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1. INTRODUCTION

Due to climate change and the country’s expanding population, the 
agricultural division of India must look for more precise and effective 
strategies to provide a sufficient and consistent supply of food for the 
community while using the least amount of water possible. Measuring 
evapotranspiration (ET) is the most significant factor in the irrigation 
schedule [1,2].

Accurate estimation of ET is the first step in evaluating the water 
requirements of field crops [3]. Several artificial intelligence-based 
models are used for irrigation planning [4]. The valuation of water for 
crops is most important in water distributions [5]. ET0 refers to the loss 
of water to the surface of plants and soil [6]. Evaporation parameters are 
used to study water budgets, water resource management, and irrigation 
system design as well as to estimate plant growth and height [7]. ET 
plays an important role in different fields of hydrology and agriculture 
[2]. Precise estimation of ET0 is very important for irrigation planning, 
scheduling, design, and crop water management. ET is measured by 
various methods such as (i) Lysimetric, (ii) field experiment, (iii) water 
balance, and (iv) soil moisture depletion study. Lysimeters are tough and 
expensive to build, their operation and maintenance require particular 
care, and their use is restricted to specific research purpose. ET 
changes with climate change and as the climate has many geographical 
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variations, the pre-developed systems have not used all available 
weather data and so no robust models. As a consequence of cost and 
difficulties in direct measurement techniques with a pyranometer and 
lysimeter, solar radiation and ET0 were predicted using suitable models 
[8]. Different empirical models have been developed for ET0 estimation 
rendering to various climatic conditions [9,10]. Many models such as 
empirical, artificial neural network, machine learning (ML), and deep 
learning exist in the literature to compute the global solar radiation 
(GSR) and ET0 [11,12]. However, the standard method recommended 
by the Food and Agriculture Organization (FAO), namely, the Penman-
Monteith (PM-FAO56) equation requires an extensive range of data 
support for ET estimation. In this work, ML models with a limited 
number of input parameters are utilized to estimate the solar radiation 
and ET in chosen locations of Tamil Nādu. To estimate the ET0, the 
solar radiation and temperature values are used. Empirical correlations 
are also utilized to estimate the ET0 for comparison with ML methods. 
Based on the performance metrics, ML-based ET0 estimations are more 
accurate than empirical-based estimations. To develop the ML model, 
SVM and random forest algorithms are employed with a reduced 
number of meteorological parameters.

2. STUDY AREA AND DATA SOURCES

The study site, Coimbatore has a semi-arid tropical climate. The tomato 
is one of the horticultural products produced in the study location. The 
water requirement for tomato plant in the study location is calculated by 
the relation of crop coefficient and ET. The geographical parameters of 
the study location are given in Table 1 and Figure 1 shows the monthly 
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ABSTRACT

Growing population of India has an increased need for food, energy, and water, which calls for organized water 
management with improved crop yield. Accurate estimation of evapotranspiration (ET) is the first step in evaluating 
the water requirement of field crops. The solar radiation data are the essential input for estimating the reference crop 
ET (ET0). Due to expensive and difficulties in direct measurement techniques, solar radiation and ET0 were predicted 
using random forest machine learning (ML) and empirical methods. The water requirement for the tomato crop in 
millimetre/day is calculated using the estimated ET. Meteorological parameters associated with this study were 
obtained from India meteorological department and AQUASTAT tool. Based on the performance metrics such as 
MSE the value of 0.03 and correlation coefficient of 0.97, it is observed that solar radiation and ET0 predictions using 
random forest ML are better than the empirical model. Thus, this climate-smart agriculture approach can be applied 
as a successful strategy for irrigation planning in intelligent farming.
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average GSR and temperature values. Meteorological parameters 
associated with this study were obtained from India meteorological 
department (IMD), India and AQUASTAT tool. The measured 
experimental data for the estimation of GSR and ET, namely, the monthly 
average maximum and minimum temperature, bright sunshine duration, 
and daily solar radiation in kW/m2/day for 12 locations in India were 
obtained from IMD. Table 2 presents the measured GSR data obtained 
from IMD. The whole dataset is partitioned into two sets, namely, 
training sub-set (70%) and testing sub-set (30%). It is further processed 
with the assistance of empirical and ML models. The coefficients of the 
solar radiation empirical models are estimated with the help of a training 
data set and testing datasets are used to validate the models.

