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The need for chemical-free farming methods is becoming more important due to the detrimental impacts of
chemicals on human health and the environment. Finding innovative ways for the establishment of sustainable
agricultural is crucial that may avoid the overuse of chemical fertilizers and pesticides as a means of increasing
output. Microorganisms that promote plant development and act as biocontrol agents have become safe substitutes
for chemical fertilizers in the agriculture sector. Endophytic microorganisms or microorganisms associated with
plants, have become a vital and promising tool for sustainable agriculture. Endophytic Streptomyces act as the
alternative for preventing disease-causing microorganisms and help to regulate plant growth. Bacteria belonging
to the genus Streptomyces are well-known producers of secondary metabolites, which can be potentially utilized to
replace chemical fertilizers and pesticides. The current status of endophytic Streptomyces in sustainable agriculture
is employed as safe biocontrol and plant growth-promoting (PGP). This review emphasizes the biocontrol and PGP
benefits of the endophytic Streptomyces. Additionally, their ability to enhance plant growth has been confirmed in
a number of crops, thus encouraging the wide use of streptomycetes as biofertilizers to increase plant productivity.

1. INTRODUCTION

Plants and their closely related species are influenced by the presence

In the field of microbiology and plant biology, recent studies have
a strong emphasis on plant-microbial interactions. Plant growth
development depends highly on the extracellular enzymes produced by
plant growth-promoting bacteria (PGPB). Microorganisms constantly
interact and turn on the other organisms within their community [1].

*Corresponding Authors

Rangasamy Kirubakaran, Department of Biotechnology, Vinayaka Missions
Kirupananda Variyar Engineering College, Vinayaka Mission's Research
Foundation, Salem, India. Email: rangasamykirubakaran @ gmail.com

Ajar Nath Yadav, Department of Genetics, Plant Breeding and Biotechnology,
Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru
Sahib, Sirmaur, India. Email: ajarbiotech @ gmail.com

of unicellular or multicellular organisms. Interactions between
microorganisms and plants occur both internally (via the formation
of plant microbial endospheres) and externally (surface of roots) [2].
Plants and microbes always maintain mutually beneficial symbiotic
relationships with endophytes by providing some benefit to their living
community [3,4]. Through the symbiotic relationship between plants
and microorganisms, endophytes may act as a convenient substitute
to replace the use of pesticides [5,6]. The excessive application of
agrochemicals and insect control in modern agriculture based on
organic principles is difficult to maintain and results in crop loss.
Additionally, the current scenario has led to increased pathogens with
pesticide or drug resistance and soil infertility [7].

Microorganisms that are endophytic, such as bacteria, fungi, and
actinomycetes, inhabit the surface layer of plant tissues through
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symbiotic relationships. Actinomycetes are one of the prominent
bacterial species, including the largest genera, Streptomyces. The
production of secondary metabolites, including bioactive substances
and antibiotics, is a standout characteristic of Streptomyces and
guanine and cytosine content was high in the genome [8]. Hundreds
of distinctive plant growth regulators, antibiotics, and bioactive
components have been discovered in terrestrial microorganisms,
particularly from the genus Streptomyces. The relationship between
endophytes and plants is dominantly reported as commensalism.
Various applications have been reported in the plant growth
components extracted from the Streptomyces sp. [9,5]. The earlier
studies revealed that endophytic Streptomyces notably increase the
growth and tolerance in varieties of monocot and dicot plant species
[10,11]. The upsides of the Streptomyces endophytes for biocontrol and
promoting plant growth are illustrated in this review. Recent studies
of Streptomyces endophytes on various crops for their biological
pesticide, natural fertilizing ability, and plant growth stimulating
factor were also discussed.

2. BIODIVERSITY OF ENDOPHYTIC Streptomyces

The composition of the cell envelope in Streptomyces was used to differ
from other Gram-negative bacteria, and cell composition was used as
the identification characteristic [12]. Plants extensively interact with
the different ranges of microorganisms and acquire benefits through
minerals and nutrition exchange [13,7]. The endophytes colonized
the plant’s roots and mainly contributed to nitrogen fixation and
solubilization of mineral nutrients. The studies on the root-associated
microbes, especially rhizobacteria, influence the morphology and
physiology of the plants to prevent the pathogenic insect attack.
Plant defense mechanisms will initiate and express salicylic acid,
ethylene, and jasmonic acid. A plant’s root releases metabolic signals
such as alkaloids, flavonoids, terpenoids, and strigolactones that
attract the microbial communities around the rhizosphere (Fig. 1).
Endophytic Streptomyces influence the richness of soil with nutrients
and significant growth with many components. In addition to the
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endophytes’ phosphate solubilization ability, which produces the
various enzymes that break the complex nutrients into simple minerals
such as cellulase, chitinase, B-fructofuranosidase (invertase), lipase,
keratinase, pectinase, protease, peroxidase, phytase, and xylanase.
Antimicrobial peptides and biocontrol components are identified
through the metabolic studies on endophytes Streptomyces. Microbial
interactions revealed the unique features of endophytes beneficial for
biocontrol and biofertilization in potatoes [14,15].

