3389/fmicb.2021.645484
- 77. Qi D, Zou L, Zhou D, Chen Y, Gao Z, Feng R, *et al.* Taxonomy and broad-spectrum antifungal activity of *Streptomyces* sp. SCA3-4 isolated from rhizosphere soil of *Opuntia stricta*. Front Microbiol 2019;10:1390; doi: https://doi.org/10.3389/fmicb.2019.01390
- Yan PS, Song Y, Sakuno E, Nakajima H, Nakagawa H, Yabe K. Cyclo(L-leucyl-L-prolyl) produced by *Achomobacter xylosoxidans* inhibits aflatoxin production by *Aspergillus parasiticus*. Appl Environ Microbiol 2004;70(12):7466–73; doi: https://doi.org/10.1128/ AEM.70.12.7466-7473.2004

- Pérez-Picaso L, Olivo HF, Argotte-Ramos R, Rodríguez-Gutiérrez M, Rios MY. Linear and cyclic dipeptides with antimalarial activity. Bioorg Med Chem Lett 2012;22(23):7048–51; doi: https://doi. org/10.1016/j.bmcl.2012.09.094
- Casadey R, Challier C, Altamirano M, Spesia MB, Criado S. Antioxidant and antimicrobial properties of tyrosol and derivative-compounds in the presence of vitamin B2. Assays of synergistic antioxidant effect with commercial food additives. Food Chem 2021;335:127576; doi: https://doi.org/10.1016/j. foodchem.2020.127576
- 81. Antoci V, Oniciuc L, Amariucai-Mantu D, Moldoveanu C, Mangalagiu V, Amarandei, AM, *et al.* Derivatives: a straightforward and efficient route to antibacterial and antifungal agents. Pharmaceuticals 2021;14(4):335; doi: https://doi.org/10.3390/ph14040335

How to cite this article:

Lalramchuani M, Ramliana L, Lalramnghaki HC, Chawngthu AL, Ramliana V, Lalhmingliani E. Antifungal potential of entomopathogenic bacteria, *Photorhabdus*, and *Xenorhabdus* (Morganellaceae) against pathogenic fungi. J Appl Biol Biotech. 2025;13(4):76-88. DOI: 10.7324/JABB.2025.203366.