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ABSTRACT

Scopoletin (Sc) is a coumarin phytoalexin which is biosynthesized by numerous plants including Scopolia carniolica, 
Scopolia japonica, Artemisia scoparia, and Viburnum prunifolium. The main goal of this study was to perform 
a systemic bioinformatics on the anti-colon cancer effects of Scopoletin. A holistic bioinformatics strategy was 
developed to predict the mechanisms by Sc that protects colon health. Comparative toxicogenomics database and 
DisGeNET database were used to discover potential genes. The protein-protein interactions (PPIs) PPI network was 
constructed using STRING and visualized by Cytoscape software. Based on a multi-pathway network using the 
molecular complex detection plugin of Cytoscape, it was observed that Sc may protect colon cancer by suppressing 
the oxidative stress and inhibiting inflammation through regulation of nuclear factor erythroid-related factor-2 
signaling pathway, inflammation associated pathways, apoptosis pathway, autophagy pathway, cell proliferation 
signaling, and insulin sensitizing pathway. Gene ontology analysis generates highly interconnected pathways that 
are the basis for biological process, molecular function, and cellular components, as well as pathway enrichment 
analysis. Our findings contributed to the investigation of molecular mechanisms and the identification of potential 
target biomarkers for the treatment of colon cancer.

1. INTRODUCTION

Colon cancer (CC) is the second- and third-most common cancer 
in women and men, respectively. The pathology of CC is largely 
influenced by hereditary [1]. The steady accumulation of genetic 
and epigenetic alterations that activate oncogenes and inactivate 
tumor suppressor genes is a characteristic of cancer. These 
modifications lead to malignant transformation of colon cells 
through repeated cycles of clonal proliferation that select for 
cells with aggressive behavior [2,3]. According to one prevalent 
hypothesis, a common therapy holds that a stem cell or a cell 
that resembles a stem cell that is found close to the base of the 
colon crypts is responsible for the majority of colon cancers [4]. 
Mutations may occur in oncogenes, tumor suppressor genes, and 
DNA repair system genes [5].

Despite starling evidence in cancer biology over the past few decades, 
treatment for the vast majority of patients remains a pipe dream. This 
unsatisfactory situation, which can lead to chemotherapy failure and 
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a fatal prognosis for patients, is largely caused by the development 
of drug resistance. Drug resistance is a critical problem for not just 
well-known cytotoxic medications but also to more recent finest 
molecules and treatment antibodies that specifically target tumor cell 
locations [6]. Consequently, the race to discover and develop new 
medications is still on. Drug resistance is often complex and multiple 
pathways may contribute to tumor insensitivity to drugs [7].

Scopoletin (Sc) is found in a variety of medicinal plants, including 
species of the genus Scopolia [8]. It is known to be extremely harmful to 
tumor cells [9]. It exhibits anti-inflammatory and antioxidant properties 
and activates programmed cell death and autophagy [10]. It also has 
antidepressant, anti-thyroid, anti-hyperglycemic, hypouricemic, 
neuroprotective, and endocrine activities [11,12]. Recent studies on 
Sc have shown that some Sc derivatives possess potent antitumor 
properties [13].

Network pharmacology explores the complex connections between 
factors, diseases, and targets by combining systems biology, 
pharmacology, and computer analysis technologies. It helps us analyze 
the mechanism of action of Sc in the treatment of diseases by analyzing 
components and disease-related targets and providing biological 
processes and pathways through which Sc may play a role. Through an 
integrated system of bioinformatic analysis, the current experimental 
study aims to predict the possible role of Sc in the prevention and 
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control of colon cancer. Data were obtained from Gene-disease 
associations (DisGeNET) and Comparative Toxicogenomics Database 
(CTD), which were subsequently analyzed to obtain intersection genes 
and assessed to diagnose major genes associated with colon cancer. 
The process map of the experiment is shown in Figure 1.