3. MATERIALS AND METHODS

3.1. Estimation of Reference ET
The lysimetric method is used for the direct measurement of in  situ 
ET0 values which are considered as the only best method to get accurate 
estimates of ET0. However, this lysimetric method has many drawbacks 
associated with the high cost and difficulties in the maintenance of 

complex instrumentation. PM-FAO56 equation has been considered as 
the standard model for the estimation of ET0 for crop water requirements 
under different climate conditions and various time scales.

ET0 - Reference ET is given by the following equation [10].
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Where Rn is GSR in MJ m−2 d−1,
G is the soil heat flux density MJ m−2 d−1

Tavg is the average air temperature (°C)
es is the saturation vapor pressure (kPa)
ea is the actual vapor pressure (kPa)
∆ Is the slope of the vapor pressure (kPa°C−1)
γ is the psychrometric constant (kPa°C−1)
u2 is the wind speed in m/s.

The above equation (1) requires a huge exhaustive meteorological data 
set. Simpler empirical equations which require only the maximum and 
minimum air temperature and solar radiation data are used in this study 
for the estimation of ET.

3.2. Estimation of GSR Using Empirical Correlations
Empirical models are math and coefficient based. This classical 
statistical approach relies on the linear relationship between inputs and 

Table 1: Geographical parameters of the study site.

Latitude° 
(n)

Longitude 
°(E)

Climate Annual Solar 
Radiation 
MJ/m2/day

Average 
Evapotranspiration 

in mm/day

11.02 76.95 Tropical 19.5 4.5

Table 2: Measured monthly mean GSR in kW/m2/day for Indian Cities from IMD for training ML models.

Months Location/global solar radiation

Patna New Delhi Nagpur Hyderabad Chennai Bhubaneswar Mangalore Trivandrum

January 3.3 3.2 4.3 5.2 4.7 4.1 4.9 4.9

February 4.2 4.1 5.2 5.8 5.8 4.7 5.6 5.5

March 5.2 5.1 5.8 6.4 6.2 5.6 5.5 5.4

April 5.7 5.9 6.5 6.6 6.3 6.4 5.9 5.1

May 5.7 5.8 6.6 6.7 6.0 6.2 5.2 4.8

June 4.8 5.6 5.2 5.3 5.6 4.6 4.9 4.6

July 4.0 4.7 3.8 4.8 5.1 4.3 3.6 4.5

August 4.5 4.4 4.0 4.6 5.2 4.2 4.0 4.9

September 4.1 4.3 4.9 4.9 5.2 4.0 4.8 5.0

October 4.1 4.3 5.1 5.0 4.6 4.9 5.1 4.5

November 3.6 3.5 4.4 5.4 4.0 4.4 5.0 4.0

December 3.2 2.9 4.1 5.0 3.7 3.7 4.9 4.4
ML: Machine learning, GSR: Global solar radiation, IMD: India meteorological department.

Table 3: Empirical correlations used for the estimation of solar radiation.
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outputs and exists as mathematical equations. There are two sets of 
empirical models. The first set of models estimate solar radiation using 
bright sunshine hours and the second set of temperature-based models 
estimate the solar radiation using the minimum, maximum, and mean 
temperature data which is suitable for locations where the sunshine 
data is unavailable.

Some of the sunshine and temperature-based empirical models are 
shown in Table 3. Figure 2 presents the linear relationship between 
the solar radiation and the input weather parameters by estimating 

the “R” value [13]. From this, it is observed that sunshine duration 
and temperature received the first two ranks and are more closely 
correlated with GSR. Hence, sunshine duration and temperature-based 
empirical and ML models are selected for the estimation of GSR. 
Table  3 summarizes the sunshine and temperature-based empirical 
correlations employed for the estimation of the solar radiation. Under 
the empirical category, although the model performances are close to 
each other, the simple linear model is recommended as the optimum 
model due to lesser computational effort when compared with 
quadratic and cubic models.

Temperature and sunshine-based empirical correlations and ML 
techniques such as SVM and tree-based random forest ML algorithms 
are used for the estimation of GSR. Spyder an open-source cross-
platform integrated development environment written in python 
language for scientific programming is used to develop computer 
codes for ML models.

Various statistical indexes, namely, correlation coefficient (R), root 
mean squared error (RMSE), mean absolute percentage error (MAPE), 
and mean bias error (MBE) are used to assess the performance of 
the models. For better modeling accuracy RMSE, MAPE, and MBE 
indices should be nearer to zero, but R-value should be nearer to 1.

