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Nanotechnology is most fascinating field in the modern scientific society, which plays multifunctional roles in different
dimensions. Particles having size between 1 nm and 100 nm are called nanoparticles (NPs). NPs contain remarkable
physical and chemical characteristics that enable them to perform variety of functions. The structural alteration

of NPs (particle dimension, size, surface area, composition, and chemical properties) leads to malfunctioning in
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biological system resulting the generation of reactive oxygen species (ROS) in plants. In plants, ROS is defined as a
“double-edged sword” due to its nature of reacting with the number of biomolecules causing an irreversible damage
which leads cell death. The toxicity of NPs is one of the most important factors causing imbalance in the generation
of ROS in plants. On the other hand, balance formation of ROS in plants has huge potential to ameliorate abiotic
stress and enhanced crop productivity. This review has covered the phytotoxicity induced by NPs in the form of ROS

and its role. Biostimulant for regulation of ROS under abiotic stress has also been discussed briefly.

1. INTRODUCTION

Nanotechnology is the most emerging fieldamong the different branches
of science including material science, chemistry, and biology [1]. The
regular employment of nanotechnology for constructing nano-size
products in the scientific field is rising [2]. In today’s era, nanoparticles
(NPs) have been an eye-catching part for researcher having distinctive
characteristics, such as plasticity, better thermal conductivity, catalytic
reactivity, and boosting the potency of metals and alloys [3,4], and three
major classifications of NPs are seen, (1) organic, (2) inorganic, and
(3) carbon-based [5]. Physical, chemical, and biological methodologies
are involved in the amalgamation, synthesis and disintegration of NPs.
Despite that, the first two methods are quite exclusive, complex and
hazardous for the surroundings because of the deadly compounds used
as reducing agents [6]. The biological process for synthesizing NPs
is less time-consuming, less expensive, and requires less energy [7].
Biological, morphological, and biochemical procedure aid to produce
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metal-based NPs like, bacterial reduction of metals by distinct plant
portions, i.e., root, stem, leaf, and flower. Currently, more than 1000
commercial products containing NPs are available in the market. Cu,
Ag, and Zn-based NPs are the most popular antibacterial agents out
of all the numerous types of NPs, and they are also frequently used in
agriculture [8]. Zinc based NPs are among the most accepted NPs in
the nanoindustry, and are produced 10—-100 times more over the other.
The increased use and regular release undoubtedly lead to Zn-based
NPs accumulating in the ecosystem.

Since 2.7 million years ago, oxygen-evolving photosynthesis has been
adding oxygen (O,) to the Earth’s decreasing atmosphere. Reactive
oxygen species (ROS), a byproduct of various metabolic activities, took
part in accomplishing metabolization activities [9,10]. These principle
signaling molecules enable cells to react swiftly to novel physiological
stimuli and programming of plants activities. Across plants whole life
cycle, ROS perform imperative job in biotic and abiotic stress signaling,
interaction and combination of ecological incentives, and stress-
mediated network, thus participating in the establishment of security
method and plant resistance [11]. Thus, the initiation of a network
is mediated by stress, all of which contribute to the development of
security measures and plant resistance. Various studies have shown to
the exposure of different environmental stresses including abiotic and
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biotic may cause plants to produce free radical scavengers and oxygen
derivatives [12,13]. Stress signal and enzymatic regulation improve
through free radicals, consolidate redox state and induces imperative
participation of osmolytes [14-16]. The presence and function of
respiratory burst oxidase homologues and NADPH oxidase are strongly
predicated on this production, which accounts for 1-2% of the total
oxygen (O,) usage in plants [17-19]. The products of oxidation are
collectively referred to as ROS, and they mostly include the following
radicals: Hydroxyl (OH), hydrogen peroxide (H,0,), singlet oxygen
('0,), perhydroxyl (HO,), and anion radical (O,") [20,21]. Both forms
of ROS are produced in nature at low levels throughout a variety of
aerobic metabolic activities, such as photorespiration in peroxisomes,
chloroplast, and mitochondrial electron chain [22-24]. Increased ion
toxicity causes an oxidative burst by the production of ROS. Although
ROS does not work as a stress signal, they are the secondary messengers
that signal fundamental cell functions such as apoptosis, necrosis, and
cell proliferation, thus regulating various functions in plants.

