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Metabolomics plays significant roles in plant biology including growth, development and stress resistance. Plant 
produces diverse array of metabolites (approximately 200,000 to 1,000,000); hence metabolomic study is of great 
importance in plant biology. Due to presence of diverse array of metabolites in plants, it posses  greatest 
challenge to indentify and quantify them correctly. Very significant improvement has been made in the field of 
plant metabolomics, but uniform annotation of metabolite signals in database and informatics of international 
standardization remains a challenge. The advancement of metabolomics largely depends upon increase in 
separation efficiencies and identification of individual metabolites. Fluxome and metabolomic QTL (mQTL) are 
very important missing link in plant metabolomics. Now these days, metabolomics is a part of system biology 
and metabolomics in combination with system biology approach will lead to unbiased acquisition of mass 
spectrometric data from diverse array of samples. To overcome different challenges, development of improved 
technology for detection and identification of metabolite in complex plant tissue and dissemination of 
metabolomic research data will be very helpful.  
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1. INTRODUCTION 
 

The primary aim of the “OMICS” technology is non 
targeted identification of all gene products (transcripts, proteins 
and metabolites) [1]. After the establishment of technologies for 
high-throughput DNA sequencing (genomics), gene expression 
analysis (transcriptomics), and protein analysis (proteomics), the 
remaining functional genomics challenge is that of metabolomics 
[2,3,4].  

Metabolism is the term coined for essentially 
comprehensive, non biased, high-throughput analyses of           
complex metabolite mixtures typical of plant extracts                
[5,6,7,8]. This potentially holistic approach to metabolome 
analysis is driven primarily by recent advances in mass 
spectrometry technology and by goals of functional genomics 
research [9,10,11].  

Achieving the broadest overview of metabolic 
composition is very complex and entails establishing a 
multifaceted, fully integrated strategy for optimal sample 
extraction, metabolite separation, detection, automated data 
gathering, handling, analysis and ultimately quantification [12,13]. 
Both analytical and computational developments are essential to 
achieve this goals.       . 
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2. METABOLIC DIVERSITY AND DATABASE 
 
Human knowledge so far encompasses the existence              

of at least 270,000 plant species [14], and researcher believe            
that more than 400,000 plant species exist worldwide. The               
total number of metabolites in plant kingdom is estimated to            
range from 200,000 to 1,000,000 [15]. The metabolic                  
richness comes not from the number of genes present (20,000 to 
50,000) but also from multiple substrate specificities for many 
enzymes [16].  

Therefore large scale comprehensive metabolite            
profiling meets its greatest challenge-a challenge that provides the 
impetus cutting edge technological development. Various 
experimental approaches are currently being pursued to profile and 
determine the chemical identity of plant metabolite [14]. The 
analytical approaches deployed vary in their relative concentration 
and chemical complexities [17,18]. Typically metabolites are 
identified through spectral comparison with authenticated 
compounds contained with spectral libraries [14]. Some of the 
commonly used spectral libraries are the NIST (www.nist.gov),  
Wiley (http://wileyregi stry.com), or Sigma-Aldrich (www.sigmaal 
drich. com) libraries. Although these libraries contain more than 
350000 entries, most of these are non biological complex and lack  
information  on  chromatographic behavior [19].  
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Tokimatsu et al., (2005) reported an web based analysis 
tool known as KaPPA-view for integration of transcript and 
metabolite data on plant metabolic pathway maps [20]. 
Metabolomic research                will   prove  an invaluable tool for 
generating information of special  importance in many fields [21]. 
For functional genomics strategies, potentially fast-track methods 
exploiting metabolomics analyses of tagged lines or unknown 
mutants are likely to provide invaluable information’s [22]. 
Metabolomic information will not only assist in the establishment 
of deeper understanding of complex interactive nature of plant 
metabolic network and their response to environmental and genetic 
change but also will provide unique insight into the fundamental 
nature of plant phenotypes in relation to development, physiology, 
tissue identity, resistance, biodiversity etc. [23,24]. Currently 
metabolomics being applied in many biological studies ranging 
from carbon-nitrogen interactions in plants to development of 
personal metabolomics as next generation nutritional assessment 
in humans [25]. A better understanding of the correlation between 
genes and functional phenotypes of an organism will be the true 
goal of all functional genomics strategies. 
 
