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ABSTRACT

Increasing demand and changes in pricing of fossil-derived fuel led researchers to find the productive path to 
meet the current energy requirement. These objectives can be achieved by using lignocellulosic wastes as a source 
of food for microbes having the ability to accumulate oil. Microorganisms possessing more than 20% w/w of 
lipids on dry weight are termed as oleaginous microorganisms. Oleaginous microorganisms are proven useful 
in the production of biodiesel. Coastal water was screened for the presence of these microorganisms. Potent 
lipid accumulator has been isolated from the selected sample. After studying morphology, biochemical, and 16s 
rRNA sequencing analysis, the organism was identified as Bacillus paralicheniformis (OQ202112). They can 
produce polyunsaturated fatty acids (PUFAs) de novo using PUFA synthase/polyketide synthase. The fatty acid 
profile revealed the presence of oleic and linoleic acids as major components. They produced 3.3 g/L lipids with 
5.5 g/L total dry weight. Lipid extraction was carried out by Bligh and Dyer method and oil was transesterified 
by methanol using NaOH as a catalyst. The yield of fatty acid methyl esters was 86.2%. The fuel obtained met 
with the standards given by the American Society for Testing and Materials and ASAM. Cetane rating 61 suggests 
good quality of the biodiesel produced. Thus, the isolated organism possesses potential to be used as a biodiesel 
producer.

HIGHLIGHTS

•	 Isolation of oleaginous bacteria from marine water samples 
which are potential accumulators of polyunsaturated fatty acids 
(PUFAs).

•	 De novo synthesis of fatty acids through PUFA synthase/
polyketide synthase pathway does not require desaturation and 
elongation of saturated fatty acids.

•	 Triphenyl tetrazolium chloride method was used for screening of 
oil producers from seawater.

•	 Bacillus paralicheniformis (OQ202112) was identified as the 
most potent lipid accumulator.

•	 Lignocellulosic agro waste was used as a source of nutrition for 
lipid accumulators.

•	 The major components of fatty acid profile were oleic acid and 
linoleic acid.
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•	 Transesterification of fatty acids under optimum conditions 
produced 86.2% fatty acid methyl ester (biodiesel).

•	 Isolated organism can be used as a single-cell oil factory to 
produce biodiesel and thus minimize dependence on non-
renewable energy resources.

•	 The cetane rating obtained for the biodiesel was in the range that 
marks good quality of the fuel.