There are several factors (heavy metal, salinity, temperature, and
dryness) that are known to alter the equilibrium between ROS
production and its scavenging. In these situations, a few key criteria,
such as the severity, duration of the stress, growth alteration, and
the rate at which plants adapt to difficult circumstances, largely
determine a plant’s capacity to tolerate [25]. Plants have developed
a miscellaneous strategies to endure adverse environmental states
like stress-responsive genes that encode their proteins needed for
the initiation and control ROS to adapt to intriguing environmental
conditions [26]. NPs activities due to the application of zinc oxide
have been shown by [27] to conduct ROS scavenging capabilities,
preventing oxidative damage in stressed plants. Numerous earlier
kinds of research have demonstrated the use of NPs to lower ROS
generation in plants under both natural and stressed environmental
conditions [28-33]. Previous studies confirmed that NPs can regulate
abiotic stress in various plant species by altering the hormonal
levels, antioxidant enzymes activities, and gene expression in crop
plants. Overall, scientists have concluded that minute concentration
of NPs may start the ROS detoxification mechanism. Therefore, the
inoculation of NPs has brightened the chance of crop cultivation in
stressed crops. This article intended to increase our understanding of
ROS production, signaling, and their function in plants to successfully
handle abiotic stress. The impact and function of NPs in the ROS as
well as the crosstalk between NPs and the ROS were discussed mainly
focusing on the ROS as a biostimulant under abiotic stress.

2. ROS AND ITS ROLE IN PLANTS

ROS production, which are naturally occurring by-products of cellular
oxidative metabolism, is essential for controlling cell survival, cellular
damage, differentiation, cell signaling, and the production of substances
that cause inflammation[Table 1] [34,35]. ROS produces free radicals
produces including singlet oxygen ('O,), peroxyl (RO,), carbonate
(CO,), alkoxyl (RO), superoxide (O*), hydroxyl (HO), hydroperoxyl
(HO,), and carbon dioxide radical (CO,). The most persistent and
prevalent ROS in plants is O*, OH, and 'O, [22]. This free oxygen is
continuously produced through chloroplasts during the photosynthetic
electron transport system (ETS) and is afterward eliminated by
reduction and assimilation. In photosystem I and photorespiration,
reduced components of the ETS reduce O, to a superoxide radical
[36]. O, acts as a free radical with a reduced half-life because of
superoxide dismutases (SODs) and eventually convert it to H,O,
rapidly [37]. Biologically relevant ROS also include non-radicals such
as hypochlorous acid, nitric oxide, organic peroxides, peroxynitrite,

peroxynitrate, peroxynitrous acid, H,0,, and ozone (O,) [38]. H,O,,
a non-radical ROS product conveys ROS-mediated aquaporin

membranes with greater stability and firmness than free radicals [37].

Numerous experiments have exhibited that exposure to a variety of
environmental biotic or abiotic stressors can induce plants to develop
both non-radical moderately reactive oxygen derivatives and highly
reactive oxygen-free radicals [13]. This generation persuades the
attainability and operational ability of NADPH oxidases and respiratory
burst oxidase homologues [19]. It represents <1-2% of the plant’s
overall O, consumption [39]. Plants have developed sophisticated
immune systems that can perceive pathogen transmission and activate
an effective immune response through two separate but interdependent
immune response stratums [40]. Pattern recognition receptors, built
with extracellular conserved microbial- or pathogen-associated
molecular patterns induce immunity in the first layer. Nucleotide-
binding leucine-rich repeat receptors mediate the second layer [41].

