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This study explores the antioxidant properties and anticancer potential of Cucumis pubescens Willd. (Cucurbitaceae)
fruits, focusing on enzymatic, nonenzymatic, and MTT [3-(4,5-dimethylthiozol-2-yl)-3,5-diphenyl tetrazolium
bromide] assays. The investigation reveals the presence of key antioxidant enzymes, known for their antioxidant
properties. Furthermore, MTT assay within C. pubescens exhibits significant anticancer effects by inducing cell growth
arrest and inhibition. The aim of this study was to assess the in vifro antioxidant potential and anticancer properties
of a human lung cancer cell line (A549). Antioxidant property evaluation methods are carried out through SOD
(superoxide dismutase) assay, catalase activity assay, GPx (glutathione peroxidase) assay, and DPPH (2,2-diphenyl-
1-picrylhydrazyl) assay. GST enzyme estimation established a detoxifying effect, and the MTT assay established
the cytotoxic potential of C. pubescens fruits. The fruit extract of C. pubescens showed promising antioxidant
properties and anticancer effects. The IC, (50% inhibition concentration) value was estimated to be 7.5 £ 1.5, which is
significantly higher compared to its positive control (doxorubicin). This comprehensive exploration not only enhances
our understanding of the health-promoting properties of C. pubescens but also emphasizes its potential as a nature-

derived source for medical applications, particularly in the field of oncology.

1. INTRODUCTION

India, endowed with rich biodiversity, boasts an array of wild fruits
that have been an integral part of traditional diets and folk medicine
for centuries. These fruits, sourced from diverse ecosystems across the
subcontinent, not only contribute to culinary diversity but also harbor
a rich source of bioactive compounds with potential health benefits.
Incorporating Indian fruit varieties can have a variety of health
benefits, including improved digestive health, heart health (lowering
blood pressure and cholesterol), enhanced immunity (vitamin C-rich
fruits), skin health, and blood sugar control. Fruits are also a rich
source of antioxidants [1]. The exploration of antioxidant-rich fruits
aligns with a global paradigm shift toward preventive healthcare and
the recognition of dietary interventions as pivotal components of
well-being.
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Common Indian wild fruits, such as Phyllanthus emblica, Syzygium
cumini, Ziziphus mauritiana, Punica granatum, Aegle marmelos, and
Annona squamosa, have drawn significant scientific interest due to
their rich phytochemical compositions. These fruits are replete with
polyphenols, flavonoids, and other bioactive compounds, contributing
to their antioxidant potential [2]. Traditional medicinal practices in
India have long harnessed the therapeutic properties of these fruits,
recognizing their ability to bolster the body’s defense against oxidative
stress and associated ailments.

As India generally bears the burden of communicable and
noncommunicable diseases, perceiving the antioxidant properties of
common Indian wild fruits becomes paramount. This exploration not
only sheds light on traditional wisdom but also provides a scientific
basis for incorporating these fruits into modern dietary patterns and
wellness strategies. In this context, this study aims to delve into the
antioxidant properties and anticancer potential of wild cucumber
fruit (C. pubescens), unraveling their phytochemical intricacies and
potential health implications.

C. pubescens (fruit), colloquially known as the prickly cucumber or
gooseberry cucumber, has been regarded as a subject in medicinal
plant research. Although usually not cultivated, this plant commonly
thrives as a weed amidst other crops. It tends to flourish in fields
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where sorghum, maize, and groundnut were cultivated, particularly
in arid and infertile soils. Its growth is widespread across the
drier regions of India. Characterized by a hairy stem, the plant
produces yellow flowers, and its fruit skin displays various colors,
including yellow, striped green, and brown. It is capturing attention
owing to its promising health-promoting properties. Belonging
to the Cucurbitaceae family, this fruit has a history of traditional
medicinal uses across various cultures [3]. As the demand for
natural remedies and functional foods continues to grow, exploring
the therapeutic properties of C. pubescens has become essential.
The interest in C. pubescens is driven by its composition of
bioactive compounds, including polyphenols and flavonoids,
known for their potential antioxidants. A variety of antioxidants
contribute to reducing oxidative stress and are also associated with
different diseases, especially cancer [4]. Oxidative stress happens
when there is a disproportion between reactive oxygen species
(ROS) production and the body’s capability to reduce their effect,
followed by causing cellular damage and contributing to initiation
of cancer-related diseases.

