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ABSTRACT

Nanotechnology is most fascinating field in the modern scientific society, which plays multifunctional roles in different 
dimensions. Particles having size between 1 nm and 100 nm are called nanoparticles (NPs). NPs contain remarkable 
physical and chemical characteristics that enable them to perform variety of functions. The structural alteration 
of NPs (particle dimension, size, surface area, composition, and chemical properties) leads to malfunctioning in 
biological system resulting the generation of reactive oxygen species (ROS) in plants. In plants, ROS is defined as a 
“double-edged sword” due to its nature of reacting with the number of biomolecules causing an irreversible damage 
which leads cell death. The toxicity of NPs is one of the most important factors causing imbalance in the generation 
of ROS in plants. On the other hand, balance formation of ROS in plants has huge potential to ameliorate abiotic 
stress and enhanced crop productivity. This review has covered the phytotoxicity induced by NPs in the form of ROS 
and its role. Biostimulant for regulation of ROS under abiotic stress has also been discussed briefly.

1. INTRODUCTION

Nanotechnology is the most emerging field among the different branches 
of science including material science, chemistry, and biology [1]. The 
regular employment of nanotechnology for constructing nano-size 
products in the scientific field is rising [2]. In today’s era, nanoparticles 
(NPs) have been an eye-catching part for researcher having distinctive 
characteristics, such as plasticity, better thermal conductivity, catalytic 
reactivity, and boosting the potency of metals and alloys [3,4], and three 
major classifications of NPs are seen, (1) organic, (2) inorganic, and 
(3) carbon-based [5]. Physical, chemical, and biological methodologies 
are involved in the amalgamation, synthesis and disintegration of NPs. 
Despite that, the first two methods are quite exclusive, complex and 
hazardous for the surroundings because of the deadly compounds used 
as reducing agents [6]. The biological process for synthesizing NPs 
is less time-consuming, less expensive, and requires less energy [7]. 
Biological, morphological, and biochemical procedure aid to produce 
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metal-based NPs like, bacterial reduction of metals by distinct plant 
portions, i.e., root, stem, leaf, and flower. Currently, more than 1000 
commercial products containing NPs are available in the market. Cu, 
Ag, and Zn-based NPs are the most popular antibacterial agents out 
of all the numerous types of NPs, and they are also frequently used in 
agriculture [8]. Zinc based NPs are among the most accepted NPs in 
the nanoindustry, and are produced 10–100 times more over the other. 
The increased use and regular release undoubtedly lead to Zn-based 
NPs accumulating in the ecosystem.

Since 2.7 million years ago, oxygen-evolving photosynthesis has been 
adding oxygen (O2) to the Earth’s decreasing atmosphere. Reactive 
oxygen species (ROS), a byproduct of various metabolic activities, took 
part in accomplishing metabolization activities [9,10]. These principle 
signaling molecules enable cells to react swiftly to novel physiological 
stimuli and programming of plants activities. Across plants whole life 
cycle, ROS perform imperative job in biotic and abiotic stress signaling, 
interaction and combination of ecological incentives, and stress-
mediated network, thus participating in the establishment of security 
method and plant resistance [11]. Thus, the initiation of a network 
is mediated by stress, all of which contribute to the development of 
security measures and plant resistance. Various studies have shown to 
the exposure of different environmental stresses including abiotic and 
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biotic may cause plants to produce free radical scavengers and oxygen 
derivatives [12,13]. Stress signal and enzymatic regulation improve 
through free radicals, consolidate redox state and induces imperative 
participation of osmolytes [14-16]. The presence and function of 
respiratory burst oxidase homologues and NADPH oxidase are strongly 
predicated on this production, which accounts for 1–2% of the total 
oxygen (O2) usage in plants [17-19]. The products of oxidation are 
collectively referred to as ROS, and they mostly include the following 
radicals: Hydroxyl (OH), hydrogen peroxide (H2O2), singlet oxygen 
(1O2), perhydroxyl (HO2), and anion radical (O2

−) [20,21]. Both forms 
of ROS are produced in nature at low levels throughout a variety of 
aerobic metabolic activities, such as photorespiration in peroxisomes, 
chloroplast, and mitochondrial electron chain [22-24]. Increased ion 
toxicity causes an oxidative burst by the production of ROS. Although 
ROS does not work as a stress signal, they are the secondary messengers 
that signal fundamental cell functions such as apoptosis, necrosis, and 
cell proliferation, thus regulating various functions in plants.