ROS generated under unmitigated environmental circumstances
cannot induce cellular impairment due to the production of stress-
responsive genes [39]. Based on multiple pieces of evidences, it has
been hypothesized that this degree of ROS production is related to
a limited natural role in the developmental processes mediated by
phytohormones such as auxins and cytokinins [10]. Oxidative stress
is produced due to the excess genesis of ROS due to biotic stress
also [Figure 1] [42]. Redox homeostasis to maintain a balanced
biomolecules state in plants depends on ROS. Even though salicylic
acid (SA) is thought to be the main ROS regulator, the underlying
processes are rarely explored [43]. SA is indispensable in biotic
stress management for preventing microbial growth, fungal diseases,
and viral infections during HR in different pathosystems, including
tobacco mosaic virus [44,45]. However, both the pathosystems and the
source of ROS have an impact on the mechanism of SA regulation and
obstruct ROS signaling [46]. Treatment with SA in Arabidopsis caused
the PRRs to be regulated, which in turn caused ROS generation that
was most likely At RBOHD-dependent [47].

Several RBOHD isoforms promoters in Arabidopsis and rice
containing SA-responsive cis-regulatory elements further validated the
production [48]. However, under stressful environmental conditions,
cellular ROS concentrations are excessively accelerated and reach
levels that are greater than the antioxidant scavenging abilities that
plants use to balance out excessive ROS generation [49]. This trait
could lead to oxidative stress, protein, lipid, and nucleic acid damage
in the membrane, eventually resulting cell death and dysfunction [42].
Increased ROS production is employed to increase the potency of
damaging components in a genetically controlled process called abiotic
stress-induced programmed cell death [50]. Natural stressors such as
pathogen infection, heavy metals, heavy radiation, heat stress, salinity
stress, and drought stress are just a few examples that could break the
delicate balance between ROS creation and removal pathways [51].
Arsenic is one such hazardous metalloid that pollutes the environment
and has severe effect on life on Earth. Arsenic is known to be harmful
to plants and to induce a number of serious ailments in humans, even in
trace amounts [52]. Studies show that the accumulation of As in cells
increases the generation of ROS, such as O, and H,0,, which creates
oxidative stress in plants and results in impaired cellular metabolism,
reduced plant development, and decreased yield [53]. Numerous
crucial factors, such as the duration and intensity of the stress, cellular
metabolic status, the level of ROS in the cells, and antioxidant
capacity, are frequently consistent with plants response mechanism to
the oxidative stress caused by high ROS concentrations [39].
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Figure 1: Schematic representation of reactive oxygen species generation in chloroplast.

Table 1: Effects of ROS compartmentalization under abiotic stress.

Different sites of ROS production Effects of ROS
and compatmentalization

Mitochondrial

Chloroplast
Peroxisome
Plasma membrane
Cell wall

Nucleus
Apoplastic region

Cytosolic area

peroxidation

Intracellular H,O.

272

Referencces

Electron transport chain is reduced, aging of leaves, higher carbonized proteins, H,O, formation, Lipid [91,92]
Increase ROS production, electron leakage, singlet oxygen generation [93]

glycolate oxidation, cellular redox homeostasis, physiological disorder [94]
NADPH oxidase production, superoxide anion radical formation, mechanosensitive Ca?>* channel production [95]
Peroxidase enzyme, electron transfer, ROS signaling, influence abiotic stressor [96]
Gene expression, molecular oxygen reduction, redox potential hamper, [97]
Cell surface, enzyme produces ROS, stomatal closure, programmed cell death [50]
Oxidation procedure, diffusion, transport and leakage in ROS condition, APX overexpression [98,99]