3. METHODS FOR ISOLATING ENDOPHYTIC Streptomyces

Isolation of endophytic Streptomyces is carried out in different plant
parts, such as a different scale of primordium of meristem, leaf, and
roots. The sequencing approach was made to screen the diversity of
endophytes in the seed and needles of Pinus monticola. Isolation of
endophytes is still challenging, and broad reviews were established
to isolate Streptomyces. Endophytes are isolated from the plant tissue
extract or ground tissues by inoculating in the Streptomyces-specific
media. Different culture mediums were employed to isolate endophytic
fungi from the roots and fruits of Azadirachta indica [48]. The study
confirmed that the mycological agar medium yielded many isolates with
species richness. Streptomyces peucetius were isolated using surface-
sterilization methods and identified by morphological characteristics.

Earlier, biochemical and morphological characteristics were used
to identify endophytes belonging to Actinomycetes. Molecular
identification by ribosomal DNA (rDNA) sequence analysis is currently
used to identify microorganisms. It reduced the biased judgments, and
rDNA sequence data are robust in resolving endophytes’ taxonomy
(Table 1).

4. MOLECULAR APPROACHES FOR
CHARACTERIZATION

The identification and characterization of endophytes through
metagenomic studies, molecular markers, molecular cloning, and gene
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Table 1. Potential soil and plant root, tissue surface of the Streptomyces species.

S. No Streptomyces Source of isolation

1. S. coelicolor Soil

2. S. xiamenensis Mangrove sediment
3. S. atrovirens Rhizosphere soil
4. S. griseoviridis Tomato plants

5. S. lydicus Rhizosphere soil
6. S. olivaceoviridis Soil

7. S. rimosus Medicinal plants
8. S. rochei Rhizosphere soil
9. S. viridis Rhizosphere soil
10. S. igroscopicus Sand truftles

11. S. axinellae sp. nov. Sponge

12. S. griseus Soil

13. S. chumphonensis Marine

14. S. rochei Decomposed dung
15. S. fildesensis sp. nov. Antarctic soil

16. S. scabies Potato scab

17. S. oryzae sp. nov. Stem of rice

18. S. wadayamensis Citrus plant tissue
19. S. kebangsaanensis sp. nov.
20. S. phytohabitans sp. nov. Roots of curcuma phaeocaulis
21. Streptomyces sp. Sorghum stem
22. Streptomyces sp. Wheat
23. Streptomyces sp. Clover
24. S. lydicus Pea
25. Streptomyces sp. Mung bean
26. Streptomyces sp. Soybean
27. S. aurantiogriseus Rice
28. S. hygroscopicus Kidney beans
29. S. filipinensis, S. atrovirens Tomato
30. S. spiralis Cucumber
31. Streptomyces sp. Chickpea
32. Streptomyces sp. Clover
33. Streptomyces sp. Chickpeas
34. Streptomyces sp. Veggie
35. Streptomyces sp. Soil

Inner tissue of porulaca aleracea
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expression studies, are the current trends and advanced developments
in molecular-level studies. The metagenomic approach is one way to
find microorganisms from various environments that are difficult to
isolate. A metagenomic system was used to characterize the uncultured
endophytic microorganisms colonizing Solanum
contained the 1-aminocyclopropane-1-carboxylate deaminase gene
(acdS) operon. It was concluded that metagenomic analysis could
supplement polymerase chain reaction-based research and provide
information on whole functional genes [49]. Denaturing gradient
gel electrophoresis profiles of 16s rRNA gene fragments amplified
from complete plants’ DNA were used to detect non- culturable
endophytic bacteria by comparing the profile with the bands obtained
from the culturable endophytes from citrus plants [50]. The bacterial

tuberosum L.

endophytes community of potato plants was investigated using
automated ribosomal intergenic spacer analysis and pyrosequencing
[12]. After being spooled and transferred to a screw-capped vial, the
DNA was washed with 70% cold ethanol, allowed to air dry, and then
suspended in TE buffer.

5. PLANT- Streptomyces INTERACTION

In plant and microbe interaction, specific SRNA responded to the up
and down-regulation of the biotic and abiotic stresses and pathogens
[51,52]. To analyze and tackle the ecosystem challenges in agriculture,
it is obligatory to understand the gene regulation of sSRNAs in plant
response in endo-microbiome and biocontrol beneficial bacteria. Small
regulatory RNAs are highly responsive to cellular functioning, such



as oxidative stress response, quorum sensing, carbon starvation, and
iron deficiency [53]. SRNA showed gene expression in transcriptional
and post-transcriptional stages, and synthetic and functional processes
were described [54]. The precise and targeted gene regulation
makes plant sRNA distinctive and capable gene modulators. A
better acknowledgment of SRNA can be exploited for its myriads of
applications, from basic gene function study to targeted genes [55].

sRNA synthesis starts from the transcription of MIR genes by RNA
polymerase II. It proceeds through the formation of precursor micro
RNA duplexes before single-stranded miRNAs are inserted into
the RNA-induced silencing complex (RISC). Following the RISC
formation, argonaute (AGO) proteins guide the miRNAs strand
to its target mRNA, and another strand of the duplex undergoes
degradation [56]. Targeted identification of many miRNA-mRNA
duplex modules in plant-microbe interactions, but very few studies
have been functionally validated for the importance of agriculture
and horticulture [57]. A few studies on microRNAs have been
increased, including genome-wide profiling of sSRNA and miRNA
responses to drought, salt, cold, heat, systematic stress, and
pathogenic microflora [51,52,58]. The specific impacted of miRNAs
can play distinct roles across species or different crops. However,
the advances in miRNAs mediated the regulation of genes related to
plant-microbes’ interactions, emphasizing the role of plant miRNAs
in disease susceptible and resistance, which can be exploited for
improved crop varieties.