2. MATERIALS AND METHODS

2.1. Source and Search Strategy for Data Collection
CTD (http://ctdbase.org/) was used to find Sc’s target genes by inputting 
“Sc” into the search box [14]. Some other Sc-target genes were selected 
from previous literature studies [15-22]. The terms “Colon carcinoma” 
and “colon cancer” were used in a database called DisGeNET (http://
www.disgenet.org/).  The above database serves to find the potential 
target genes for colon cancer and chronic inflammation.

2.2. Protein-Protein Interaction (PPI) Analysis
To create the PPI study, the intersection of genes was obtained by first 
mapping Sc-targeted genes to colon carcinoma genes. Crossover genes 
have been used as potential targets of Sc in the treatment of colon 
cancer. Using specified criteria, PPI assessment was carried out. The 
following are the entries to be done in the database,  Enter “official 
gene symbol” into the “Multiple proteins” field, with organism “Homo 
sapiens” with a medium confidence score of above 0.4 in the string 
database (https://string-db.org/) [23].

2.3. Network Analysis
All of the PPI data were processed through the Cytoscape (https://
cytoscape.org/) [24]. A network analyzer tool was employed 

for performing multicomponent and multi-target effects for 
Scopoletin. It analyzes biological pathways and determines 
network topology metrics such as network dimension, count of 
typical neighbor node, and number of connected node pairs. In 
addition, it calculates the distribution of more complex network 
parameters such as shortest path length, average clustering 
coefficient, and node degree.

2.4. Identification of Hub Genes
Hub nodes are those with higher degree, closeness, and betweenness 
scores than the mean, which are determined. The Maximal Clique 
Centrality (MCC) algorithm has been shown to be a successful tool for 
identifying hub nodes in a coexpression network. Using CytoHubba 
and Centiscape 2.2, a Cytoscape plugin, the MCC of each node was 
determined. The top 10 MCC values are used to classify genes as hub 
genes [25].

2.5. Identification and Validation of Clusters
Subclusters from densely connected clusters and functional units in 
PPI networks were identified using the Molecular Complex Detection 
(MCODE) in plugin accessible in the Cytoscape [26]. MCODE scores 
>5, degree cutoff = 2, max depth = 100, and k-score = 5 were the 
selection criteria.

2.6. Gene ontology (GO) Analysis of the Hub Genes
ShinyGOv0.6 was used to determine GO of potential targets (http://
bioinformatics.sdstate.edu/go/). All the intersection genes were 
inputted in the search box and the best matching species was given as 
“Homo sapiens” with P-value (FDR) cutoff of 0.05 [27].

2.7. Pathway Enrichment Analysis of the Hub Genes
To identify and collect the networks connected to target genes, 
gProfiler was used for pathway enrichment analysis (https://biit.cs.ut.
ee/gprofiler/gost) [28]. Put all the intersection genes in the gene box 
input list with a threshold value of 0.05, mark the ordered query, 
organism – Homo sapiens, and run the query.

3. RESULTS

3.1. Data Acquisition and PPI Network
A total of 2833 colon cancer genes were generated from the 
DisGeNET database [Figure 2a]. A total of 51 Sc-targeted genes 
were selected. Out of which, 28 genes (ACACA, ACOX1, ACSL1, 
ADIPOQ, ADIPOR2, CIDEA, FASN, GPT, IL10, IL6, LIPE, 
MYD88, PNPLA2, SREBF1, TICAM1, TLR4, TNF, UGT1A1, 
UGT1A10, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, 
UGT2B15, and XPC) are collected from CTD database, and the 
remaining 23 genes (BCL2, BCL2L1, BCL2L7, CALB2, CAS3, 
CDH17, EGFR, GPA33, HMOX1, NOS2, KEAP1, LAMP3, 
MAPK1LC3A, MKI67, MUC2, NFE2L2, TP53, PTGS2, SIRT1, 
SQSTM1, STAT1, TLR2, and VEGF) were selected from previous 
literature. Fifty intersection genes were obtained by mapping Sc-
targeted genes to colon cancer genes. As shown in Figure 2a, all 50 
intersection genes were used as prospective Sc targets against colon 
cancer. The  STRING software was used to examine the physical 
and functional relationships between the genes and 50 intersecting 
genes were performed to construct the PPI network. The findings 
revealed that the network has 49 nodes and 551 edges. Figure 2b 
shows an average node degree of 22.5, an average local clustering Figure 1: Systematic representation of the experimental study.
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coefficient of 0.776, and a predicted number of 204 edges, with a 
medium confidence of 0.4 for its interaction score.