ROS: Reactive oxygen species, APX: Ascorbate peroxidase

In plants ROS-scavengers and non-enzymatic antioxidants such as
ascorbate (AA), glutathione (GSH), carotenoids, -tocopherol, prolines,
flavonoids, and phenolic chemicals play a role. These antioxidant
enzymes include dehydroascorbate reductase (DHAR), catalase
(CAT), SOD, glutathione reductase (GR), guaiacol peroxidase (GPX),
monodehydroascorbate reductase (MDHAR), ascorbate peroxidase
(APX), and low molecular mass antioxidants [54]. It is widely
established that increased antioxidant enzyme or non-enzymatic
antioxidant activity reduces the severity of oxidative stress-related
damage in response to novel environmental stimuli [51]. For instance,
it was shown that several conventional types of rice plants exposed
to drought stress had an overall increase in the antioxidant enzymes
APX, SOD, GPX, CAT, and GR [55]. Cu stress to Colobanthus
quitensis (Kunth) Bartl, made it feasible to cause the upregulation
of AA, GSH, phenolics, phytochelatins (as GSH oligomers), and
sugars as non-enzyme-based antioxidants [56]. Before translating into
adequate responses, ROS signals are first detected and processed by
plants. The extent of alteration or modulation of potential signaling
targets including transcriptional regulators, protein kinases, and stress-
induced proteins depends on the oxidizing behavior of ROS aggregates.
The ability of ROS to oxidise thiol groups and methionine residues in
the protein to influence the protein redox status is noteworthy [57].

Thio- and gluta-redoxins are proteins can control cellular redox
conditions through their reciprocal activation/deactivation or
reversible oxidation/reduction [58]. It has been discovered that ROS-
driven redox perturbations can activate quick adaptive responses by
mitochondrial/chloroplastic retrograde signaling [59]. In addition,
ROS can facilitate the retrograde signaling pathway from the plastid
to the nucleus [39]. Therefore, the nucleus can accommodate the H,O,
produced in plastids at the consequence of triggering the expression of
defense genes [60].

Limited studies have explored the interactions between ROS and
other secondary messengers acting as a signal transduction cascade
including Ca’" and antimicrobial family derived reactive nitrogen
species (RNS) [61]. Elevated amounts of oxidative potential cause
them to react with the messengers of NO to form (non-) radical RNS
products such as nitroxyl anion (NO), nitrate (NO,), nitrous acid
(HNO,), nitrosonium cation (NO"), nitric dioxide (NO,), and ONOO
[62]. These NOx species play a natural role in plant development,
metabolism, stress signaling, and stomatal closure [63]. Depending
on the concentration and subcellular microcompartment type, the
interaction of ROS and RNS with antioxidant enzymes can have either
favorable or detrimental effects on plant cells [64].
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3. NPS AND ROS

We scrutinized that the NPs contributed to oxidative stress by causing
lipid peroxidation, a decrease in chlorophyll content, and the synthesis
of GSSG [65]. Zn-based NPs persuaded free radicals development in
Triticum aestivum, resulting in a rise MDA and down GSH amount
and chlorophyll levels [66-68]. Kim et al. [69] demonstrated the toxic
level of CuO-NPs on Cucumis sativus which exhibited a considerable
enhancement of ROS. Oxidative stress caused by Cu-NPs has also
been observed on Vigna radiata and T. aestivum grown on agar media
and resulted in stunted seedling and shoot height [70]. The underlying
mechanisms related to the generation of NP-generated ROS vary
depending on the kind of NP, and the real cellular process relating to
ROS production is yet unknown [34]. The higher formation of ROS
by the stimulation of NPs exposure can induce oxidative stress and
alter the all metabolic functioning of the plants and leads cell death
and reduced growth [Figure 2]. Most of the NPs may incite the free-
radicals facilitated toxicity through Fenton-type reactions (Huang
et al., 2010). Since the primary result of NP-induced cellular harm
or malfunction of cells is the result of ROS genesis [71]. Under biotic
(fungal and bacterial) and abiotic (drought, salt, and cold) stress,
(mitogen-activated protein kinase kinase kinase 1 [MEKKI1]) and
MAP3K are switch-on. MEKKI1 is turn-on due to ROS formation.
Production of ROS under different stresses start-up the MPK6 and
MP3K cause diverse response.

Plants establish an antioxidant defense system to scavenge the excessive
ROS to combat oxidative stress which performs as an adaptive
response mechanism [72,73]. The cellular amount of ROS and physio-
biochemical states are tightly controlled by diverse detoxifying enzymes,
including CAT, glutathione peroxidase (GPX), SOD as well as a variety
of antioxidants, including flavonoids, ascorbic acid, GSH, and Vitamin
E. ROS is produced as intermediates under various physiobiochemical

Nanoparticles-cell
interactions

|

Formation of ROS

|

Antioxidant defense system

|
m

!