There are several factors (heavy metal, salinity, temperature, and 
dryness) that are known to alter the equilibrium between ROS 
production and its scavenging. In these situations, a few key criteria, 
such as the severity, duration of the stress, growth alteration, and 
the rate at which plants adapt to difficult circumstances, largely 
determine a plant’s capacity to tolerate [25]. Plants have developed 
a miscellaneous strategies to endure adverse environmental states 
like stress-responsive genes that encode their proteins needed for 
the initiation and control ROS to adapt to intriguing environmental 
conditions [26]. NPs activities due to the application of zinc oxide 
have been shown by [27] to conduct ROS scavenging capabilities, 
preventing oxidative damage in stressed plants. Numerous earlier 
kinds of research have demonstrated the use of NPs to lower ROS 
generation in plants under both natural and stressed environmental 
conditions [28-33]. Previous studies confirmed that NPs can regulate 
abiotic stress in various plant species by altering the hormonal 
levels, antioxidant enzymes activities, and gene expression in crop 
plants. Overall, scientists have concluded that minute concentration 
of NPs may start the ROS detoxification mechanism. Therefore, the 
inoculation of NPs has brightened the chance of crop cultivation in 
stressed crops. This article intended to increase our understanding of 
ROS production, signaling, and their function in plants to successfully 
handle abiotic stress. The impact and function of NPs in the ROS as 
well as the crosstalk between NPs and the ROS were discussed mainly 
focusing on the ROS as a biostimulant under abiotic stress.

2. ROS AND ITS ROLE IN PLANTS

ROS production, which are naturally occurring by-products of cellular 
oxidative metabolism, is essential for controlling cell survival, cellular 
damage, differentiation, cell signaling, and the production of substances 
that cause inflammation[Table 1] [34,35]. ROS produces free radicals 
produces including singlet oxygen (1O2), peroxyl (RO2), carbonate 
(CO3

-), alkoxyl (RO), superoxide (O2-), hydroxyl (HO), hydroperoxyl 
(HO2), and carbon dioxide radical (CO2

-). The most persistent and 
prevalent ROS in plants is O2-, OH, and 1O2 [22]. This free oxygen is 
continuously produced through chloroplasts during the photosynthetic 
electron transport system (ETS) and is afterward eliminated by 
reduction and assimilation. In photosystem I and photorespiration, 
reduced components of the ETS reduce O2 to a superoxide radical 
[36]. O2 acts as a free radical with a reduced half-life because of 
superoxide dismutases (SODs) and eventually convert it to H2O2 
rapidly [37]. Biologically relevant ROS also include non-radicals such 
as hypochlorous acid, nitric oxide, organic peroxides, peroxynitrite, 

peroxynitrate, peroxynitrous acid, H2O2, and ozone (O3) [38]. H2O2, 
a non-radical ROS product conveys ROS-mediated aquaporin 
membranes with greater stability and firmness than free radicals [37].

Numerous experiments have exhibited that exposure to a variety of 
environmental biotic or abiotic stressors can induce plants to develop 
both non-radical moderately reactive oxygen derivatives and highly 
reactive oxygen-free radicals [13]. This generation persuades the 
attainability and operational ability of NADPH oxidases and respiratory 
burst oxidase homologues [19]. It represents <1–2% of the plant’s 
overall O2 consumption [39]. Plants have developed sophisticated 
immune systems that can perceive pathogen transmission and activate 
an effective immune response through two separate but interdependent 
immune response stratums [40]. Pattern recognition receptors, built 
with extracellular conserved microbial-  or pathogen-associated 
molecular patterns induce immunity in the first layer. Nucleotide-
binding leucine-rich repeat receptors mediate the second layer [41].