The relationship between antioxidant potential and anticancer
properties has been discussed in biomedical research using various
medicinal plants. Multiple scientific articles explore the interplay
between cellular redox balance and carcinogenesis. Antioxidants,
by nature, are capable of neutralizing ROS and moderate oxidative
stress, play a pivotal role in maintaining cellular homeostasis, and
prevent DNA damage [5]. Elevated levels of oxidative stress are
characterized by an inequity between the production of ROS and
the defense system of antioxidants, and they have been implicated
in the initiation and progression of various cancers. Antioxidants,
sourced from both endogenous cellular mechanisms and exogenous
dietary components, act as frontline defenders against ROS-induced
cellular damage. Importantly, the capacity of antioxidants to scavenge
free radicals and oxidative stress is reduced. The exploration of their
potential is used in cancer prevention and treatment. Preclinical studies
have demonstrated that compounds with robust antioxidant potential,
such as polyphenols and flavonoids found in various fruits and
vegetables, exhibit anticancer activities by interfering with cancer cell
proliferation, inducing apoptosis, and suppressing angiogenesis [6].
However, the intricate balance between pro-oxidant and antioxidant
effects poses challenges in extrapolating these findings to clinical
settings, highlighting the need for a detailed understanding of the role
of antioxidants in cancer biology. While antioxidant-rich diets have
shown promise in reducing cancer risk, the complex nature of cancer
demands a robust approach that considers individual variability, the
specific type of cancer, and the stage of its development [7]. Thus,
elucidating the dynamic relationship between antioxidant potential and
anticancer effects remains a crucial area of research, with implications
for both preventive strategies and therapeutic interventions in the
study of oncology.

While preliminary investigations hint at the antioxidant potential
of C. pubescens, a comprehensive elucidation of its bioactive
constituents and their specific modes of action are paramount. This
research endeavors to bridge existing knowledge gaps, delving into
the molecular intricacies of how C. pubescens may mitigate oxidative
stress and, consequently, contribute to the prevention or treatment of
diseases, with a particular focus on cancer. By scrutinizing the fruit’s
pharmacological attributes, this study seeks to understand the scientific
need for the utilization of C. pubescens as a potential therapeutic agent,
thus aligning with the global pursuit of effective and sustainable health
interventions.

2. MATERIALS AND METHODS
2.1. Plant Collection and Identification

The C. pubescens (fruit) used in this study was collected from in and
around Namakkal in the state of Tamil Nadu. The collected plant sample
was identified with the support of plant taxonomists at the Department
of Botany, Arignar Anna Government Arts College, Namakkal, Tamil
Nadu, following the guidelines of botanical flora [8]. The botanical
nomenclature of the plant was as per the flora of Tamil Nadu [9].
The sample was stored in a shaded area for subsequent analysis. A
voucher specimen number BOT-AAGAC-08/2018) was assigned to
the sample. The freshly collected fruits were washed thoroughly and
dirt and debris were removed. The fruit was uniformly cut into slices to
ensure even drying. The thinner slices generally dry faster. The slices
were placed in trays and dried in a sunny and well-ventilated area. The
trays were covered with cheesecloth or mesh to protect the fruit from
insects and debris. After consistently drying the fruit slices under the
sun, the shade-drying process was followed. After shade drying of the
fruit slices for 20 days, they were ground, powdered, sieved with No.
40 mesh, and stored in a cool place. To ensure the quality and integrity
of the fruits during the shade-drying process, several measures were
implemented. The fruits were regularly monitored throughout the
20-day period to detect any signs of microbial contamination. The
drying area was maintained in a clean and well-ventilated condition to
minimize the risk of fungal and bacterial growth. The powder was later
stored in airtight containers.

2.2. Evaluation of Antioxidant Properties

2.2.1. Fruit extract preparation

The fruit was rinsed in running water, and with a vegetable peeler, the
outer skin was removed. The seeds and pulp were discarded, retaining
the mesocarp for enzyme extractions. A 10 g portion of the mesocarp
was homogenized with the help of a mortar and pestle in 30 mL of ice-
cold 100 mM potassium phosphate buffer solution (pH 7.5) and stored
for subsequent enzymatic activity measurements [10].