N Cell death

Figure 2: A schematic representation of nanoparticles-mediated reactive

ROS independent way of NPs induced toxicity

oxygen species generation leading to cell death.

states [51,74]. In unfavorable conditions, ROS accumulations also
enhance, and with the assistance of precise signal transduction pathways,
they contribute to the plant’s defense mechanism [42,75].

The increased amount of ROS genesis during stress conditions within
the cell, membrane damage occurs along with DNA, RNA, and protein
synthesis can result in cell death through oxidative stress [76,77]. As a
result of changes in metabolic activity and as a subtype of the abiotic
stress response signal transduction network, ROS are produced as the
primary cause of ROS in abiotic stress [Figure 3] [78].

4. BIOSTIMULANT FOR REGULATION OF ROS IN
PLANTS UNDER ABIOTIC STRESS

Plants under stress conditions especially under abiotic stress (salinity,
drought, heat, water, metal, chilling, and temperature) faces various
deteriorating conditions to survive. Plants had developed diverse
internal mechanisms and defensive criteria to survive in the stressful
conditions [79]. Some of them are immune stimulation, molecular
metabolism, and especially biostimulant. Biostimulant promotes
defense mechanisms, improve growth, yield, climate, and stress
resilience [80]. Plant interaction with stimulants reveals reactions with
enzymes, antioxidants, metabolic fluxes, and cellular physiology [81].
Crop health improvement through minimizing ROS production of
various plants is performed by proper application of biostimulant [82].
Although more scientific ground is required for properly understanding
the functions of biostimulant during stressful conditions, Yakhin
et al. [83] suggested comparatively detailed information about the
functions of biostimulant which help provide nutrients to plants,
assimilation, soil health improvement, etc.

Salinity stress in lettuce is induced by improving reluctant metabolites
like sterols, terpenes, etc. by using protein based biostimulant [84].
Tomato (Solanum Ilycopersicum) plants under salt stress were also
observed using seaweed-based biostimulant, which accelerated proline
and antioxidant contents in plants [85]. Vegetal biopolymer in melon
under stress improves growth conditions, root growth, photosynthetic
activity, and hormonal interaction [86]. Drought-resistant protein-
based biostimulant derivatives in tomato mitigate oxidative stress;
reduce hormonal imbalance, and excess level enzyme content [87].
Calcium-treated rice (Oryza sativa) plants stimulate MDA, LOX,

Endogenous formation
1. Chloroplasts

2. Peroxisomes

3. Endoplasmic reticulum
4. Mitochondria

Damaging to
1. Nucleic acid
2. Proteins
3. Lipids

ROS removal
1. Enzymatic antioxidants
2. Non-enzymatic
ENOIENS

Induced generation
1. Abiotic stresses
2. Biotic stresses

Figure 3: Schematic representation of reactive oxygen species formation, its
effects and removal.
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MDHAR, and GR contents tremendously where Mn-treated plants
show reduced amount of MDA, DHA, improves SOD, MDHAR in
rice [88]. Biochar application in Brassica chinensis and Spinacia
oleracea lead to MDA reduction, APX increases internally [89].
GABA co-treatment in Brassica juncea L. cv. BARI Sharisha-11
contributed similarly to biochar treatment and accelerated enzymatic
functions [90].

5. CONCLUSION AND FUTURE PERSPECTIVE

This review has summarized the wealth of data on the ROS generation
due to higher accumulation of NPs. Elevated amount of NPs increased
the level of MDA and lipid peroxidation which leads to oxidative stress.
Enhancement of ROS leads in reduced morpho-physiological attributes
and crop yield. NPs altered the polyunsaturated fatty acids, injured cell
membrane accessibility and disturbed cell shape, harm protein and
DNA, finally cell death. To decrease the formation of ROS is helpful in
sustainable crop production and crop health. Biostimulant is helpful to
control the production of ROS under abiotic stress conditions, increase
defense performance, growth indices, crop yield, and abiotic stress
resilience. In future, effects of NPs on the production of ROS under
omics, metabolomics, and transcriptomics level could be explored.
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