ROS generated under unmitigated environmental circumstances 
cannot induce cellular impairment due to the production of stress-
responsive genes [39]. Based on multiple pieces of evidences, it has 
been hypothesized that this degree of ROS production is related to 
a limited natural role in the developmental processes mediated by 
phytohormones such as auxins and cytokinins [10]. Oxidative stress 
is produced due to the excess genesis of ROS due to biotic stress 
also [Figure  1] [42]. Redox homeostasis to maintain a balanced 
biomolecules state in plants depends on ROS. Even though salicylic 
acid (SA) is thought to be the main ROS regulator, the underlying 
processes are rarely explored [43]. SA is indispensable in biotic 
stress management for preventing microbial growth, fungal diseases, 
and viral infections during HR in different pathosystems, including 
tobacco mosaic virus [44,45]. However, both the pathosystems and the 
source of ROS have an impact on the mechanism of SA regulation and 
obstruct ROS signaling [46]. Treatment with SA in Arabidopsis caused 
the PRRs to be regulated, which in turn caused ROS generation that 
was most likely At RBOHD-dependent [47].

Several RBOHD isoforms promoters in Arabidopsis and rice 
containing SA-responsive cis-regulatory elements further validated the 
production [48]. However, under stressful environmental conditions, 
cellular ROS concentrations are excessively accelerated and reach 
levels that are greater than the antioxidant scavenging abilities that 
plants use to balance out excessive ROS generation [49]. This trait 
could lead to oxidative stress, protein, lipid, and nucleic acid damage 
in the membrane, eventually resulting cell death and dysfunction [42]. 
Increased ROS production is employed to increase the potency of 
damaging components in a genetically controlled process called abiotic 
stress-induced programmed cell death [50]. Natural stressors such as 
pathogen infection, heavy metals, heavy radiation, heat stress, salinity 
stress, and drought stress are just a few examples that could break the 
delicate balance between ROS creation and removal pathways [51]. 
Arsenic is one such hazardous metalloid that pollutes the environment 
and has severe effect on life on Earth. Arsenic is known to be harmful 
to plants and to induce a number of serious ailments in humans, even in 
trace amounts [52]. Studies show that the accumulation of As in cells 
increases the generation of ROS, such as O2 and H2O2, which creates 
oxidative stress in plants and results in impaired cellular metabolism, 
reduced plant development, and decreased yield [53]. Numerous 
crucial factors, such as the duration and intensity of the stress, cellular 
metabolic status, the level of ROS in the cells, and antioxidant 
capacity, are frequently consistent with plants response mechanism to 
the oxidative stress caused by high ROS concentrations [39].
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In plants ROS-scavengers and non-enzymatic antioxidants such as 
ascorbate (AA), glutathione (GSH), carotenoids, -tocopherol, prolines, 
flavonoids, and phenolic chemicals play a role. These antioxidant 
enzymes include dehydroascorbate reductase (DHAR), catalase 
(CAT), SOD, glutathione reductase (GR), guaiacol peroxidase (GPX), 
monodehydroascorbate reductase (MDHAR), ascorbate peroxidase 
(APX), and low molecular mass antioxidants [54]. It is widely 
established that increased antioxidant enzyme or non-enzymatic 
antioxidant activity reduces the severity of oxidative stress-related 
damage in response to novel environmental stimuli [51]. For instance, 
it was shown that several conventional types of rice plants exposed 
to drought stress had an overall increase in the antioxidant enzymes 
APX, SOD, GPX, CAT, and GR [55]. Cu stress to Colobanthus 
quitensis (Kunth) Bartl, made it feasible to cause the upregulation 
of AA, GSH, phenolics, phytochelatins (as GSH oligomers), and 
sugars as non-enzyme-based antioxidants [56]. Before translating into 
adequate responses, ROS signals are first detected and processed by 
plants. The extent of alteration or modulation of potential signaling 
targets including transcriptional regulators, protein kinases, and stress-
induced proteins depends on the oxidizing behavior of ROS aggregates. 
The ability of ROS to oxidise thiol groups and methionine residues in 
the protein to influence the protein redox status is noteworthy  [57]. 