2.2.2. Estimation of superoxide dismutase

The activity of superoxide dismutase (SOD) was estimated using a
standard assay method, using ascorbic acid as a control to generate
a comparative curve. In a conical flask, 25 mL of 216 mM potassium
phosphate buffer (pH 7.8), 1 mL of 10.7 mM EDTA, 1 mL of 1.1
mM cytochrome C solution, 50 mL of 5 units/mL xanthine oxidase
solution, and 23 mL of purified water were added. The components
were mixed, and the pH was adjusted to 7.8. The absorbance at 550
nm was monitored until it equilibrated. Varying quantities of 10x
diluted fruit extract were added to this cocktail mix, and the increase in
absorbance at 550 nm was measured [11]. The percentage of inhibition
was recorded accordingly.

o —AA
% inhibition = uninhibited inhibited 100
uninhibited — S blank
where
wimninies—2Abs0rbance of uninhibited extract — blank at 550 nm,
A4, . —Absorbance of inhibited extract — blank at 550 nm,

AA,—Absorbance of blank at 550 nm.

blank
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2.2.3. Estimation of catalase

Catalase stands as a vital antioxidant enzyme, playing a key role in
catalyzing the decomposition of peroxides into nontoxic substances.
The assessment of catalase activity often involves measuring its ability
to scavenge hydrogen peroxide, which is indirectly proportional to
the quantity of catalase present in the fruit extract. To gauge this,
the absorbance of a hydrogen peroxide solution, prepared in mM
phosphate buffer, is measured as a blank at 230 nm. Subsequently, 1
mL of the fruit sample extract was taken out at various concentrations,
introduced to 2 mL of this solution, and incubated at room temperature
for 10 min. The reaction is halted using 100 mM H,SO,, and absorbance
was taken at 230 nm against the blank [12]. The activity of catalase
was estimated using a standard assay method, with curcumin used to
generate a standard curve for comparison. The scavenging action is
graphed against concentration, facilitating the evaluation of catalase
activity using a predefined formula:

Ay, control — A,y sample o

% scavenging activity = 100

A, control

where
A, control—Absorbance of control at 230 nm,

A, sample—Absorbance of fruit sample at 230 nm.

2.2.4. Estimation of glutathione peroxidase

An essential antioxidant enzyme that is vital to cellular defense against
oxidative stress is glutathione peroxidase (GPx). Using reduced
glutathione (GSH) as a substrate, the main role of GPx is to catalyze the
reduction of hydrogen peroxide (H,0,) and organic hydroperoxides.
The guaiacol oxidation method is used to measure GPx activity
[12], using 1 mL of fruit sample extract, 8 mL of guaiacol, and 10
mL of potassium phosphate buffer (pH 7.0). The addition of 2.75 mM
hydrogen peroxide starts the process. Tetraguaiacol production is
shown by a 30-min spike in absorption at 470 nm. The calculation of
% inhibition is performed using the provided formula.

Aygy control — A, sample

% inhibition = 100

A, control

where
A, control—Absorbance of control at 470 nm,

A, sample—Absorbance of sample at 470 nm.

2.2.5. Estimation of DPPH

DPPH is a dark crystalline solid with a strong ability to scavenge
radicals and generate a deep violet solution. The DPPH assay,
utilizing 2,2-diphenyl-1-picrylhydrazyl (DPPH), is a widely employed
colorimetric method for determining antioxidant potential in plant
varieties. DPPH, a dark crystalline solid yielding a deep violet solution,
exhibits robust radical scavenging capacity, causing a pale yellow
or colorless transition upon reacting with free radicals. The higher
antioxidant content in samples correlates with increased discoloration
of the purple pigment, emphasizing the electron-donating role of
the antioxidant source. Trolox and ascorbic acid serve as standard
antioxidants in DPPH assays [13]. Quantifying antioxidant potential
is expressed through various methods such as pmol trolox equivalent
antioxidant capacity (TEAC)/100 g dried material and EC, .

Antioxidant potential can be measured using multiple techniques,
including EC, and umol TEAC/100 g of dry material.

o/ = el e _ Acanm)[ B Asamplc
% inhibition = ——"—""=x100

control

where
Acontrol-—Absorbance of control at 515 nm,

Asample—Absorbance of sample at 515 nm.