3. PRESENT STATUS OF METABOLOMICS 
 

It is essential to follow the response of an organism to a 
conditional perturbation at the transcriptome, proteome, and 
metabolome level [26,27]. These three levels of expression 
profiling provides a complete picture of RNA’s protein and 
metabolite that enable one to infer relevant association between 
macromolecules; identify functional linkage between phenotypic 
expressions; and construct model that quantitatively describe the 
dynamics of biological system [28,29,30]. Broad phenotypic 
analyses are very essential if we have to progress from prediction 
to experimental validation of gene function [17]. 

Plant metabolites functions in different stress response 
and undergoes resistance mechanism against different biotic and 
abiotic stress agents [31]. These metabolites are act as antibiotic, 
anti-feeding, antioxidant, anti-herbivory agent [32]. These also 
contribute to color, taste, aroma, and scent of flowers and fruits 
[33]. The metabolic phenotype of an organism is the final result of 
interactions between genotype and environment [34,35,36,37], but 
it also modulated by sub-cellular physiological fluctuations that 
are part of homeostasis [1]. Thus, the simultaneous identification 
and quantification of metabolites is necessary to study the 
dynamics of metabolome [19], to analyze fluxes in metabolic 
pathways and to decipher the role of each metabolite following 
various stimuli [34]. The challenges of metabolomics is to find 
changes in the metabolomic network that are functionally 
correlated with physiological and developmental phenotype of a 
cell, tissue or organism [38]. Linkage of functional metabolomic 
information to mRNA and protein expression data makes it 
possible to visualize the functional genomics repertoire of an 
organism [39,40,41]. This knowledge has great potential for 
application in efficient engineering of crops that combines an 

attractive appearance and taste with improved level of 
phytonutrients like flavonoids and carotenoids [2,42].  
 
4.  METABOLITE PROFILING TECHNIQUES 
 

The huge diversity of chemicals produced by plant is due 
to the diverse functions of the genes of their genomes [43]. 
Metabolomics is the rapidly emerging field of post genomic 
research [14]. A metabolome represents the ultimate phenotype of 
cells deduced by perturbation of gene expression and the 
modulation of protein functions [44,45,46]. In addition, the 
metabolome can also influence gene expression and protein 
function [27,47,48,49]. Therefore metabolomics plays a key role in 
understanding cellular system and decoding the functions of genes 
[26,44,50]. 

The large variations (˜106) in the relative concentrations 
of metabolites also make metabolite analysis more complicated. 
Therefore, comprehensive coverage can only be achieve by using 
multi-parallel complementary extraction and detection 
technologies with careful experimental design [14]. Currently 
there is no single technology available to detect all the compounds 
in single analysis in any plants or other organisms [50,51,52], a 
combination of multiple analytical techniques, such as gas 
chromatography (GC), liquid chromatography (LC), capillary 
electrophoresis (CE)-MS, NMR, and rapid scanning time-of-flight 
(TOF) are generally performed to detect maximum compounds 
[10,34,53,54]. 
 
4.1 General chromatographic procedure: 

Metabolites can be extracted from few milligram of 
tissues. First of all to grind them to make them fine powder and 
extraction can be carried out by either in polar/semipolar (e.g. 
methanol/water or ethanol/water) or non polar (e.g. chloroform)  
solvent. Volatile components can be extracted with solvent or 
headspace extraction [55]. 

Samples for instrumental analysis can be prepared from 
the crude extract by partial purification method such as liquid-
liquid extraction and solid phase extraction. In case of GC-MS 
(gas chromatography-mass spectroscopy) method, a two steps 
derivatization by methoxyamination and trimethylsilylation 
represent a key techniques for profiling of hydrophilic metabolites 
[56]. 

Metabolic profile data can be obtained by using GC-MS,  
LC-MS and NMR [57]. 

Metabolite signals in row chromatogram/spectrum data 
need to detect and quantify comprehensively. These data need to 
assigned with metabolite information to produce a data matrix 
listing a metabolite and its intensity data. The peak picking process 
which was a technical bottleneck in the early stage of 
metabolomics study can now be performed routinely by 
developing a series of software dealing with GC, LC-MS, CE, and 
NMR data in which matrices containing intensity values of all 
signals in sample are taken into consideration [56,58,59].  
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The metabolic profile data then can be analyze by using 
various data mining techniques [60,61]. Most technology for 
metabolomics is based on mass spectrometry [62,63]. Gas 
chromatography– MS (GC-MS) and HPLC–photodiode array–MS 
remain the methods of choice for quantitative and qualitative 
metabolite profiling [64,65,67,68]. The ultimate goal of 
metabolomic is ability to comprehensively detect and quantify 
every metabolite in a plant extract, is unlikely to be attained by 
any single analytical method available at present. LC-MS is an 
unique method for profiling plant secondary metabolite like 
phenylpropanoids and alkaloids [62,63,69]. One of the important 
mission of LC-MS analyses in metabolomic study in plant 
research is to understand phytochemical diversity within the plant 
[70,71,72,73].  