6. Streptomyces AS PLANT GROWTH PROMOTERS

In general, actinobacteria may be beneficial to plant nutrition in terms
of minerals. This is related to the ability to mobilize metals and fix
nitrogen, as well as the uptake of mineral nutrients such as Fe, Zn,
and Se. However, metagenomic investigations have not demonstrated
the involvement of Streptomycetes in such advantageous procedures
[59]. The taxonomic and phylogenetic makeup of these microbial
communities is restricted to a few bacterial phyla, including
actinobacteria, according to metagenomic studies of the bacterial
microbiota in plants.

Emphasizing the role of Streptomycetes in the growth and health of
plants. Through nutritional interactions and the composition of its
root exudate (chemotaxis), the plant has a significant influence in
influencing the growth of its root microbiome [60—-62]. Flavonoids,
strigolactones, and terpenoids are among the metabolic signals found
in plant root exudates that have the power to influence the microbial
communities in the rhizosphere. It is still unknown what cues draw
Streptomycetes into the rhizosphere. Streptomycetes are able to
penetrate roots and colonize root tissues and arteries. From there, they
can be separated and purified in order to characterize their physiology
and the interactions among microbes [37]. Actinobacteria, like
Streptomyces species, act as nutrient enhancers and affect soil fertility
by interacting with various minerals. They are known to produce a
variety of enzymes, such as amylase, chitinase, cellulase, invertase,
lipase, keratinase, peroxidase, pectinase, protease, phytase, and
xylanase, which convert complicated nutrients into simpler mineral
forms, in addition to siderophores and solubilizing phosphate. Their
ability to cycle nutrients makes them excellent choices for natural
fertilizers [63].

6.1. Nitrogen Fixation

One of the most crucial macronutrients for plant growth is nitrogen
(N,). The abundance of N, in the atmosphere is about 78% and is
inaccessible to plants. Numerous plant growth promoting (PGP)
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microorganisms that are capable of freely or in symbiotic relationships
with legumes carrying out biological nitrogen fixing have been
identified [64]. The issue of biological N, fixing is crucial since the
use of synthetic nitrogenous fertilizers has resulted in excessive
water pollution and the eutrophication of rivers and lakes. Serious
environmental issues arise from N, fertilizers leaching into the land,
especially in water systems [65]. Inoculating seeds, seedlings, roots,
or soil with N -fixing microbes promotes plant growth, enhances soil
quality, and keeps the soil’s N, content stable [66]. The endophytic N.-
fixing bacteria from both leguminous and nonleguminous crops have
been thoroughly studied. Endophytic bacteria belong to various phyla
including actinobacteria, bacteroidetes, firmicutes, and proteobacteria.

There have been reports of the major N-fixing endophytic
bacteria from several host plants. There are many uses for N2-
fixing endophytic bacteria in sustainable agriculture, including
maintaining plant development, crop output, and soil health [67].
An investigation, [68] demonstrated that Streptomyces galilaeus, S.
avidinii, S. albogriseolus, S. albidoflavus, S. spororaveus, and S.
cellulosae have the ability to fix N, P-solubilization and production
of ACC deaminase and siderophores. In addition, the S. avidinii and S.
cellulosae increases seed germination of pepper, bean, and cucumber.
In a similar investigation, inoculation of N, fixing Streptomyces
alfalfae with multiple pant growth promoting attributes [produce
indole acetic acid (IAA) and siderophore and have phosphate-
solubilizing] can effectively promote the seed germination and growth
of switch grass [69].

6.2. Phosphorous Solubilization

After nitrogen, phosphorus (P) is the second most crucial nutrient
for plants. It can be found in soil as mineral salts or combined with
organic matter. Despite being prevalent in soils in both organic and
inorganic forms, its availability is limited because it is primarily found
in insoluble forms. The average soil contains around 0.05% (w/w)
of P, but due to poor solubility and soil fixation, only 0.1% of the
total P is available for plant uptake [70]. Since phosphorus deficit is
very common in agricultural soils globally, the majority of farmers
frequently apply chemical fertilizers that dissolve into the soil to
prevent cropping systems from experiencing P-limiting circumstances.
When applied to either acidic or alkaline soils, the P often precipitates
through the production of non-bioavailable compounds [71].

Phosphate-solubilizing microbes have solubilized insoluble P,
providing an alternative to chemical phosphatic fertilizers and
increasing P availability while reducing the need for chemical
fertilizers [72]. Microbes produce enzymes like phosphonatases, C-P
lyases, and phytases that facilitate the release of organic phosphates.
The primary process of mineral phosphate solubilization involves the
synthesis of acid phosphatases and organic acids (OAs) [73]. They
release OAs such as propionic acid, succinic acid, lactic acid, and
formic acid in order to dissolve the bonded P present in the soil. There
is currently little information available on the phosphate-solubilizing
actinomycetes [74].