2.3. Assessment of Anticancer Potential

2.3.1. Estimation of glutathione S-transferase

By catalyzing the conjugation of the tripeptide glutathione (GSH)
to a range of hydrophobic and electrophilic chemicals, the enzyme
glutathione S-transferase (GST) is essential to cellular detoxification.
In the enzymatic assessment of GST activity, conducted at 25°C, the
substrate employed was 1-chloro-2,4-dinitrobenzene (CDNB). The
reconstitution medium for enzyme activity consisted of phosphate
buffer (pH 6.5), 20mM GSH, and 25mM CDNB. Enzyme units, a
standard measure in enzyme research, represent the quantity of enzyme
catalyzing the conversion of 1 umol of a substrate to a product within
I min. Spectrophotometric measurements of absorbance changes at
340 nm were recorded over a 1-min interval using a spectrophotometer.
The GST enzyme activity, utilizing reduced GSH and CDNB as
substrates, was quantified spectrophotometrically at 25°C. This
methodological approach allows for a comprehensive evaluation of
GST catalytic efficiency under the given experimental conditions [14].

2.3.2. Morphological study

The National Centre for Cell Sciences (NCCS), Pune, India, provided the
A549 human lung cancer cells. A balanced salt solution (BSS) containing
1.5 gL Na,CO,, 0.1 mM non-essential amino acids, 1 mM sodium
pyruvate, 2mM L-glutamine, 1.5 g/L glucose, 10 mM (4-(2-hydroxyethyl)-
1-piperazineethane sulfonic acid) (HEPES), and 10% fetal bovine serum
(GIBCO, USA) was added to the Dulbecco’s modified Eagle’s medium
(DMEM) for the cancer cells that were chosen. Furthermore, 100 IU/100
ng of penicillin and streptomycin were added at a 1 mL/L dosage. The
cells were grown in a humidified environment with 5% CO2 at 37°C.

To study the morphology, the selected cells, cultivated on coverslips at a
density of 1 x 10° cells per coverslip, underwent incubation with acomplex
at various concentrations. Following that, a 3:1 (v/v) ethanol:acetic acid
solution was used to fix the cells. To conduct morphometric analysis, the
coverslips were carefully attached to glass slides. Using micrography,
three monolayers from each experimental group were recorded. Nikon
(Japan) bright-field inverted light microscopy was used to examine the
morphological changes in the cells at 10x magnification [15].

2.3.3. Evaluation of cytotoxicity

To find out the inhibitory concentration (IC,) value, the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test
was used. In a 96-well plate, cells were grown at 1 x 10* cells/ well
for 48 h, until 80% confluence was reached. Later, the cells were
cultured for an additional 48 h, until 80% confluence was reached.
Then, the cells were cultured for an additional 48 h in a new medium
that contained a serially diluted sample. After discarding the culture
medium, 100 pL of MTT [3-(4,5-dimethylthiozol-2-yl)-3,5-diphenyl
tetrazolium bromide] solution (Hi-Media) was added to each well and
incubated at 37°C for 4 h. Following the deletion of the supernatant,
50 uL of DMSO was added to solubilize the formazan crystals, with an
additional 10-min incubation. The OD was measured at 620 nm using
an ELISA multi-well plate reader (Thermo Multiskan EX, USA).
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The OD value was used for calculating the percentage of viability,
employing the following formula [16].

OD value of experimental sample “

% of viability = 100

OD value of experimental control

2.3.4. Statistical analysis

Each in vitro experiment was conducted in triplicate, and the entire set
of experiments had three replicates. The statistical differences among
the fruit extracts were evaluated using a one-way ANOVA. Every
value is significant at p <0.05.

3. RESULTS AND DISCUSSION

The antioxidant properties of C. pubescens (Fruit) were determined
through enzymatic activity assays, including SOD, catalase, and
glutathione peroxidase, along with the estimation of redox potential
through the DPPH assay. The comparison was done to identify the
antioxidant potential between standard and fruit extract. Notably, the
C. pubescens fruit extract demonstrated exceptional performance,
surpassing the standard in terms of % inhibition in all assays, except
for the catalase assay, where it performed well. This observation was
consistent across varying concentrations for each respective assay.