Rapid scanning time-of-flight (TOF) MS coupled with 
GC separation and integrated with peak deconvolution software  
technique increased the number of metabolites detectable by GC-
MS in crude plant extracts to 500 to 1000 [64,74]. However, the 
dynamic range of TOF detectors is still restrictive when faced with 
mixtures containing compounds with concentration differences of 
several orders of magnitude. TOF and FT (fourier transform)/MS 
have been employed to obtain elemental composition data of each 
metabolite signal [30,63]. CE-MS  being employed to detect ionic 
metabolite such as cation, anion, nucleotides, sugar phosphates, 
organic acids, amino acids [75,76]. 
 
5.FALSE DISCOVERIES IN METABOLOMICS 
 

There are two possible classes, the outcome of any 
predictions relative to the ‘true’ class membership is usually set 
out as a binary matrix, the so-called confusion matrix consisting of 
true positives (TP), false positives (FP), true negatives (TN) and 
false negatives (FN) [77,78]. The term false discovery rate (FDRs) 
typically refers to the frequency of type I errors, i.e. to claims that 
some variable, or model, can discriminate two population when, in 
fact, it can’t [79,80,81]. One of the main cause of FDRs is, 
inadequate sample size [82,83,84], a features that is particularly 
problematic in cases when the number of variables greatly exceeds 
the number of samples. Many metabolomics and other high-
throughput experiment are set up in such a way that the primary 
aim of the discovery of biomarker metabolites can be discriminate 
with a certain level of certainty between normally matched ‘case’ 
and ‘control’ sample [85,86]. However, it is unfortunately very 
easy to find biomarkers that apparently persuasive but that are in 
fact entirely spurious.  

The main type of danger are not entirely depends upon 
each other, but include bias, inadequate sample size (especially 
relative to the number of metabolite variables and to the required 
statistical power to prove that a biomarker is discriminant), 
excessive false discovery rate, due to multiple hypothesis testing, 
inappropriate choice of particular numerical method, and over 
fitting (generally caused by the failure to perform adequate 
validation and cross validation) [87,88]. Many studies fails to take 
these into account, and thereby fail to discover anything of true 

significance (despite of their claim).     The world of science is 
littered with samples of false conclusion being drawn from 
ostensibly well designed experiments, and the bad design of 
experiments will usually ensure such an outcome. In many areas of 
post genomic discovery, the proper methods of statistical analysis 
are not entirely clear, for instant how best to treat correlated 
variables in terms of Bonferroni-type correction for significance 
when doing multiple hypothesis-testing [89,90]. With very many 
variables, potentially with significant noise, the false discovery 
rates and premature claims of significance are likely to be major 
problems [91,92]. 
 
6. THE MISSING LINK 
 

6.1 Fluxome 
An additional layer of omics is “Fluxome”,  is required 

between proteome and metabolome layers to consider the dynamic 
aspects of plant metabolism [51,92]. These are steady-state rates of 
metabolic inter conversion within living cells [93]. They constitute 
a significant aspect of cellular phenotype, determining the rates of 
growth and product formation. Flux balance analysis widely used 
in calculating steady-state flux distribution. The principle of flux-
balance analysis relies on experimentally quantifying a set of 
metabolic fluxes in the network; such as substrate consumption or 
product excretion. One disadvantage of flux-balance analysis is 
that, it is unable to predict quantitatively to what extent certain  
enzyme activities should be altered to achieve a desired effect, 
such as an increase in the specific production rate of a product. 
Zhu et al.,(2012) developed thermodynamic optimum searching 
(TOS) to improve the prediction accuracy of flux balance analysis 
[94].   