1. INTRODUCTION

High rise in energy requirements and decreasing amount of fossil 
fuels seems troublesome for the future. Energy crunch and climate 
crisis are results of over consumption of renewable energy sources. 
This compelled researchers to look for green energy production. 
Biodiesel has been proven advantageous, as it is more maintainable 
and economically efficient [1]. The idea of using mineral-based fuels 
is gradually falling out of favor due to the overuse, depletion, and 
associated environmental effects of fossil fuels [2]. Plant and animal 
fats can be transesterified to produce biodiesel and this product can be 
used after mixing it with petroleum diesel. Biodiesel is beneficial for 
society and environment as it is biodegradable, safe, renewable, and 
less polluting [3].
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Production of biodiesel can be done from various organisms based 
on the multiplication capacity of organisms as well as their ability to 
accumulate lipids as faster growth results in higher lipid accumulation, 
eventually, increasing the production yield coefficient [4,5]. Ideal 
fatty acid accumulation for biodiesel production can be achieved by 
suitable organism possessing aforesaid properties. Algae and plant 
seeds possessing higher amounts of lipids can also be used as fatty 
acid sources for transesterification. However, there may be several 
problems in using algae and seeds such as varying climatic changes 
and land requirements [6]. Literature has reviewed many yeast strains 
possessing higher amount of lipids but bacterial contamination while 
growing yeast causes difficulty and becomes the reason for lower 
production as cell growth gets inhibited [7-9]. Above all, oleaginous 
bacteria show alluring properties such as low space requirements, 
speedy growth rate, economic feasibility, and less dependence on 
seasons [10]. Moreover, many bacterial species are reported to 
be suitable candidates for high oil production like Rhodococcus 
opacus PD630 which accumulated oil up to 80% cell dry weight 
(CDW) [11,12]. Considering above-mentioned benefits, bacteria are 
suitable for the production of future fuel [12]. Microorganisms’ ability 
to increase fatty acids varies with varying growth conditions even if 
the organism is the same [13]. Yeasts and bacteria grow at the same 
rate so it is feasible to study their genes and metabolic engineering 
at the genetic level [14]. Several genes are studied well and can be 
altered for more production of fatty acids. These genetic fragments are 
responsible to code for specific proteins, which play a role in fatty acid 
synthesis [15,16]. In maritime environment, omega-3 polyunsaturated 
fatty acids (PUFAs) are contributed by microorganisms, which are 
considered the main producer of it. As far as sources of long-chain 
polyunsaturated fatty acids are concerned, bacteria seem more 
potent than fish as downstream processing in the case of bacteria 
is inexpensive [17-21]. Gammaproteobacteria such as Colwellia, 
Moritella, Shewanella, Vibrio, and Psycromonas are known for their 
PUFAs accumulating ability. Moreover, fatty acid metabolism in 
the aforementioned microorganisms has also been studied [22]. The 
accumulation of LC-PUFAs (long-chain PUFAs) in these organisms 
is believed to be responsible for increasing membrane fluidity to 
adapt organisms to psychrophilic environments [23-25]. Secondary 
metabolites are synthesized by a PUFA synthase through the anaerobic 
polyketide synthase pathway in seawater microbes [26]. Genes, 
involved in fatty acid synthesis, were firstly decoded in Shewanella sp. 
(SCRC-2738) and are organized in 38Kbp gene segment containing 
operon for EPA synthesis [27]. The gene cluster, which was found 
in Shewanella sp. (SCRC-2738), possesses five genes sequentially 
and its presence has been discovered in eukaryotes and bacterial 
strain [26,28,29]. This data show that PUFA producers from seawater 
have not been fully discovered and there is a need to explore lipid 
accumulators from marine water to save environment by providing 
renewable sources of biofuel.

The current question is to find supreme substrate, which is cheaper 
to produce biodiesel for green environment [30,31]. Researchers 
are experimenting to find novel economical substrate for fatty acid 
accumulation in bacteria such as lignocellulosic agro wastes [32-34]. 
The procedure becomes more efficient and less expensive when 
lignocellulosic biomass is used to produce lipids. It also has a smaller 
negative environmental impact [35]. Crude glycerol, dairy waste, 
etc. can also be used instead of non-renewable resources [36,37]. 
Agribusiness is the main occupation in India. Hence, abundant amount 
of agro waste is generated and burnt annually leading to pollution and 
difficulty for breathing. This warrants the need for biodiesel production 
using renewable waste like lignocellulose.

In the present research, to reduce harmful effects on environments, a 
promising effort has been made to produce biodiesel by utilizing marine 
microorganisms. These microorganisms have the ability to accumulate 
long-chain PUFAs using agro waste. Unlike previous studies, the 
substrate was not subjected to any pre-treatment to accumulate PUFA 
for biodiesel production. There has not been a single study conducted 
yet on B. paralicheniformis as a potential lipid accumulator.

2. MATERIALS AND METHODS

2.1. Sample Collection and Enrichment for Lipid Accumulator 
for Screening
Seawater sample was collected from various sites, i.e., (1) seawater 
from Somnath, (2) seawater from seashore near Diu, and (3) water 
sample from the point where sea and river water mixes near village 
Simar. Marine Artificial Seawater (MASW) agar plates containing 
25.5 g of instant ocean salt, 5 g peptone, 1 g yeast extract, and 15 g 
of bacteriological agar were prepared for bacterial isolation. 0.1  ml 
sea water was taken for inoculation. Plates were incubated at 28°C 
for 3  days in aerobic condition [38]. On the basis of phenotypic 
heterogeneity, 23 isolates were screened and streaked over MASW 
plates for 5 days and incubated at 28°C. Purification and conservation 
were done for further analysis of this sample. All these isolates were 
tested for lipid accumulation ability by performing Sudan black B 
staining and TTC (triphenyl-tetrazolium chloride) screening [39,40].