3.2. Network Analysis and Localization of Hub Genes
According to the analysis, the tightly packed network contains 49 
nodes and 551 edges. Other statistics include network diameter = 
4, network radius = 2, characteristic path length = 1.618, clustering 
coefficient = 0.756, network density = 0. 469, network heterogeneity 
= 0.459, and network centralization = 0359. Figure 3 shows the top-
ranked genes along with other parameters.

3.3. Identification of Hub Genes
The IL6, PTGS2, TP53, SIRT1, PPARA, HMOX1, NFE2L2, SQSTM1, 
ADIPOQ, GPT, SREBF1, IL10, TLR4, VEGF, EGFR, BCL2L1, 
KEAP1, STAT1, MYD88, and TLR2 are the 20 top genes, indicating that 
their important roles in the network are described in the Supplementary 
File (S1). Higher the node size indicates higher the degree-ranked targets 
called the hub genes. The hub gene, as determined by the MCC scores, is 
shown in Table 1 as the gene that is connected to the key module.

3.4. Identification and Validation of Clusters
MCODE addon was utilized to investigate PPI network’s functional 
module, and six corresponding relevant modules were identified 
[Figure 4a]. Nuclear factor erythroid-related factor-2 (Nrf2) signaling 
pathway (Module 1), inflammatory pathway (Module 2), autophagy 
pathway (Module 3), apoptosis pathway (Module 4), cell proliferation 
signaling (Module 5), and insulin-sensitizing pathway (Module 6) are 
the tightly related modules. MCODE clustering recognizes heavily 

connected clusters from the entire network. MCODE clustering 
identifies highly connected clusters from across the network (MN). 
These clusters are visually depicted in Figure 4b-e. The detailed 
MCODE clusters link area is shown in tabular form [Table 2].

3.5. GO Analysis by Hub Genes
The GO was used to pinpoint the distinctive biological traits. 
GO is divided into three functional groups: Biological process 
(BP) [Figure 5], molecular function (MF) [Figure 6], and cellular 
component (CC) [Figure 7]. With a false discovery rate (FDR) cutoff 
size of 0.05, the top five GO-enriched pathways were examined. 
Flavone metabolic process (GO: 0051552), flavonoid glucuronidation 
(GO: 0052696), xenobiotic glucuronidation (GO: 0052697), flavonoid 
metabolic process (GO: 0009812), and cellular glucuronidation 
(GO: 0052695) are all enriched in the BP analysis. The MF analysis 
indicated that the genes are involved in retinyl-palmitate esterase 
activity (GO: 0050253), lipopolysaccharide immune receptor activity 
(GO: 0001875), BH3 domain binding (GO: 0051434), retinoic acid 
binding (GO: 0001972), and glucuronosyltransferase activity (GO: 
0015020). CC genes are enriched in lipid droplet (GO: 0005811), 
organelle outer membrane (GO: 0031968), outer membrane (GO: 
0019867), nuclear membrane (GO: 0031965), and nuclear envelope 
(GO: 0005643). All the genes involved in the pathways were listed in 
the Supplementary files (S3, S4, and S5).

3.6. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
Pathway Analysis
To determine whether genes are activated or repressed in different 
classes of networks, gene regulation data are linked to KEGG 

Figure 2: (a) Venn diagram depicting Scopoletins (Sc) interaction targets with colon cancer (b) Protein–protein interactions intersection target network for  
Sc-treated colon cancer (medium confidence score - 0.4).
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Table 1: Genes are ranked depending on MCC scores.