Fluxome is also called metabolic regulon which impairs 
control of metabolite level via regulation of metabolic flux of the 
pathway responsible for biosynthesis and catabolism 
[93,94,95,96]. Thus a quantitative investigation of metabolic flux 
can give us more deep understanding of modes of regulation of 
plant metabolic system [97]. Up and down regulation of metabolic 
flux can be estimated qualitatively from the expression level of 
gene and enzyme assay [96]. By using the enzyme assay platform, 
activities of metabolic pathway can be elucidate more directly than 
with transcriptome data [98], since the “net” activity of each 
reaction step, including multiple isoenzymes can be determined. 
Most direct information of metabolic regulon can be obtain by 
determination of an actual metabolic flux [92,99]. Dynamic 
labeling of 13C isotope provided to be powerful tool to elucidate 
metabolic regulon mechanism [99,100]. The dynamic labeling 
technique enables the metabolic flux from kinetics of in vivo 
isotope labeling [101]. By using this techniques, various dynamics 
aspects of plant metabolism have been investigated [102, 103]. 
Rossell et al.,(2011) presented a method by which flux changes 
can be predicted using enzyme concentration changes only. They 
thought reaction rate and enzyme level are proportional and 
determines the steady-state fluxes and complexity of enzyme-
metabolite interaction is secondary [93].  



04                      Tapan Kumar Mohanta / Journal of Applied Biology & Biotechnology 1 (03); 2013: 001-010 
 

6.2 Metabolome QTL 
Quantitative trait locus mapping of metabolic phenotypes 

(mQTL) is a powerful approach to unravel the genetic component 
associated with metabolic profiles and identifies genes associated 
with metabolic marker of disease. The mQTL mapping constitutes 
genetically heterogeneous cohort, modern genotyping platform, 
hypothesis-free metabolic profiling using high throughput nuclear 
magnetic resonance (NMR) spectroscopy or mass spectrometry 
(MS), generating up to 20,000 metabolic trait per sample and the 
statistical tool required to map these trait on to the genome of 
experimental population. Network and system biology strategy  
can enhance the biological interpretation derived from mQTL 
studies. 
  Most agriculturally important traits are under the control 
of quantitative trait loci [104, 105,106,107]. Metabolite level of 
plant tissue (m-trait) are also a quantitative trait. Recently 
metabolome QTL (mQTL) analysis regarding m-trait have been 
conducted for comprehensive understanding of their genetic 
background [40,41,108,109]. A number of causal genes, 
responsible for mQTL can be deduced by high density linkage 
map of molecular markers and these can be taken for further 
investigation of regulatory system in  complicated plant 
metabolism pathway.  

Khan et al.,(2012) reported mQTL hotspot for phenolic 
compound of apple (Malus X domestica Borkh) in linkage group 
16 [110]. Untargeted mQTL mapping of metabolites showed 669 
mQTL in peel and flesh, spread over 17 linkage group of apple 
genome. Not all the metabolites showed mQTL and 99 annotated 
metabolites were belonged to phenolic compounds 
(phenylpropanoids and polyphenols). The genetic loci controlling 
metabolite content in peel also control the flesh of apple in less 
significance manner. The level of metabolites in the linkage group 
LG16mQTL hotspot controlled by a single, dominant locus 
present in both parents [110]. Flavonoid mQTL hotspot is located 
on LG16 and the quercetin glycosides are not controlled by 
flavonoid mQTL hotspot on LG16 and no mQTL was detected for 
many metabolites. 

The mQTL analysis of Arabidopsis thaliana revealed 
that QTLs are unevenly distributed in the genome [40], and there 
are several regions where the densities of QTLs are much higher 
than in other region [30, 40]. Although it never been elucidated 
whether the mQTL hotspots are derived from a variation of only 
one key gene or that of gene clusters [111,112], the existence of 
QTL hotspot suggests that the overall composition of plant 
metabolome can be controlled by the manipulation of small 
genomic region [14]. The relationship between mQTL trait and 
other important agronomic and biological trait like taste, yield, 
biomass etc. can be investigated as these traits likely interact 
closely with metabolism in plants [40, 113,114].                 
Metabolome analysis of tomato fruit indicated that there are 
certain correlation among these traits [37,109]. Regression 
analysis of metabolome data for Arabidopsis biomass trait 
demonstrated that growth rate of Arabidopsis seedling                          
is  some extent predictable  from the  metabolome signature [113]. 

7. CURRENT LIMITATION OF METABOLOMICS AND 
FUNCTIONAL GENOMICS APPROACH 
 

Advancement of metabolomics depends upon increase in 
separation efficiencies and identification of individual metabolites. 
Unlike mRNA and protein, it is difficult or impossible to establish 
a direct link between individual metabolites and its corresponding 
gene. Functions have been proven for many plant metabolites or 
can be inferred from our knowledge of other organisms [115,116]. 
However a same metabolite can be member of  several different 
pathways and can also have regulatory effects on unambiguously 
linked to a single genomic sequences [45]. 