2.2. Lipid Synthesis
The isolates selected by Sudan Black B staining and TTC screening 
were further checked for their lipid accumulation ability. Each of the 
selected strains from every sample was activated by Luria-Bertani 
broth. Activation was done for different time periods of 24 h, 48 h, and 
72 h for every strain to check effective inoculum age as well as they were 
screened for higher production using selected agro wastes (groundnut 
husk and rice bran) and glucose as a standard. The production medium 
containing (g/L) KH2PO4  (0.4), K2HPO4  (1.6), MgSO4.7H20  (0.2), 
MnSO4.H2O (0.05), CuSO4.5H2O (0.001), ZnSO4.7H2O (0.001), and 
CaCl2 (0.0005) was adjusted to pH ≈ 4.7 [41]. Substrate concentration 
and inoculum concentration were set 4% for the initial batch and the 
process was continued for 72 h at 120 rpm.

2.3. Efficient Lipid Synthesis by Optimization and Extraction 
of Fatty Acids from Fermented Medium for Advanced 
Application
Groundnut husk powder and rice bran powder were tested as substrates 
in anticipation of higher PUFA content production. One potential 
strain from the selected three isolates was taken for the optimization 
process in search of maximum lipid yield. Optimization was carried 
out by varying parameters such as substrate concentration (2, 4, 6, 8, 
12%), inoculum size (3, 5, 7, 9%), and inoculum age (24, 48, 72, 96 h). 
Other parameters such as fermentation incubation time, temperature, 
pH, and agitation speed were also optimized for finding of suitable 
environmental condition for the screened strain. Fatty acid extraction 
was performed by Bligh and Dyer method [42]. Centrifugation of 
fermented media was performed and supernatant was discarded to 
record CDW. Single-cell oil content was derived by evaporation of 
organic solvents from extracted lipids using gravimetric method [43].

2.4. Fine-Tuning Biodiesel Production
Transesterification process was performed for the conversion of 
extracted oil (2  ml) into biodiesel. Reaction mixture was taken in 
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250 ml Erlenmeyer flask. A strong base catalyst and methanol were 
thoroughly mixed by providing slight heat. After the dissolution of 
base in methanol, the mixture was added in extracted sample. Flask 
was heated at required temperature for required time after tightening 
with screw cap. After completion of the process, reaction mixture 
was cooled and set to pH ≈ 7. The solution was washed using warm 
water for 3–4  times and poured in separating funnel for checking 
the presence of separated layers. Optimization of the process was 
continued by varying process parameters such as catalyst type, 
catalyst concentration, oil:  methanol molar ratio, time, and reaction 
temperature. The following equation was used to calculate the yield of 
biodiesel production [44].

Biodiesel yield (%v/v)=Amount of biodiesel (ml)/Amount of 
lipids (ml)

2.5. Comprehensive Characterization of Biodiesel
The purified product was tested by gas chromatography–mass 
spectrometry (GC-MS) to check the presence of fatty acids. Fourier 
transform infrared (FT-IR) spectrum analysis was performed to know 
the nature of fatty acid methyl ester from Bacillus paralicheniformis 
within the range 4000-400 cm-1. Fatty acid methyl esters (FAME) 
were further characterized using nuclear magnetic resonance (NMR) 
spectroscopy. Biodiesel obtained from Bacillus transesterified lipids 
was confirmed using NMR spectroscopy. Gelbard used the NMR 
technique for checking transesterified products for the first time [45].

2.6. Biodiesel Revealed: Unraveling Physicochemical Properties 
of Biodiesel
Certain parameters such as the properties and quality of biodiesel 
depend on the structural and molecular configuration of fatty acids [46]. 
The standard methods such as American standard testing material and 
American oil Chemist’s society were used to check elemental properties 
of the produced biodiesel such as viscosity, density, iodine value, free 
fatty acid (FFA) content(%), specific gravity, flash point, acid value 
(mg KOH g1), pour point, and cetane number [47,48] [Table 1].