Rank Name MCC Score
1 IL6 5.12E+18

2 PTGS2 5.12E+18
3 TP53 5.12E+18
4 SIRT1 5.12E+18
5 PPARA 5.12E+18
6 HMOX1 5.12E+18
7 NFE2L2 5.12E+18
8 SQSTM1 5.12E+18
9 ADIPOQ 5.12E+18
10 GPT 5.12E+18
11 SREBF1 5.12E+18
12 IL10 5.12E+18
13 TLR4 5.12E+18
14 VEGFA 5.12E+18
15 EGFR 5.12E+18
16 BCL2L1 5.12E+18
17 KEAP1 5.11E+18
18 STAT1 5.11E+18
19 MYD88 4.87E+18
20 TLR2 4.87E+18
21 MAP1LC3A 2.56E+18
22 NOS2 2.55E+18
23 FASN 2.50E+17
24 PNPLA2 6.83E+15
25 LIPE 4.09E+14
26 ACACA 9.42E+13
27 ACOX1 2.75E+13
28 BCL2 2.09E+13
29 ADIPOR2 9.15E+12
30 ACSL1 6.54E+12
31 CIDEA 2.62E+12
32 MKI67 1.31E+12
33 BAK1 9.44E+10
34 CDH17 8.72E+10
35 UGT1A8 1.44E+09
36 UGT1A1 9.62E+08
37 UGT1A6 4.79E+08
38 TICAM1 4722480
39 UGT1A3 17280
40 UGT1A9 12240
41 UGT1A10 6480
42 XPC 5790
43 UGT2B15 5760
44 UGT1A7 720
45 CALB2 248
46 LAMP3 145
47 EFS 48
48 GPA33 4
49 GALNT12 1
MCC: Maximal clique centrality.

Figure 3: Protein–protein interactions network analysis using Cytoscape. The 
software called Cytoscape is used to retrieve the nodes and edges from the 
STRING software and display them. Gene names are represented as nodes 
in various hues of green, while interactions are represented as grey edges. 
The size and color of the circles represent the node degree value, while the 

thickness of the border represents the total score between two nodes. Degree 
increases with node size.

domains. Figure 8 shows the 20 leading enhanced networks with an 
FDR threshold value of 0.05. They are highly clustered in several 
signaling pathways that are ascorbate and aldarate metabolism, 
pentose and glucuronate interconversions, porphyrin and chlorophyll 
metabolism, steroid hormone biosynthesis, retinol metabolism, 
drug metabolism, metabolism of xenobiotics by cytochrome 
P450, bile secretion, alcoholic liver disease, leishmaniasis, PD-L1 
expression and PD-1 checkpoint pathway in cancer, toxoplasmosis, 
chemical carcinogenesis, Chagas disease, AMPK signaling 
pathway, biosynthesis of cofactors, measles, hepatitis B, lipid and 
atherosclerosis, and metabolic pathways.

3.7. Pathway Enrichment Analysis
g: Profiler was used for the bioinformatics analysis to allow users to 
visually view the enrichment information of these potential genes. 
g: Profiler significantly increased the number of words in the GO, 
KEGG, REAC, and WP databases. There are 421 pathways in BP, 
32 pathways in MF, 14 pathways in CC, 44 pathways in KEGG, 22 
pathways in REAC, and 53 pathways in WP which are depicted in 
Figure 9.
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Figure 4: (a) Interaction targets for module analysis. (Diameter of the circle-node degree; thickness of the edges-combined two node scores). With the use of 
MCODE plugin within cytoscape, four subnetworks from the protein-protein interactions analysis with a cluster score over three were determined. The margins 

are gray, whereas the nodes are emphasized in green. (b) MN Cluster-1, (c) MN Cluster-2, (d) MN Cluster-3, and (e) MN Cluster-4.
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Figure 5: Gene ontology analysis of biological process: (a) Fold Enrichment graph – Fold enrichment is defined as the percentage of genes that belong 
to a pathway divided by the percentage of genes that belong to that pathway It shows how much a particular pathway’s genes are overrepresented (b) 