The MAPE shows the average absolute percentage deviation between 
the calculated and the actual observed GSR data and is determined by:
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Information regarding the long-term performance is provided by the 
mean bias error. This is an indicator of the average deviation of the 
forecast values from the actual observed GSR values. Mean bias error 
is determined by:
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The RMSE determines the model’s accuracy by comparing the 
deviation between the predicted and actual GSR data. The RMSE 
always has a non-negative value and is computed by:

Table 4: Performance metrics of empirical models.

Performance 
indicators

Linear 
model

Quadratic 
model

Cubic 
model

Sunshine models

R 0.9784 0.9783 0.9779

RMSE 0.6953 0.6963 0.6953

MAPE 0.6450 0.6400 0.6127

Temperature models

R 0.9191 0.9198 0.9217

RMSE 1.2428 1.2434 1.2318

MAPE 1.0419 1.0576 1.0559
RMSE: Root mean squared error, MAPE: Mean absolute percentage error.

Figure 1: Monthly average solar radiation in MJ/m2/day and temperature of 
the study site-Coimbatore.

Table 5: An overview of AI/ML‑based Climate‑smart agriculture approaches.

Input variables Prediction accuracy Reference Model Applications

Solar radiation, temperature, 
wind speed, sunshine and 
altitude

RMSE–0.290 mm d−1, R2–98%. Dimitriadou and 
Nikolakopoulos 
2022 [22]

ANN and 
Penman‑Monteith

ANN‑based 
Evapotranspiration estimation.

Humidity and temperature SVM RMSE–0.97 mm/day 
MAE–0.71 mm/day

Hu et al. 
2022 [23]

SVM, KNN and 
ANN

Precise estimation of ET and 
efficient agriculture crop water 
management.

Temperature, wind speed, 
sunshine, humidity and GSR

MAPE‑7–19% R2−0.86. Zereg and 
Belouz 2023 [24]

Support Vector 
Regression (SVR) 
ML algorithm

SVR‑based ET0 estimation

Monthly mean maximum and 
minimum temperature and 
daily Global Solar Radiation in 
MJ/m2/day.

RMSE−0.625 R−0.9803 Meenal et al. 
2019 [25]

Linear regression, 
SVM, Random 
Forest

Assessment of solar energy 
potential

Wind Speed, Temperature, 
GSR, Latent Heat, 
Precipitation, Relative 
humidity, Atmospheric Pressure

27% reduction in water use and 
40%. Increase in the yield of 
the crops.

Poyen et al. 
2021 [26]

Fuzzy rule‑based 
irrigation controller

Calculation of actual water 
loss for providing optimal 
irrigation for framing

ML: Machine learning, RMSE: Root mean squared error, MAPE: Mean absolute percentage error, GSR: Global solar radiation.
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Where Hi,c is the ith computed value Hi,m is the ith observed value of 
GSR and n is the total number of observations. The error statistics of 
the temperature and sunshine models are available in Table 4. From 
this, it is proved that the sunshine empirical models are more precise 
than temperature-based empirical models. Temperature models can be 
used in locations where sunshine records are not available.

3.3. Estimation of GSR and ET Using ML Models
ML is the division of study that gives the ability of computers to learn 
from huge amounts of data [14]. These ML and deep learning are 
contemporary technologies that can be used efficiently to predict the 
water requirements for agricultural crops. Accurate estimation of ET 
is the first step in evaluating the water requirements of field crops. 
Data on solar radiation are crucial for estimating ET and managing 
crop water. SVM and Random Forest are the two most widely utilized 
ML techniques for estimating solar radiation and ET. In the literature, 

there are also deep learning models [15] and hybrid ML models for 
predicting ET [16,17]. Table  5 provides a summary of ML-based 
methods for climate-smart agriculture approach.

Random forest ML algorithm is more suited to classification problems 
when compared with regression problems [18]. It creates decision 
trees using a variety of samples, taking into account the average in 
regression problems and the majority votes for classification problems. 
The random forest algorithm’s ability to handle both continuous and 
categorical variables is one of its most important characteristics. 
Both classification and regression analysis can be performed using 
SVM, which are robust supervised learning models [19,20]. Finding 
a hyperplane with the best decision boundary that clearly classifies 
the data points is the goal of the SVM algorithm. Table  6 presents 
the estimated solar radiation values using the ML models, namely, the 
random forest algorithm and SVM.