3.1. Superoxide Dismutase

The SOD assay of the C. pubescens fruit extract showed various
concentrations from 20 to 100 pg/mL, inferring that the activity
increased when the concentration of the fruit extract increased.
The results showed a gradual increase in the dosage of fruit extract
concentration. The maximum SOD activity was observed in 100 pg/mL
and the 44.30 + 0.24 percentage of inhibition was recorded against the
standard ascorbic acid [Figure 1].

3.2. Catalase

The catalase activity was reduced when the concentration of fruit
extract increased. The maximum activity of catalase recorded in

50
—e— Ascorbic acid
—m— C. pubescens
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Concentration (ug/mL)

standard curcumin is as follows: 13.56 + 0.64, 24.37 + 0.23, 36.02 +
0.46,45.15+£0.71, and 59.24 £ 0.15. But in C. pubescens the catalase
activity was reduced, and the percentage of inhibition was 11.03 £0.74,
2.62+0.52,31.89£0.11,39.22 £ 0.31, and 52.84 + 0.42, respectively,
from the concentration of 20—100 pg/mL of fruit extract [Figure 2].

3.3. Glutothione Peroxidase

The C. pebescens fruit extract was subjected to glutothione peroxide
analysis at the concentrations of 20, 40, 60, 80, and 100 pg/mL. When
compared with the gallic acid used as a standard, the percentage of
inhibition was 11.33 £ 0.43, 13.90 £ 0.67, 17.46 £ 0.7, 26.45 + 0.32,
and 40.66 £ 0.26. The fruit extract recorded 18.47 + 0.43, 20.81 +
0.68, 22.58 + 0.22, 28.41 £ 0.85, and 43.18 £ 0.53 as percentages
of inhibition. When increasing the concentration of fruit extract, the
glutathione peroxidase activities also increased [Figure 3].
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Figure 2: Comparison of the catalase activity of standard curcumin and C.
pubescens fruit extract at different concentrations. All the values are expressed
as the mean + standard deviation with three replicates.
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Figure 1: Comparison of the superoxide dismutase activity of standard ascorbic
acid and C. pubescens fruit extract at different concentrations. All the values are
expressed as the mean + standard deviation with three replicates.

Figure 3: Comparison of glutathione peroxidase activity of standard gallic
acid and C. pubescens fruit extract at different concentrations. All the values
are expressed as the mean * standard deviation with three replicates.
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Figure 4: Comparison of redox potential of standard ascorbic acid and C.
pubescens fruit extract by DPPH assay at different concentrations. All the
values are expressed as the mean + standard deviation with three replicates.
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Figure 5: Comparison of glutathione S-transferase activity of standard gallic
acid and C. pubescens fruit extract at different concentrations. All the values
are expressed as the mean + standard deviation with three replicates.

3.4. DPPH

The results of the DPPH (a,0-diphenyl-B-picrylhydrazyl) assay also
aligned with the trends observed in other methods for estimating
antioxidant properties. The percentage of scavenging activity was
shown in 100 pg/mL at its maximum when increasing the concentrations
of fruit extract as 20, 40, 60, 80, and 100 pg/mL. When increasing the
concentration of standard ascorbic acid and C. pubescens fruit extract,
it increased the DPPH free radical scavenging activity [Figure 4].

3.5. Glutothione S-Transferase

GST activity was measured by the biochemical method, and MTT
assay was carried out by in vitro method. The C. pubescens fruit extract
showed better inhibition potential when compared to its standard in
GST assay as given in Figure 5. The effect of fruit extract in various

concentrations ranging from 20 to 100 pg/mL. The maximum GST
activity was recorded at 100 pg/mL, and the lowest percentage of
inhibition was recorded at 20 pg/mL of fruit concentration against the
standard gallic acid [Figure 5].

3.6. Cytotoxicity

For anticancer potential assessment, both biochemical and in vitro
methods were employed. In the in vitro analysis, a comprehensive
assessment of cell morphology and cytotoxicity was conducted, with
the detailed outcomes presented in Figures 6 and 7, and Table 1.
Figure 6 clearly illustrates a dose-dependent response of the cells to
the incremental addition of the fruit extract. Notably, the introduction
of 50 pg/mL of the fruit extract resulted in a reduction of cells within
the defined area compared to the control sample. Moreover, this
concentration exhibited enhanced morphological features, showcasing
well-defined cells with fairly regular shapes.