In an investigation, [75] reported the isolation P-solubilizing
Streptomyces roseocinereus with multiple PGP traits. Barley plants
inoculated with S. roseocinereus enhance shoot and ear length as well
as available phosphorus in ears and leaves and P and N contents in
the soil. In another investigation, [76] evaluated the effect of rock
phosphate solubilizing S. bellus and S. saprophyticus in promoting
the growth of sugar beet in field conditions. Seeds inoculated with S.
bellus stimulate root elongation and level of levels of soil-available
phosphorus (P) and potassium. Inoculation with SS increased shoot
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and root elongation and enhanced chlorophyll levels in the plant
leaves. In a report, [77] studied that P-Solubilizing and phytate
degrading Streptomyces sp. stimulates the growth and P accumulation
of maize.

6.3 Potassium Solubilization

Potassium (K) is regarded as a vital nutrient and a major component
within all living cells. Naturally, soils have higher concentrations of K
than any other nutrient; but plants are unable to absorb the majority of
the K [78]. K is found in soil in a variety of forms, including water-
soluble, exchangeable, non-exchangeable, and mineral forms. In most
soils, 90%—98% of the total K is made up of unavailable mineral forms
such as feldspar, orthoclase, and micas, which are relatively resistant
to breakdown [79]. Plants with inadequate levels of K exhibit stunted
roots, sluggish development, increased susceptibility to disease,
delayed maturity, and eventually reduced agricultural yields. The soil
loses its organic K content when chemical fertilizers are used on a
regular basis. Applying biofertilizers may be the most effective way
to improve the solubility of soil potassium in such circumstances [80].

Potassium-solubilizing microorganisms (KSMs) can reduce the need
for chemical fertilizers and promote sustainable farming practices.
Owing to the naturally occurring source of K in soil and the high cost
of synthetic K fertilizers, the significance of KSM is growing every
day. These KSMs have the potential to be a useful strategy for raising
soil K availability, which is crucial for crop establishment in soils with
low K levels [81]. KSMs can liberate K from soil/minerals into forms
that plants can use, which would be a viable choice. Researchers are
highlighting the possibilities of using KSMs as effective biofertilizers
to increase agricultural productivity more and more [82]. A report
[83] demonstrated the growth promotion and protection against root
rot of sugar beet by two P and K solubilizing Streptomyces sp. under
greenhouse conditions.

6.4. Zinc Solubilization

Zinc (Zn) is an important and key micronutrient required in trace
amounts by agricultural crops for complete growth and development.
It is a vital component of many different enzymatic processes, the
metabolism of carbohydrates, the synthesis of proteins and auxin,
and the integrity of plant cellular membranes [84]. According to
reports, the most common micro-nutritional problem affecting food
crops worldwide, including those in India, is Zn deficiency caused
by inadequate soil solubility. Chemical fertilizers containing zinc
should not be applied since they will convert to a form of zinc that
is unavailable. Therefore, the isolation of Zn solubilizing bacteria
(ZSB) having the ability to convert distinct unavailable forms of the
Zn to available forms offers the most significant solution to fight Zn
insufficiency [85]. The use of ZSB offers a low-cost, flexible approach
to Zn biofortification and the most environmentally friendly way to
revitalize sustainable agriculture.

ZSBresiding within planttissues orin the rhizospheric hub demonstrates
their ability to solubilize Zn using a range of techniques. The best
approach is the deposition of OAs, which causes the surrounding soil
to become acidic [86]. This suggests that using microbes can help
increase the amount of zinc in plants and improve crop quality, which
sums up the function of microorganisms for a more environmentally
friendly approach. By releasing OAs, siderophores, and other
chelating substances, Zn-solubilizing bacteria function as organic
bio-fortifiers that can solubilize the inaccessible form of zinc [87]. In
an investigation, [88] revealed that the two Streptomyces strains have

potential as Zn-solubilizers and can be suggested as bioinoculants to
promote the growth and yield of soybeans. In another investigation,
Z solubilizing Streptomyces nanhaiensis with other plant growth-
promoting attributes increases the plant growth with increased leaf
biomass and pigment production on millet crops [89].

6.5. Phytohormones Production

Plant growth and development are significantly regulated by
phytohormones. The five classes of phytohormones identified by
the traditional classification are auxins, gibberellins, cytokinins,
ethylene, and abscisic acid. A variety of physiological processes in
plants are regulated by phytohormones, such as fruit ripening, root
formation, florescence, branching and tillering, and seed germination
and quiescence [90]. They are recognized for having a significant
effect on the metabolism of plants. They are also essential in
stimulating the defense mechanisms that plants use to respond to
stressors. Under stressful circumstances, exogenous phytohormone
supplementation has been used to enhance growth and metabolism
[91]. The phytohormones are produced by a variety of actinomycetes
species when they are exposed to an appropriate precursor, like
L-tryptophane [92].

Endophytes generate phytohormones that alter the morphology and
physiology of plants and encourage plant growth. The biosynthesis
and signaling pathways of phytohormones are important in regulating
the development of plants during stress responses [93]. In a report,
[94] demonstrated that IAA-producing Streptomyces sp. inoculation
enhanced lateral root number, vegetative growth, fresh weight,
chlorophyll content, and tolerance to abiotic stress in Arabidopsis
thaliana. In another report, endophytic Streptomyces sp. promotes
soybean plant growth and increases yield and seed quality through
P-solubilization, siderophores, and phytohormones like IAA and
antifungals under in vitro production [95].