No longer, metabolomics seen just as a tool of functional 
genomics, but it has now became an integral part of system 
biology [3]. Early approaches were based on metabolite 
fingerprints and metabolite profiles, but there are also studies 
focusing on fluxes. The array of techniques to measure a large 
number of metabolites has also been expanding. The application of 
metabolomics currently limited by computational issues. The 
biggest metabolomic challenges posed by metabolomics are (1) to 
identify large number of metabolites that are detected but, whose 
chemical nature is unknown (estimates goes from 60% to 90% of 
total) (2) to identify the active areas of metabolism (pathways and 
networks) responssible for changes in metabolite profiles and (3) 
to create standards for data and metadata format and reporting [3]. 
It is unambiguously important to create a data standard that cover 
all of metabolomics and will be compatible with other standards of 
genomics and proteomics. Simultaneous application of 
metabolomics, proteomics, and transcriptomics that are likely to 
provide the most comprehensive and informative views of 
biological systems, for this, it is crucial that we must have data 
standards in place. The next step will be to integrate these data in 
global models of cellular behavior-indeed a truly system view of 
biology.   
 
8.APPLICATIONS OF METABOLOMICS TO PLANT 
SYSTEM 
 

Metabolomics offers the unbiased ability to differentiate 
genotype based on metabolite levels that may or may not produce 
visible phenotype [117,118]. Furthermore, in those instances in 
which mutations or expression of transgenes lead to measurable 
phenotype changes. Metabolic approaches can be used to decipher 
the biochemical cause of consequence of the observed phenotypes. 

Metabolomics at its most powerful when performed on a 
large scale and integrated with corresponding data on the 
transcriptome and proteome. More selective metabolic profiling 
however has been used in a number of areas to provide biological 
information beyond the simple identification of plant constituents 
[18]. These area include Fingerprinting of species, genotypes or 
ecotypes for taxonomic or biochemical  aspects [119]. 

Monitoring the behavior of specific classes of 
metabolites in relation to applied  exogenous chemical and/or 
physical stimuli [120]. Studying symbiotic association [121]. 
Comparing metabolite content of mutant or transgenic plant with 
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that of their wild type counterparts. Coupling of metabolite 
profiling with that “omics” technology can provide an integrated 
picture encompassing all aspects of information flow from genome 
to metabolome and resulting phenotype.    
 
9. FUTURE DIRECTIONS FOR METABOLOMICS 
 

Development of improved technology is necessary for 
determination of metabolites in complex plant tissue and 
dissemination of metabolomics research data 
[20,122,123,124,125]. To integrate and disseminate metabolomics 
research data, a metabolomic information standard will help to 
ensure that metabolite data and meta data can be easily interpreted 
and that result can be independently verified outside the original 
source laboratory [126]. Elevating technical performance to enable 
broader capture of metabolomic data with the required throughput 
and accuracy of identification is even more challenging. Because 
these challenges are widely recognized and endorse [127]. This 
encourages a community based effort to define common criteria 
and to initiate several concerted actions. Different steps to 
overcome the challenges: 
 
9.1 Modeling and simulation 

Model can be used for prediction and generation of 
hypothesis [18]. Mathematical modeling of metabolism is a 
powerful techniques for gaining sufficient quantitative 
understanding of complex metabolic pathways [128,129] in order 
to alter the distribution of metabolic flux or to rationally design 
metabolic pathway for new product [130]. Transient isotopic flux 
analysis and kinetic modeling are proven to be powerful 
techniques for quantification of metabolic fluxes in 
compartmentalized and dynamic metabolic system [128]. These 
tools are now widely used to address metabolic flux response  to 
environmental and genetic perturbations in plant metabolism. 
Continuous  development in isotopic and kinetic modeling, 
quantifying metabolite exchange between compartments, and 
transcriptional and post transcriptional regulatory mechanism 
governing enzyme level and activity will enable simulation of 
large sections of plant metabolism under no-steady state conditions 
[131]. Metabolic control analysis will continue to make substantial 
contributions to the understanding of quantitative distribution of 
control of flux [128].      
 