Figure 6: 10x image of bright-field inverted light microscopy of A549 lung
cancer cells with varying concentrations of C. pubescens fruit extract. (a)
Control, (b) 10 pg/mL, (c) 25 pg/mL, and (d) 50 pg/mL.
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Figure 7: Comparison of cell viability between C. pubescens fruit extract and
doxorubicin (positive control) by MTT cell cytotoxicity assay.
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3.7. Cell Viability

The concentration-dependent impact on cell viability is evident in
Figure 7, where an increase in the fruit extract concentration from 0 to
100 pg/mL is associated with a gradual decrease in cell viability. These
findings are further elucidated and organized in Table 1, providing a
comprehensive overview of the observed effects on cell morphology
and viability in response to varying concentrations of the fruit extract.
Table 2 shows that the IC, | value of the fruit extract was estimated to
be 7.5 £ 1.5, in comparison to doxorubicin, employed as a positive
control, which demonstrated an IC_ of 6 + 0.5 over a 24-h time period.

C. pubescens, an Indian wild plant variety, has been relatively
underexplored in prior research, resulting in limited available resources
on its characteristics, uses, and potential medicinal benefits. While
the existing literature is sparse, some sources suggest a Synonymous
relationship between C. pubescens and C. melo, the widely cultivated
honeydew melon in India [17]. This relationship allows for meaningful
comparisons to be drawn not only between these two distinct species
but also with other members of the Cucumis genera. Exploring such
associations provides a valuable foundation for understanding the
unique features and potential applications of C. pubescens within the
broader context of its plant family.

An extensive array of resources exist for comprehending the
therapeutic potential of C. melo globally. Researchers in the study
of food and pharmaceuticals have examined plant extracts from
diverse parts of the C. melo plant, seeking therapeutic molecules and
elucidating its potential mechanisms of action. Notably, investigations
have highlighted the antioxidant, anti-inflammatory, and analgesic
properties inherent in the seeds of C. melo [18]. Traditional uses have
attributed to its diuretic properties. The plant has garnered significant
attention for its antioxidant potential, as evidenced by numerous
studies [19]. In contrast, C. pubescens remains relatively unexplored,
presenting a compelling avenue for exploration. It holds the potential
to yield health benefits equal to or even surpassing those found in
cultivated honeydew melons. Hence, a comprehensive investigation
into C. pubescens is of paramount importance to understand its
untapped therapeutic potential and contribute to our understanding of
its health-promoting properties.

This investigation assessed both the antioxidant properties and anticancer
potential of C. pubescens through a series of gauging tests. Given the

Table 1: Experimental results of cell viability analysis by MTT assay.

Concentration (ng/mL)  Cucumis pubescens  Doxorubicin Positive
Fruit Extract Control
% of Cell Viability % of Cell Viability
0 97 95
20 56 37
40 45 28
60 32 22
80 27 19
100 23 16

Table 2: IC,  estimation by MTT assay.

Sample Name IC,, (ng/mL)
C. pubescens fruit extract 75+1.5
Doxorubicin 6£0.5

IC,;—Values of respective sample (at 24 h).

straightforward nature of studying SOD as an enzyme for comprehending
antioxidant potential, it is noteworthy that prior research has already
established C. melo as a notable source of SOD enzyme [20]. Several
common enzymes utilized to assess antioxidant potential include
SOD, catalase, GPx, ascorbate peroxidase, ascorbate oxidase, guaiacol
peroxidase, and glutathione reductase. Additionally, nonenzymatic
methods, such as measurement of DPPH reduction, total phenolic content,
flavonoids, saponins, ascorbic acids, anthocyanins, FRAP, and ABTS,
constitute a diverse array of techniques available for comprehending
antioxidant potential. It is not mandatory to employ all methods to
establish the antioxidant properties of a sample. Simultaneously, not all
methods measure similar substrates to elucidate antioxidant properties.
Therefore, the choice of methods depends on the researcher’s discretion,
laboratory capabilities, and the feasibility of conducting a specific assay
to determine the antioxidant properties of a test substance. Being a
wild variety rather than a cultivated one, C. pubescens exhibits a higher
tolerance to both drought and salinity. Previous studies have identified
the abundance of antioxidant enzymes, including SOD, catalase, and
ascorbate peroxidase, in salinity-tolerant varieties of C. melo [21]. We
possess substantial evidence indicating a correlation between antioxidant
properties and the potential for anticancer effects. While cancer employs
various mechanisms to invade normal cells, these mechanisms ultimately
lead to the generation of free radicals. A robust antioxidant has the
capacity to mitigate the damage caused by free radicals to a considerable
extent, potentially counteracting the harmful effects of cancer cells [22].
The inherent qualities observed in C. pubescens make it a compelling
candidate for further exploration in evaluating its potential anticancer
properties. Similar results were reported for Limonia elephantum, which
is commonly known as wood apple in Indian folk medicine [23,24].