7. INDUCED SYSTEMIC RESISTANCE IN PLANTS

Biologic stress can have a detrimental effect on a plant’s growth,
cellular development, inherent biological systems, and productivity.
To counter these biotic stress conditions, endophytic microbes
are essential to the plant environment. Furthermore, endophytic
actinomycetes are naturally occurring symbionts of a number of plants
that modify their defense mechanisms and systemic resistance in order
to impart resistance to host plants in challenging environments [96].
Unlike synthetic drugs, these microorganisms can successfully manage
many plant diseases by inducing systemic resistance (ISR) without
posing any environmental harm. The ISR in host plants is triggered by
endophytic colonization and operates through a variety of mechanisms
to reduce further pathogen attack and disease progression [97]. The
endophytic bacteria produce secondary metabolites that shield plants
from phytopathogens, in addition to exo-enzyme secretion, which
could be aiding plant colonization. Endophytes may accelerate the
growth of the plant by phytohormone production and support plant
growth under unfavorable biotic and abiotic stress [98].

In an investigation, [99] reported that endophytic Streptomyces sp.
triggered systemic resistance in chickpeas under Sclerotium
rolfsii  stress. Another investigation, [100] revealed that
Streptomyces strains promote plant growth and induce resistance
against Fusarium verticillioides in maize plants. Chen et al. [101]
reported that Streptomyces chromofuscus induces systemic resistance
and activates plant defense responses against tomato yellow leaf
curl virus infection. Streptomyces chromofuscus maintained relative



chlorophyll contents by accelerating the expression of genes
(CLHI, HEMA1, and PORA) associated with chlorophyll biogenesis.

8. BIOTECHNOLOGICAL APPLICATIONS IN
AGRICULTURE

8.1. Biofertilizers

Researchers are becoming more interested in Streptomyces as a
commercial biofertilizer. They can help with plant nutrition and growth
by aiding in the biodegradation of diverse agricultural wastes and
generating distinct enzymes in the soil [102]. Additionally, it has been
discovered that actinobacteria generate plant growth hormones such as
TAA[103], extending their possible uses in agriculture as biofertilizers
[104]. A study revealed that the production of IAA, siderophores,
and immobilized inorganic phosphate is produced by Streptomyces
sp., Streptomyces thinghirensis, Streptomyces sp., and Streptomyces
tricolour [105]. Actinobacteria inoculation has been demonstrated to
increase plant production and growth in fields [106] as shown in maize
greenhouse trials [107]. However, some actinobacteria species have
poor capacity for plant development and growth limits their ability
to support sustainable horticultural techniques. Because Streptomyces
may increase the amount of phosphate available in soil, it has a
significant advantage [108]. These bacteria produce phytase enzymes
and a variety of phosphate-solubilizing acids, which can convert bound
phosphate into an accessible form. However, the precise process of
acid-mediated phosphate solubilization is yet unclear [109].

Recent studies have shown that biofertilizers containing strains of
bradyrhizobium and Streptomyces griseoflavus encourage the growth
of mung beans, soybeans, and cowpeas’ roots and shoots. According
to this study, these biofertilizers also boost plants nodulation, nitrogen
fixation, phosphorus, and potassium uptake, which raise seed
yields. According to a recent study, Streptomyces sp. can be used
as biofertilizers in the form of biofilms that use perlite material as
a carrier [110,111]. Further research revealed that the development
and productivity of chickpea crops could be enhanced by the use
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of Streptomyces strains as biofertilizers. For sustainable farming
techniques, it is essential to comprehend the potential of Streptomyces
in agriculture encouraging outcomes in the management of disease,
accelerated plant growth, and improved output [45].

In an investigation, three endophytic Streptomyces sp. strains were
evaluated alone and in combination with Azotobacter in field trials
with recommended fertilization rates in north-western Indian plains.
Bioformulation of Azotobacter and Streptomyces improved the
growth and yield of wheat plants [112]. In another investigation,
[113] endophytic Streptomyces sp. that contained the crude IAA
showed the maximum effect in promoting seed germination and root
elongation of tomato plants. In a report, inoculation of wheat plants
with endophytic Streptomyces tuirus, S. levis, and S. radiopugnans
significantly enhanced the growth parameters such as seedling
length and rootlets number compared to the uninoculated control
[114]. Devi et al. [115] reported the PGP and biocontrol activity
of endophytic Streptomyces sp. against early blight in Solanum
lycopersicum seedlings.

8.2. Biocontrol Agents

Numerous bioactive compounds that are advantageous to soil and
plants are produced by actinobacteria and they have the ability to serve
as biocontrol agents [116]. Increasing the resistance of plants to biotic
and abiotic stressors [117]. According to a study, several actinobacteria
(Actinomyces pactum, A.globisporus, and A. globisporus subsp.
globisporus) have the ability to break down fungal pathogens. A light-
colored actinomycete called Streptomyces griseoviridis was isolated
from Sphagnum peat and is an example of a biocontrol agent that
lessens damage from different soil and seed infections [118,119].
According to a study, actinobacteria in soil produce antibiotics that
are useful against plant diseases (Fig. 2). To combat plant diseases,
Streptomyces  violaceusniger, generates antibiotics including
headache, gentamycin, and guanidylfingine. Actinobacteria have been
shown in earlier research to improve plant development and efficiently
treat plant ailments [117,119-121]. The main reason Streptomyces

Microbial
Biopesticides

Microbial

Biofertilizers
Plants Protected by PGPB

Organic Foods Loaded Health}r Human
With Matural Nutrients

T

&

Figure 2. Effects of biopesticides/biocontrol agents.
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strains are known for their ability to function as biocontrol agents they
may produce strong volatile chemicals, metabolites, and antibiotics
that have antipathogenic qualities [122].