Thio-  and gluta-redoxins are proteins can control cellular redox 
conditions through their reciprocal activation/deactivation or 
reversible oxidation/reduction [58]. It has been discovered that ROS-
driven redox perturbations can activate quick adaptive responses by 
mitochondrial/chloroplastic retrograde signaling [59]. In addition, 
ROS can facilitate the retrograde signaling pathway from the plastid 
to the nucleus [39]. Therefore, the nucleus can accommodate the H2O2 
produced in plastids at the consequence of triggering the expression of 
defense genes [60].

Limited studies have explored the interactions between ROS and 
other secondary messengers acting as a signal transduction cascade 
including Ca2+ and antimicrobial family derived reactive nitrogen 
species (RNS) [61]. Elevated amounts of oxidative potential cause 
them to react with the messengers of NO to form (non-) radical RNS 
products such as nitroxyl anion (NO), nitrate (NO3), nitrous acid 
(HNO2), nitrosonium cation (NO+), nitric dioxide (NO2), and ONOO 
[62]. These NOx species play a natural role in plant development, 
metabolism, stress signaling, and stomatal closure [63]. Depending 
on the concentration and subcellular microcompartment type, the 
interaction of ROS and RNS with antioxidant enzymes can have either 
favorable or detrimental effects on plant cells [64].

Figure 1: Schematic representation of reactive oxygen species generation in chloroplast.

Table 1: Effects of ROS compartmentalization under abiotic stress.

Different sites of ROS production 
and compatmentalization

Effects of ROS Referencces

Mitochondrial Electron transport chain is reduced, aging of leaves, higher carbonized proteins, H2O2 formation, Lipid 
peroxidation

[91,92]

Chloroplast Increase ROS production, electron leakage, singlet oxygen generation [93]

Peroxisome Intracellular H2O2, glycolate oxidation, cellular redox homeostasis, physiological disorder [94]

Plasma membrane NADPH oxidase production, superoxide anion radical formation, mechanosensitive Ca2+ channel production [95]

Cell wall Peroxidase enzyme, electron transfer, ROS signaling, influence abiotic stressor [96]

Nucleus Gene expression, molecular oxygen reduction, redox potential hamper, [97]

Apoplastic region Cell surface, enzyme produces ROS, stomatal closure, programmed cell death [50]

Cytosolic area Oxidation procedure, diffusion, transport and leakage in ROS condition, APX overexpression [98,99]
ROS: Reactive oxygen species, APX: Ascorbate peroxidase
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3. NPS AND ROS

We scrutinized that the NPs contributed to oxidative stress by causing 
lipid peroxidation, a decrease in chlorophyll content, and the synthesis 
of GSSG [65]. Zn-based NPs persuaded free radicals development in 
Triticum aestivum, resulting in a rise MDA and down GSH amount 
and chlorophyll levels [66-68]. Kim et al. [69] demonstrated the toxic 
level of CuO-NPs on Cucumis sativus which exhibited a considerable 
enhancement of ROS. Oxidative stress caused by Cu-NPs has also 
been observed on Vigna radiata and T. aestivum grown on agar media 
and resulted in stunted seedling and shoot height [70]. The underlying 
mechanisms related to the generation of NP-generated ROS vary 
depending on the kind of NP, and the real cellular process relating to 
ROS production is yet unknown [34]. The higher formation of ROS 
by the stimulation of NPs exposure can induce oxidative stress and 
alter the all metabolic functioning of the plants and leads cell death 
and reduced growth [Figure 2]. Most of the NPs may incite the free-
radicals facilitated toxicity through Fenton-type reactions (Huang 
et  al., 2010). Since the primary result of NP-induced cellular harm 
or malfunction of cells is the result of ROS genesis [71]. Under biotic 
(fungal and bacterial) and abiotic (drought, salt, and cold) stress, 
(mitogen-activated protein kinase kinase kinase 1 [MEKK1]) and 
MAP3K are switch-on. MEKK1 is turn-on due to ROS formation. 
Production of ROS under different stresses start-up the MPK6 and 
MP3K cause diverse response.