The assessment of anticancer potential encompassed both biochemical
and in vitro methods, with the evaluation of GST activity constituting
the biochemical approach, while the MTT assay served as an in
vitro method. Within the Cucumis genus, one noteworthy compound
of interest is cucurbitacin, a secondary metabolite prevalent in the
Cucurbitaceae family. Extensively studied for its anti-inflammatory
properties, antitumor effects, and antidiabetic activity, cucurbitacin
holds promise for various therapeutic applications [25]. It is important
to note that the current study does not focus on isolating specific
molecules responsible for anticancer properties. Instead, the objective
is to utilize the crude extract of the whole fruit to explore potential
therapeutic benefits.

The presence of GST in cucumber varieties has been documented,
particularly in response to cold stress in plants [26]. This enzyme is
involved in one of the most prevalent pathways crucial for the plant’s
detoxification response, potentially playing a significant role in
mitigating the impact of carcinogenic cells. Another mechanism under
consideration involves the efficient elimination of xenobiotic substances
post their interaction with GST. These mechanisms collectively highlight
the multifaceted role of GST in contributing to the detoxification
processes within cucumber varieties. The fruit extract also possesses
neuroprotective activity in vivo using rat models [27].

Cell cytotoxicity assays conducted on cancer cell lines serve as a
crucial method for assessing the potential anticancer activity of the
molecules or extracts under investigation. Numerous studies have
explored the anticancer effects of various Indian fruits, employing
cancer cell lines such as A549, HepG2, MDA-MB-231, among
others [28,29]. Remarkably, some of the most effective anticancer
drugs have been derived from common Indian fruits and vegetables.
This underscores the significance of investigating natural sources for
potential therapeutic agents in the fight against cancer. Cucurbitacins
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elicit arrest of cell growth and induce apoptosis in a diversity of
cancer cells. This action occurs through the suppression of Akt
phosphorylation, subsequently leading to the modulation of p21/cyclin
signal, activation of mitochondria-dominated caspase pathways, and
interference with signaling pathways associated with the migration
of cancer cells and invasion [30,31]. Moringa concanensis is active
against anticancer properties by using HepG2 cell lines. The plant
is reported to be a novel and natural phytomedicine against various
diseases [32]. Nevertheless, a comprehensive study is essential
for the isolation and characterization of the specific molecules
responsible for the anticancer effects observed in C. pubescens
fruits. This necessitates the utilization of robust and systematic
methods, including in vivo studies, to firmly establish the research
findings. Such an investigation holds the potential to create a market
for this fruit, paving the way for the utilization of naturally derived
substances for medical purposes.

4. CONCLUSION

The present study delves into the antioxidant properties and anticancer
potential of C. pubescens fruits. While the exploration of antioxidant
enzymes and nonenzymatic methods provided valuable insights,
the study suggests a promising avenue for further research on this
wild variety. The documented presence of GST and the potential
implications of its anticancer properties in inducing cell growth arrest
and apoptosis underscore the potential use of C. pubescens. However,
it is imperative to conduct a more detailed investigation, involving
the isolation and characterization of specific anticancer molecules.
Robust methodologies and in vivo studies are warranted to firmly
establish these findings and potentially unlock the market for this
easily cultivable fruit, offering nature-derived substances for medical
applications. The study opens a gateway for harnessing the therapeutic
potential of C. pubescens in the area of oncology and underscores the
importance of furthering our understanding of its health-promoting
properties.
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