A different investigation was conducted using chemicals released
by strains of Streptomyces coelicolor, S. violaceusniger, and S.
violaceusniger, including siderophore, chitinase, the antibiotic
geldanamycin, and the antifungal nigericin. There were two strains
of Streptomyces that showed biocontrol potential in this investigation

by producing secondary active metabolites that inhibited the growth
of harmful bacteria. The dangerous bacterial threat known as
glumae, which causes panicle blight in rice plants and jeopardizes
rice yields, was effectively controlled [123]. In a report, [124]
demonstrated the induction of systemic resistance in Solanum
lycopersicum and Capsicum annum seedlings against fusarium wilt
by Streptomyces bioformulations. In another report, [125] revealed
the formulation of bio-fungicides based on Streptomyces caeruleatus
spores and efficacy against Rhizoctonia solani damping-off of tomato

Table 2. Bioformulations from endophytic Streptomyces and their potential effects.

Species Host plant Inoculated plant
Streptomyces asterosporus  Solanum nigrum Tomato
Streptomyces sp. Citrus jambhiri Tomato
Streptomyces sp. Tomato Tomato

Streptomyces sp. Pearl millet Pearl millet

Streptomyces sp. Soybean Soybean
Streptomyces parvulus Green gram Green gram
Streptomyces caeruleatus - Tomato

Streptomyces sp. Artemisia annua L. Arabidopsis

Streptomyces Strawberry Strawberry

thermocarboxydus

Streptomyces sp. Medicinal plant Chilli

Streptomyces Date palm Date palm

polychromogenes

Streptomyces Date palm Date palm

coeruleoprunus

Streptomyces sp. Moss Wheat

Streptomyces sp. Moss Tomato

Streptomyces Moss Tomato

physcomitrii sp. nov.

Streptomyces sp. Clerodendrum Mung bean
serratum

Streptomyces sp. Clerodendrum Thai jasmine rice

serratum (L.)

Effect

Biocontrol of Fusarium root rot disease and
growth promotion of seedlings

PGP and biocontrol potentiality against early
blight

Increasing root length, plant height, stem
diameter and high biocontrol efficiency against
tomato Fusarium wilt

Protection against downy mildew and also
promoted the vegetative and reproductive growth
of the plant

Positively impacts growth, development, yield;
and seed phytosanitary quality of plants under
field conditions

Improve the growth of green gram seedlings,

showing enhanced shoot-, and root length and
decreased incidence of Fusarium wilt disease
symptoms

Enhanced plant resistance to Fusarium
oxysporum f. sp. radicis lycopersici root rot and
promoted the growth of tomato seedlings

Enhanced plant disease resistance to
pathogenic Streptomyces scabies

Incidence rate of strawberry anthracnose was
significantly reduced by treatment

Antagonistic and PGP abilities

Estimated disease severity indices in diseased
seedlings were significantly reduced and conidial
numbers of the pathogen significantly dropped

Estimated disease severity indices in diseased
seedlings were significantly reduced and conidial
numbers of the pathogen significantly dropped

Effectively suppressed the occurrence of wheat
root rot caused by Bipolaris sorokiniana

Effectively suppressed the occurrence of tomato
bacterial wilt caused by Ralstonia solanacearum

Significantly reduced the disease severity of
bacterial wilt on tomato seedlings

Increased plant elongation and biomass,
chlorophyll content, leaf area, leaf color and
adventitious roots, and reduced the ethylene level
under flooding conditions

Increased growth of rice and salt tolerance

by reduction of ethylene via the action of
1-aminocyclopropane- 1-carboxylate deaminase
(ACCD) and further assists plants to scavenge
ROS, balance ion content and osmotic pressure

Reference
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seedlings. In an investigation, [126] demonstrated the plant-growth
promotion and biocontrol properties of three Streptomyces sp. to control
bacterial rice pathogens. In a report, [127] revealed the insecticidal
potential of endophytic Streptomyces sp. against Zeugodacus
cucurbitae. In a similar report, [124] revealed that Streptomyces sp.
bioformulations effectively controlled fusarium wilt in Solanum
lycopersicum and Capsicum annum seedlings.

8.3. Breakdown of Pesticides

Since native Streptomycetes are well adapted to live in soil and
sediment habitats, using them for bioremediation in pesticide-
contaminated environments shows to be a potential approach. The
potential metabolic variety, mycelial growth habitat, fast growth rates,
semi-selective substrate colonization, and genetic manipulation of
Streptomyces strains are their main advantages. Streptomyces may
develop into spores, which aid in their persistence and dissemination,
they can last lengthy periods of time in soil with low nutrient
concentrations and water availability [128]. These benefits have led to
the investigation of several Streptomyces strains as viable candidates
for bioremediation of contaminated settings using several chemical
pesticide families, such as ureas, organochlorines, organophosphates,
pyrethroids, and chloroacetanilides [128-130]. Microorganisms
called Streptomyces have proven to be highly effective in removing
or converting several pollutants at once. It was discovered that lindane
and Cr(VI) could be effectively removed from soil polluted with both
chemicals by both pure and mixed cultures of Streptomyces strains.
In order to lower pesticide concentrations in various environmental
matrices and stop their infiltration into the environment, thus lowering
human exposure, Streptomyces degradation of pesticides has been
thoroughly investigated in biotechnological process development
[131] (Table 2).