9.2 Improved comprehensive coverage of metabolome 

Metabolomic data ultimately relies on accurate 
identification of metabolites [132]. Scientific literature including 
elemental analysis, NMR and MS spectral data of isolated 
compounds are necessary to ensure accurate metabolic 
identifications [58]. A single chemical shift or mass value is 
insufficient to provide confident metabolite identification. 
Therefore definition of a minimum quality standards for 
metabolite identification in metabolite profiling experiments is 
necessary. However this is not as stringent as for novel compounds 
those are identified for the first time, otherwise it is minimum that 

molecular mass or mass spectral fragmentation pattern of GC/MS 
or LC/MS should match apparently. Hyphenated techniques that 
couples chromatography to mass spectroscopy and/or to NMR, 
such as LC/MS/NMR analysis might offer the greatest confidence 
in sample identifications, but represents a large expenses [21, 
58,133,134,135]. Single spectrometric determination gives 
insufficient detail for confident metabolite identification. The best 
analytical approaches for large-scale screening and preliminary 
identification of unknown compounds can carry out with two-
dimensional instrumental techniques (based on each combination 
of GC/MS, LC/MS, GC/MS/MS, LC/MS/MS or LC/NMR/MS), 
which enable both comparative profiling and structural elucidation 
[135,136]. For example, LC/QTOFMS/MS (liquid 
chromatographic quadrupole tandem time-of-flight mass 
spectroscopy) has the potential to provide accurate mass and 
metabolites [137]. Experimental mass data can then be used for 
calculating an elemental composition and can be compared with 
available mass information.  
 
9.3 Reference material and facilitation of comparative result 

Standard reference materials would allow comparison of 
the experimental and instrumental efficacy between laboratories 
and technologies. Because most metabolomic approaches uses 
different technology platforms (e.g. Fourier Transform/MS, Time-
Of-Flight/MS, ion-trap and NMR) that vary in their range of 
measured metabolites, accuracy, resolution, dynamic range and 
sensitivity reference materials would allow validation of technical 
performance and a mechanism for comparative performance 
evaluation [59, 70,138,139]. 
 
9.4 Integration of metabolomics with other functional 
genomics data 

The development, establishment and integration of 
metabolomics database will bridge the barriers between 
metabolomics and other functional genomics approaches (i.e. 
transcriptomics and proteomics) and will allow the development of 
biological   systems networks  by     integrating         transcriptome, 
proteome, metabolome and flux data [20,26,49,140,141]. The 
Arabidopsis information resources (TAIR), genomic database of 
Japan (www.genome.ad.jp /kegg/pathway.html), maize genome 
database (http://www.maizegdb.org) etc are emerging so rapidly, 
but it became even more essential to develop com prehensive 
metabolomics dataset. Maturation of metabolomics as the next 
milestone of functional genomics ultimately depends on 
establishing metabolomics relational database, that store, compare, 
integrate, and enable the determination of causal relationship 
between genes, transcripts, proteins and metabolites 
[21,142,143,144,145,146,147]. All functional genomics 
approaches are “information rich”, but each method is also 
vulnerable to various statistical cavets, because the data originates 
from different samples characterized by several thousand feature 
like genes, m/z (mass to charge ratio), spectral intensities etc 
[78,148]. These might lead to difficulties in interpretation and 
validation of data. The generation of database tools to query and/or 
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comprehensively mine metabolomic data depends on availability 
of metabolite database that can be trusted and for which the source 
of data and its history are maintained and made publicly 
accessible. In each data repository, expert assessment and data 
curation are important to assure the uniformity and quality of the 
information [149,150].  

Data acquisition, transformation, validation and 
annotation are all aspects of curation. There is not any generally 
adopted procedure to transform and annotate metabolite data yet 
been proposed that can be used independently from its 
technological platform.  There is great need for validated data 
models that defines suitable approaches for generation, processing 
and storage of metabolomic data. To facilitate data model 
development, it can be possible through cooperative research that 
integrates different datasets. Future step will use the validated and 
curated metabolomic information to study the dynamics of 
metabolome to analyze fluxes in metabolic pathways and to 
decipher the biological relevance of each metabolite. As the 
comprehensiveness increases and bioinformatics tools mature, 
functional metabolomic information can be linked to transcriptome 
and proteome dataset to enable a better understanding in plant 
biology. 

 
10. CONCLUSION 
 

Metabolomics study is particularly important in plant 
biology field, because plant produces huge array of diverse 
metabolites. Complete identification and quantification of these 
metabolites cannot be achieved by single analytical technology, 
but multi-parallel complementary technology  will be very helpful. 
Transcriptome co-expression network will provide invaluable 
information to decode co-occurrence principle of transcript and 
metabolites. So, it can be very helpful to identify evaluation of 
genetically modified crop.  

Metabolomics with system biology will play key role in 
understanding plant system and hence development of 
biotechnological applications. Metabolome QTL (mQTL) along 
with gene expression and agronomical trait will be very promising 
for crop breeding. 
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