Interactive plot – The diagram depicts the connections between enriched routes. Two pathways are associated if they share 20% or more genes of their genes. 
Gene sets with darker nodes are considerably enriched, larger nodes imply greater gene sets, wider edges show gene overlap (c) Tree plot – An illustration of 

the relationship between the pathways shown in the enrichment tab using a hierarchical clustering tree. Pathways with a large number of cgenes in common are 
grouped together, a larger points mean higher P-values (d) Student’s t-test plot – Gene features are compared to those of other genes in the genome, and a query is 

run to examine the gene list’s unique characteristics compared to those of other genes (e) Chi-squared test plot – It works similarly to student’s t-tests.
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Figure 6: Gene ontology analysis of molecular function: (a) Fold Enrichment graph, (b) Interactive plot, (c) Tree plot, (d) Student’s t-test plot, and (e) Chi-squared test plot.
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Figure 7: Gene ontology analysis of colon cancer: (a) Fold Enrichment graph, (b) Interactive plot, (c) Tree plot, (d) Student’s t-test plot,  
and (e) Chi-squared test plot.

Figure 8: Kyoto encyclopedia of genes and genomes enrichment analysis: (a) Fold Enrichment graph, (b) Interactive plot, (c) Tree plot, (d) Student’s t-test plot, 
and (e) Chi-squared test plot.
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Figure 9: (a) Results of computational studies employing intersection genes using gProfiler- Significantly enriched terms by gene ontology, Kyoto encyclopedia 
of genes and genomes, Reactome (REAC), and Wikipathways (WP) databases. Pathway enrichment analysis: (b) Biological process, (c) Molecular function,  

(d) Colon cancer, (e) REAC, (f) Kyoto encyclopedia of genes and genomes, (g) WP, and (h) Graphical Illustration.

a

b

f

h

c

d

e

g



Sakthivel, et al.: Systems biology approaches of Scopoletin in colon cancer 2024;12(5):103-113 111

4. DISCUSSION

A total of 50 Sc target genes were generated from the CTD and 
DisGeNET databases. The PPI network was generated with the 
STRING resource and viewed with the Cytoscape. This PPI 
network enables us to understand the GO (BP, MF, and CC) and 
KEGG networks. In BP, flavone metabolic process, flavonoid 
glucuronidation, xenobiotic glucuronidation, flavonoid metabolic 
process, and cellular glucuronidation are all enriched. GO MF analysis 
involved retinyl-palmitate esterase activity, lipopolysaccharide 
immune receptor activity, BH3 domain binding, retinoic acid binding, 
and glucuronosyltransferase activity. CC-exposed genes are enriched 
in lipid droplet, organelle outer membrane, outer membrane, nuclear 
membrane, and nuclear envelope. Five-enhanced networks identified 
using the KEGG database. Ascorbate and aldarate metabolism, 
pentose and glucuronate interconversions, porphyrin and chlorophyll 
metabolism, chemical carcinogenesis, and steroid hormone 
biosynthesis all have highly clustered genes.

Using MCODE plug-in of Cytoscape, four main network clusters were 
analyzed, and six functional modules were obtained. Modules 1–6 
include the Nrf2 signaling pathway, the inflammatory pathway, the 
apoptosis pathway, the autophagy pathway, cell proliferation signaling 
and insulin-sensitizing pathway. Functional module 1 is Nrf2 signaling 
pathway, which includes three genes (NFE2L2, KEAP1, HMOX1) 
and is associated with oxidative stress. (Nrf2, Gene name: NFE2L2), 
a crucial oxidative stress gene encoding factor that controls a number 
of chemoprotective and antioxidant genes is being considered as a 
potential CC therapeutic target. By binding to antioxidant response 
elements on target promoter regions, Nrf2 acts as a master regulator 
of genes encoding antioxidant enzymes, proteins, and detoxifying 
enzymes [29,30]. Thus, Nrf2 pathway contributes to Sc’s protection 
against oxidative stress-induced damage in colon cancer.