9. BOOSTING THE COMPOSTING PROCESS

In order to speed up the rate at which trash breaks down and raise
the quality of compost at the end, microbial inoculation techniques
introduce capable microorganisms to the compost mixture. These
microorganisms can be grown in culture mixtures including
soil, manure, and straw, or they can be separated from microbial
communities under certain selection pressures [ 145]. A single strain of
effective microorganisms or a combination of them can be used as the
inoculums [146] and seasoned compost samples [147]. Researchers
are currently investigating the use of mixed inoculants, which is a
collection of microorganisms that cooperate with one another [148—
150]. Microbial inoculants increase mesophilic and thermophilic
bacterial populations, which enhances temperature profile and
ammonia emissions. Additionally, it speeds up the process of
composting by increasing enzymatic activity and reducing the first lag
time of biological processes. When generating compost with a higher
nutritional value, microbial inoculation procedures can effectively
reduce the discharge of odorous emissions, particularly volatile
organic compounds [151,152]. Single or multi-stage applications of
microbial inoculums can be made at different points in the composting
process. The various stages of inoculum addition show a significant
impact on the physicochemical parameters of the composting process
[153].

9.1. Impact on the Composting Process

Naturally existing bacteria that live in the soil are called Streptomyces.
They are a great option to utilize as additions for solid waste composting
because of their well-known ability to produce a wide variety of
enzymes [145]. These microorganisms can hasten the decomposition
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of organic matter and encourage a composting process. The capacity
of Streptomyces strains to withstand extreme temperatures and other
environmental factors is one of their main benefits when used in
composting. They improve the condition of the soil and encourage the
growth of other beneficial microorganisms by releasing vital nutrients
into it as they break down complicated organic compounds [116].

Moreover, Streptomyces are efficient in decomposing a variety
of organic items, such as plant debris, animal faces, and food
leftovers. Because they can lessen waste volume and encourage more
environmentally friendly waste management techniques, they are
a great option for use in solid waste composting. Apart from their
advantages in composting, Streptomyces can also aid in odor reduction
and inhibit the formation of hazardous pathogens in a composting
setting [154]. This can make the work environment safer and more
comfortable for individuals who are doing the composting process.
All things considered, adding Streptomyces to solid waste composting
can have a variety of advantages, such as improved soil quality and a
more sustainable waste management approach through more efficient
composting [155].

Numerous studies have looked into the application of different
microbes as additives in composting issues. There has not been
much research on Streptomyces bacteria in this field. The effects of
microbial inoculation on the effectiveness and quality of composting
have been the subject of numerous studies. A sign of high-quality
compost is a reduction in the amount of time the breakdown process
takes because of microbial activity [156]. For instance, when
lignocellulose degradation was investigated, it was discovered that
actinobacteria inoculation sped up the synthesis of enzymes including
lignin peroxidase, xylanase, and CMCase, which raised the rates at
which organic matter degraded [157].

9.2. Inoculation Techniques for Improving Soil and Crops health

As an alternative to traditional chemical fertilizers, the use of
beneficial microorganisms to improve soil and crop productivity
has attracted a lot of interest in recent years [116]. These beneficial
microbes have been shown to be crucial for maintaining healthy soil
and promoting plant growth. On the other hand, little is known about
the use of compost enhanced with Streptomyces on crops and soil. The
application of Streptomyces-enriched compost to soil or crops has not
yet been the subject of any research. Nonetheless, there is research
on the utilization of manure enhanced with beneficial microbes
that might also be used for composting [158]. Suggests several
applications of manure supplemented with microorganisms based on
the type of manure. One technique is to directly inoculate soil before
planting or during cultivation with various preparations for efficient
microorganisms (EMs). Fustigation is an additional technique in
which EM formulations are irrigated into the soil using manure at
ratios of 1:1,000 to 1:5,000 [159].

Using manure-based goods may have an adverse effect on the
environment, therefore it is crucial to think about that and use the right
management techniques to reduce any hazards. Even ifthese techniques
might work in some situations, more investigation is required to
ascertain their repeatability and dependability in various circumstances.
Composting and crop rotation are two alternative strategies that can
improve soil health and lessen the need for commercial fertilizers. All
things considered, a variety of soil management strategies, such as the
application of compost enhanced with EM, can support resilient and
sustainable agriculture. Farmers and growers can maximize soil health
and productivity while minimizing environmental impact by carefully
weighing the advantages and disadvantages of various practices.
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9.3. Inoculation in Composting: Obstacles and Suggestions

The Moroccan government introduced the Green Morocco Plan
(GMP 2008-2020) as a national initiative to modernize and enhance
the sustainability of the agriculture sector. The use of compost as a
natural soil supplement and the promotion of organic agriculture are
the main tenets [160]. The Moroccan government has passed laws
to support this project, encouraging farmers to utilize sustainable
techniques and to increase the use of compost in agriculture. In order
to encourage the use of organic inputs like compost, Morocco passed
the Organic Agriculture Regulation, which governs organic production
and commercialization. The National Compost Strategy was also
introduced by the government with the objective of expanding the
use of compost in agriculture and creating a nationwide network of
composting facilities [161].