Plants establish an antioxidant defense system to scavenge the excessive 
ROS to combat oxidative stress which performs as an adaptive 
response mechanism [72,73]. The cellular amount of ROS and physio-
biochemical states are tightly controlled by diverse detoxifying enzymes, 
including CAT, glutathione peroxidase (GPX), SOD as well as a variety 
of antioxidants, including flavonoids, ascorbic acid, GSH, and Vitamin 
E. ROS is produced as intermediates under various physiobiochemical 

states [51,74]. In unfavorable conditions, ROS accumulations also 
enhance, and with the assistance of precise signal transduction pathways, 
they contribute to the plant’s defense mechanism [42,75].

The increased amount of ROS genesis during stress conditions within 
the cell, membrane damage occurs along with DNA, RNA, and protein 
synthesis can result in cell death through oxidative stress [76,77]. As a 
result of changes in metabolic activity and as a subtype of the abiotic 
stress response signal transduction network, ROS are produced as the 
primary cause of ROS in abiotic stress [Figure 3] [78].

4. BIOSTIMULANT FOR REGULATION OF ROS IN 
PLANTS UNDER ABIOTIC STRESS

Plants under stress conditions especially under abiotic stress (salinity, 
drought, heat, water, metal, chilling, and temperature) faces various 
deteriorating conditions to survive. Plants had developed diverse 
internal mechanisms and defensive criteria to survive in the stressful 
conditions [79]. Some of them are immune stimulation, molecular 
metabolism, and especially biostimulant. Biostimulant promotes 
defense mechanisms, improve growth, yield, climate, and stress 
resilience [80]. Plant interaction with stimulants reveals reactions with 
enzymes, antioxidants, metabolic fluxes, and cellular physiology [81]. 
Crop health improvement through minimizing ROS production of 
various plants is performed by proper application of biostimulant [82]. 
Although more scientific ground is required for properly understanding 
the functions of biostimulant during stressful conditions, Yakhin 
et al.   [83] suggested comparatively detailed information about the 
functions of biostimulant which help provide nutrients to plants, 
assimilation, soil health improvement, etc.

Salinity stress in lettuce is induced by improving reluctant metabolites 
like sterols, terpenes, etc. by using protein based biostimulant [84]. 
Tomato (Solanum lycopersicum) plants under salt stress were also 
observed using seaweed-based biostimulant, which accelerated proline 
and antioxidant contents in plants [85]. Vegetal biopolymer in melon 
under stress improves growth conditions, root growth, photosynthetic 
activity, and hormonal interaction [86]. Drought-resistant protein-
based biostimulant derivatives in tomato mitigate oxidative stress; 
reduce hormonal imbalance, and excess level enzyme content [87]. 
Calcium-treated rice (Oryza sativa) plants stimulate MDA, LOX, 

Figure 2: A schematic representation of nanoparticles-mediated reactive 
oxygen species generation leading to cell death.

Figure 3: Schematic representation of reactive oxygen species formation, its 
effects and removal.
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MDHAR, and GR contents tremendously where Mn-treated plants 
show reduced amount of MDA, DHA, improves SOD, MDHAR in 
rice [88]. Biochar application in Brassica chinensis and Spinacia 
oleracea lead to MDA reduction, APX increases internally [89]. 
GABA co-treatment in Brassica juncea L. cv. BARI Sharisha-11 
contributed similarly to biochar treatment and accelerated enzymatic 
functions [90].

5. CONCLUSION AND FUTURE PERSPECTIVE

This review has summarized the wealth of data on the ROS generation 
due to higher accumulation of NPs. Elevated amount of NPs increased 
the level of MDA and lipid peroxidation which leads to oxidative stress. 
Enhancement of ROS leads in reduced morpho-physiological attributes 
and crop yield. NPs altered the polyunsaturated fatty acids, injured cell 
membrane accessibility and disturbed cell shape, harm protein and 
DNA, finally cell death. To decrease the formation of ROS is helpful in 
sustainable crop production and crop health. Biostimulant is helpful to 
control the production of ROS under abiotic stress conditions, increase 
defense performance, growth indices, crop yield, and abiotic stress 
resilience. In future, effects of NPs on the production of ROS under 
omics, metabolomics, and transcriptomics level could be explored.
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