The second module is the inflammatory route includes six genes (IL6, 
IL10, PTGS2, NOS2, MYD88, and STAT1), where nitric oxide (NO) 
and prostaglandin (PG) E2 generated by NO synthase type 2 (NOS2) 
and cyclooxygenase type 2 (COX2) are inflammatory mediators. 
NOS2 and COX2 are complex, and many of the stimuli that enhance 
NOS2 expression (e.g., microbial component and cytokines), also 
increase COX2 expression. NO and PGE2 inhibit the synthesis of 
PGE2 and NO, respectively, by mechanisms that are still unknown, 
including transcriptional and posttranscriptional effects. Inflammation 
can be reduced by NOS2- and COX2- specific inhibitors. Sc thus has 
inhibitory actions on NOS2 and PTGS2 along with IL-10 and IL-6 
[31].

Autophagy is the third functional module includes four genes 
(LAMP3, MAP1LC3A, SIRT1, and SQSTM1) and apoptosis is the 
fourth functional module including three genes (BCL2, BCL2L1, 
and BAK1), where BCL2L1/BCL-XL, and BCL2 itself, binding to 
the BH3 domains of pro-apoptotic BH3 family members, such as 

BCL2L11/BIM, to prevent them from activating apoptosis through 
BAX and BAK1. Overexpression of the BCL2 gene has a significant 
effect on the lipidation of LC3B or the formation of autolysosomes, 
thereby enabling autophagy [32].

The fifth module, cell proliferation signaling, includes five genes: 
CDH17, FASN, ACSL1, MKI67, and GPA33. The CDH17 gene 
regulates integrin activation and signaling, resulting in the activation 
of focal adhesion kinase, Ras, extracellular signal-regulated kinase, 
Jun N-terminal kinase, and cyclin D1 leading to CC progression [21]. 
Fatty acid synthase (FASN) is a multifunctional enzyme catalyzing the 
fatty acid synthesis from acetyl-CoA, malonyl-CoA and nicotinamide 
adenine dinucleotide phosphate (NADPH) as a cofactor, a crucial 
enzyme for long-chain fatty acids generation. In CC, FASN depends on 
enzymatic activity for existence and proliferation [33]. Overexpression 
of ACSL1 causes a rise in epithelial to mesenchymal transition (EMT) 
markers N-cadherin and Slug as well as increases proliferation [34]. 
MKI67 is linked to intrinsic cell population proliferative stimulation 
in malignant cancer cells [35]. GPA33 is a membrane antigen that is 
highly expressed (95%) in colorectal cancer. It makes for a great target 
for immunotoxins that attack colon cancer cells [36].

The sixth pathway, which includes two genes, is the insulin-sensitizing 
pathway (ADIPOQ and ADIPOR2). Experimental evidence 
witnessed that mice lacking the ADIPOQ gene showed enhanced 
colon carcinogenesis. ADIPOR2 is vital in the regulation ADIPOQ’s 
anticancer effects, which promotes epithelial cell proliferation [37].

As a result, activating the oxidative stress pathway, which includes 
Nrf2/KEAP1, leads to detoxification, antioxidant benefits, and anti-
inflammatory effects. It also induces apoptosis in tumor cells, along 
with autophagy signaling. A number of genes that increase cell 
proliferation also play a significant impact in the survival of cancer 
cells. Hence, potential gene-drug interactions were identified by the 
above-mentioned functional module genes are examined for molecular 
docking in a subsequent study to provide a thorough understanding of 
Sc protection against colon cancer cells.

5. CONCLUSION

This study revealed potential biomarkers associated with colon cancer 
progression. Furthermore, this study emphasizes the significance of 
PPI network analysis as a powerful framework for gaining insight into 
the main hub nodes and identifying the possible biomarkers of colon 
cancer. Sc can be a promising candidate in promoting colon health 
by inhibiting inflammation and suppressing oxidative stress through a 
multi-pathway network.
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