The plan calls for actions including offering financial incentives
and technical support to farmers who use compost-based farming
methods, encouraging the advancement of composting technology
research and development, and standardizing and certifying compost
to raise its caliber and uniformity. Nonetheless, the government is still
firmly committed to encouraging sustainable farming and lowering
reliance on artificial inputs. A strong composting sector is thought
to be essential to reaching these objectives. Notwithstanding these
efforts, there have been a number of obstacles to the execution of these
requirements, such as the high cost of organic inputs and the absence of
infrastructure for the manufacturing and transport of compost among
farms. However, in order to overcome these obstacles, the Moroccan
government is implementing compost-based agriculture techniques in
an effort to create a network of composting facilities and encourage
the application of compost as an affordable and sustainable substitute
for synthetic fertilizers [162].

The goals of the Moroccan Kingdom are to promote equitable and
sustainable economic growth, lessen greenhouse gas emissions,
and enhance soil health. Our study focuses on enhancing the
composting process by using microorganisms like Streptomyces in
the framework of the Moroccan government’s efforts to promote
sustainable agriculture with compost. Utilizing Streptomyces bacteria
in composting is a novel waste treatment method that may have
advantages. However, in order to create a technology that is both
affordable and environmentally sustainable, a number of issues must
be resolved [163], and determining the proper method and dosage
of Streptomyces inoculation for the best composting is a significant
problem. It needs research to understand the actions of Streptomyces
bacteria during composting in order to choose the most appropriate
inoculants, considering their stability, adaptability, physiological
makeup, and functionality.

Furthermore, there are not many extensive studies on the use of
Streptomyces bacteria in composting, and further research is required
to validate the advantages shown in smaller-scale studies. Developing
commercially feasible technological processes for the manufacture of
Streptomyces inoculants is also essential. This includes making use
of low-cost materials for inoculant propagation, such as plant-based
substrates or agro-waste. Finding the right procedure is one of the
biggest challenges. Finally, research into predicting and optimizing
the composting process using engineering processing techniques is
required to guarantee the composting sustainability process without
sacrificing the final product’s quality [164]. Our objective is to
enhance sustainable agriculture and lessen its negative impact on the
environment in Morocco and other regions by creating more effective
and efficient composting techniques.

10. FUTURE PROSPECTS

In current agriculture practices, biocontrol agents and biofertilizers
mostly contain plant growth-promoting microbes (PGPMs) as the sole
ingredient. Plant growth promoting rhizobacteria colonized around
the rhizosphere of plants induces a positive impact on the host, such
as increased plant growth and improved defense against disease-
causing pathogens (Fig. 2). The predominant bacterial genera in
microbial-based biofertilizers and biocontrol agents are Arthrobacter,
Alcaligenes, Azospirillum, Azotobacter, Bacillus, Burkholderia,
Enterobacter, Klebsiella, Pseudomonas, Rhizobium, Serratia, and
Streptomyces [165]. Microbial-controlling agents are the ultimate
replacement for harmful pesticides. These sliving entities, such as
microorganisms, provide eco-friendly nonchemical methods for
maintaining free of the plant disease [166,167].

The biocontrol of endophytes results in cell wall lyses, iron depletion
in the rhizosphere, and increased microbe resistance with the
rhizosphere. Endophytes antibiotic-producing mechanism increased
the host defense to control microbial diseases, with the potential
of antimicrobial enzymes (f1,3-glucanases, chitinases, proteases,
and lipases). The biosynthesis of siderophores with low molecular
weight helps to chelate the iron content in rhizospheric soil, which
blocks the invasion of pathogenic organisms [167,168]. Microbial
inoculants increased agricultural promised sustainability, decreased
crop loss by diseases, and enhanced the uptake of nutrients. Organic
biocontrol microbes built the tolerance for the plants to grow under
any conditions. These biopesticides formulation are cost-effective
and harmless to the ecosystem when applied to crops [169—171].
The biopesticides improve the performance and yield of the crop.
Localizing the bacterial inoculum in the soil will change the
temperature and humidity. Soil microbiome interactions with plants
improved the yield and productivity of the crop (Table 1).

11. CONCLUSIONS

This review focused on endophytic Streptomyces, the significant
contribution ability of these microorganisms to promote plant
growth, and their bioactive compounds beneficial to pharmaceuticals,
environmental, agricultural, and industrial sectors. The use of eco-
friendly microorganisms that reduce pest populations and enhance
plant growth forms the foundation of this promise. A potential answer
for a more sustainable agricultural future is using consortiums that
are developed from two or more compatible strains, biopesticides, or
biofertilizers in exemplary formulations. The studies mentioned in this
review lend credence to the idea that developing new formulations with
cooperative microbes may help improve plant protection and growth
in various crops. These studies also emphasize the need for more
research on this topic, with an emphasis on endophytic Streptomyces,
which have only recently been used as inoculants to improve pristine
ecosystems in agricultural soil, agricultural output, and food security.
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