3. RESULTS AND DISCUSSION

3.1. Selection of Lipid Accumulator for Efficient Biofuel 
Production
In our study, 23 organisms with potential to accumulate lipids were 
isolated from 3 different locations. Water sample was collected from 
the sea, near a place called Somnath located in the state of Gujarat 
in India. Through various surveys, it is reported that organisms 
showing maximum lipid accumulation can be collected from seawater 
sample [49]. Among 23 isolates, three powerful lipid accumulating 
strains (RKC-1, RKC-2, RKC-3) showing positive results in TTC 
screening and Sudan black B staining were screened. Among these 
three isolates, based on its potentiality to increase PUFA, RKC-2 was 
selected for our further study. The yield of this strain was 3.3  g/L 
of lipids produced from the dry weight of 5.5  g/L. This finding 
indicates that the production of lipid does not depend on cell growth 
[Figure 1a and b]. The yield of each strain obtained at the end of 24 h, 
48 h, and 76 h was compared. The results showed that RKC-2 was 
a fastidious organism which produced lipids faster than the other 
reported strains.

The screened strain was checked for its morphological and biochemical 
characteristics and it was confirmed as B. paralicheniformis after 16s 
rRNA sequence analysis [Figure 2].

The nucleotide sequence was submitted to National Center for 
Biotechnology Information and assigned accession number for the 
bacterial strain is OQ202112. Zhang et al. reported B. subtilis HB1310 
as an oleaginous microorganism isolated from thin-shelled walnut. 
The mentioned strain grew well on cotton stalk hydrolysate as a 
substrate and could enrich fat content 39.8% in 48 h [50]. Moreover, 
Qadeer showed orange waste as the best possible substrate that can be 

Table 1: List of standard methods for Biodiesel quality.

Properties Test Method

Kinematic Viscosity @ 40°C ASTM D 445 2018

Density @ 40°C ASTM D 792

Specific gravity @ 40°C ASTM D 792

Pour point ASTM D 97 2017

Cloud point ASTM D 2500

Flash point ASTM D 92 2018

Acid number AOCS Cd 3d 63 2009(RA2017)

Iodine number AOCS Cd 1d 92 2009(RA2017)

Cetane number ASTM D 613
ASTM: American Society for Testing and Materials

Figure 1: Effect of various substrates on different selected strain for cell dry weight and oil accumulation. (a) Groundnut husks. (b) Ricebran.
ba
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provided for the growth of Bacillus cereus KM15 for the accumulation 
of lipids. The process was carried out for 72-h incubation period at 
neutral pH [51].

3.2. Lipids Unleashed: Optimizing Production and Extraction
Bacterial lipid accumulation and composition of fatty acids are strongly 
influenced by various culture conditions [52]. PUFA accumulation 
depends on varying species of microbes [53]. B. paralicheniformis 
(OQ202112) was able to produce 3.3  g/L lipids using mineral salt 
medium supplemented with 9% groundnut husks as a substrate, 6% 
inoculum size, 24 h inoculum age at 120 rpm agitation speed at 28°C. 
Lipid yield of 2.8  g/L was obtained by using mineral salt medium 
supplemented with 9% rice bran as a substrate, 7% inoculum size, 24 h 
inoculum age at 140 rpm agitation speed at 28°C. In case of glucose 
used as a standard source of carbon, 2.48 g/L lipids were produced. 
Thus, in our study, groundnut husk showed better results compared 
to rice bran for fat accumulation by selected strain. Lipid yield in 
microorganisms can also get affected by various factors such as 
agitation speed, aeration rate, pH and temperature of medium, nitrogen 
and carbon source, and C: N ratio. Maximum fat accumulation was 
achieved at 120 rpm whereas it decreased while decreasing the speed 
of agitation. This result supports that proper mixing is achieved by high 
agitation speed and it is required for nutrient and heat transfer [54]. 
Zhang et al. showed that Bacillus subtilis HB1310 accumulated 

lipids in its idiophase [50]; whereas, the present study revealed that 
B. paralicheniformis accumulated lipid in its log phase. According to 
a study by Udeh et al., biodiesel can be produced using the fungus 
Aspergillus niger from the lipase-catalyzed groundnut shells [55]. 
Pocan et al. reported that pomegranate waste peel was used without 
pre-treatment to accumulate oil by Bacillus spp. [56]. Qadeer et al. 
reported in the literature that mango waste was used for fat accumulation 
by different strains of Bacillus (Bacillus cereus KM15) [52]. In our 
study, agro waste (groundnut husk) is an inexpensive source that gave 
higher yield of biodiesel without pre-treatment. In the end, oil content 
was found 5  ml/L after extraction by Bligh and Dyer method and 
evaporation by Rota evaporator.