4. CROP WATER REQUIREMENT

For all major crops, the irrigation water requirement is determined as 
follows [21]:

Figure 2: Linear relationship between solar radiation and various weather parameters.

Figure 3: Comparision between predicted evapotranspiration data using empiricaland machine learning method and satelite data for the study site: 11.0168° N 
latitude, 76.9558° E longitude.
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•	 Step 1: Estimate the reference crop ET: ET0
•	 Step 2: Get the crop factors: Kc
•	 Step 3: Compute the crop water need: ETc = ET0 × Kc

The ET0 is estimated by solar radiation-based empirical models and 
random forest algorithm. To estimate the ET, the solar radiation and 
temperature values are used. The water requirement for the crops 
(ETc) in millimeter/day is determined by multiplying the estimated 
reference crop ET and crop coefficient (kc) value.

The estimated solar radiation and the measured temperature values are 
used as input variables for empirical and random forest ML model 
to predict the ET0 value for the particular crop per day to understand 
how much water is required for the crop. The water requirement for 
the tomato crop in millimeter/day is calculated by multiplying the 
estimated ET and crop coefficient (kc) value. The estimated ET using 
empirical and random forest ML models is compared. From the results, 
Table  7 and Figure  3, it is observed that ET0 predictions using ML 
model are more precise than empirical models. Hence, the predicted 
ET0 value is used for agro-meteorological applications. Figure 4 shows 
the water requirement for the tomato crop. From the results, it was 
observed that the annual average solar potential of Coimbatore is 

around 19.69 MJ/m2/day. The reference crop ET ranges from 3.7 to 
5.7 mm/day.

5. CONCLUSION

Although weather prediction systems have undergone significant 
advancements recently, their direct applications in efficient crop water 
management have not been fully investigated. Here, we made an 
attempt to apply the ML techniques to estimate the ET through which 
the water requirement is calculated for the field crops in the theme of 
the application of weather in agriculture. Random forest ML algorithm 
and empirical correlations are used to predict the ET0 value for the 
tomato crop to understand how much water is required for the crop. 
The annual average solar potential of the study site is around 19.69 
MJ/m2/day and ET0 value ranges from 3.7 to 5.7 mm/day. It is found 
that using the random forest method with reduced input variables, a 
better performance metrics is achieved with a less mean square error 
of 0.03. From the obtained results, it is observed that the solar radiation 
and ET0 predictions using the random forest ML model is more precise 
than the empirical models. Thus, ML algorithms can be attempted 
to estimate ET0 and the actual water requirement for the crops to 
increase the agricultural yield and to lower the water consumption. 
The findings of this study can be applied as a successful planning, 
design, and management strategy for irrigation as well as a solution to 
the existing challenges in agrometeorological applications.

6. FUTURE SCOPE

The future scope of the research is to investigate microclimate utilizing 
a mobile weather station attached to a drone for efficient agricultural 
water management and deep learning-based leaf disease prediction to 
assist farmers grow their crops with greater efficiency.
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Table 6: Estimation of solar radiation in MJ/m2/day using machine learning 
models for the location‑Coimbatore.

Months Random forest SVM

January 20.98 23.13

February 22.39 24.99

March 22.53 25.39

April 21.77 22.07

May 19.99 19.77

June 15.95 16.11

July 14.87 15.03

August 15.03 16.08

September 17.44 17.77

October 17.44 17.11

November 17.45 17.88

December 18.07 18.96

Table 7: Estimation of ET0 in mm/day using empirical and machine 
learning models for the location Coimbatore.

Months Empirical 
estimation

ML‑based 
estimation

Satellite 
data

January 5.0 4.4 4.4

February 5.2 4.9 5.0

March 5.2 5.6 5.7

April 5.1 5.6 5.7

May 4.9 5.0 5.2

June 4.2 4.0 4.1

July 4.1 3.7 3.7

August 4.1 3.7 3.8

September 4.4 4.0 4.1

October 4.4 3.8 3.8

November 4.4 3.7 3.7

December 4.6 4.0 3.8
ML: Machine learning, ET0: Evapotranspiration.

Figure 4: Crop water need evapotranspiration in mm/day for the tomato crop.
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