3.3. Fine-Tuning Biodiesel Production
Type and utilization of substrate during the cultivation of oleaginous 
strain decide the fate of production in terms of quantity [57]. The 
test strain was proven potential as it yielded 86.2% fatty acid 
methyl ester using groundnut husks as an agro waste. In our study, 
transesterification which was carried out using 0.3% catalyst 
concentration with 1:6 fatty acid to alcohol ratio at 68°C temperature 
in 120 min yielded 86.2% FAME. Biodiesel production can be affected 
by variation in catalyst and its quantity [58]. In our study, sodium, 
potassium, and calcium hydroxides were used to increase the rate 
of reaction and sodium hydroxide was the most effective among 
all the tested catalysts. Potassium and calcium hydroxide yielded 
50.2 and 65.3, respectively, whereas NaOH yielded 86.2% FAME 
[Figure 3a]. Saponification was found to occur at higher concentration 
of catalyst [59,60]. It has been reported that more than 1% of catalyst 
concentration causes the formation of soap from triacylglycerols [61]. 
Therefore, we used 0.3% concentration of the catalyst to prevent 
saponification and which was also optimum for transesterification. For 
low molar ratios, it was shown that the ester production was sensitive 
to the concentration of NaOH and that it increased as the methanol 
to vegetable oil ratio increased. [62]. We found that, 1:6 fatty acid 
methyl ratio was responsible for more product formation [Figure 3b]. 
Varying temperature ranges from 45°C to 80°C and time from 30 
to 180  min was taken for optimization. A  number of researchers 
described the influence of increased temperature on the production 
of biodiesel in desired manner [63-67]. The ester yields marginally 
drops above the reaction temperature of 50°C. According to Dorado 
et al., it might most likely be caused by a negative interaction between 

Figure 2: Phylogenetic relationships of Bacillus paralicheniformis 
(OQ202112).

Figure 3: Optimization of fatty acid methyl esters formation. (a) Catalyst. (b) Oil: methanol ratio. (c) Temperature (°C). (d) Time (min).
dc

ba
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temperature and catalyst concentration due to the side reaction of 
saponification [68]. High process temperatures have the tendency to 
accelerate the transesterification of the triglycerides by the alkaline 
catalyst before it is fully completed. However, we found 68°C 
temperature to be optimum for the maximum yield of ester [Figure 3c]. 
Some experimenters found that 98% formation of ester completes in 
1 h and 80% of it completes in 5 min [63-67]. Similar results were 
observed in the current study with maximum lipid yield obtained 
during the first 2 h [Figure 3d].

3.4. Comprehensive Characterization of Biodiesel
3.4.1. Analyzing biodiesel by GC-MS
FFAs are of considerable interest due to their suitability for the 
manufacture of biofuel [11,69]. The extracted lipids’ ability to be used 
in the transesterification process to create biodiesel was validated by 
the presence of FFAs in those lipids [70]. Lipid sample from crude oil 
isolates was extracted and it contained a variety of FFAs, according to 
the GC-MS analysis, with oleic acid being the most frequently found 
FFA followed by n-hexadecanoic acid and octadecanoic acid [52]. In 
the present study, GC-MS of the extracted and esterified lipid sample 
revealed the presence of hexadecenoic acid, heptadecenoic acid, 
octadecadienoic acid, octadecenoic acid, and octadecatrienoic acid 
[Figure 4]. These are polyunsaturated and monounsaturated fatty acids 
which are suitable for biodiesel production.

3.4.2. Insight through FT-IR
The absorption spectrum by FT-IR is demonstrated in Figure 5. C-H 
stretching can be confirmed by absorption bands between 3010 and 
2854 cm-1 [61]. In our sample, we got peaks at 2853.69, 2923.19, and 
3007.00 indicating C-H stretching. The RCOOR0’ carbonyl group 
(C=O) is identified by the distinctive absorption band at 1743 cm-1 [61]. 
Peak obtained in the range 1741–1750 cm-1 depicts the presence of fatty 
acid methyl ester [71]. The existence of RCOOR’ carbonyl group was 
confirmed by us from the distinctive absorption band at 1741.83 cm-1, 
which is signature for methyl ester. The vibrations of symmetric and 
asymmetric stretching of C-H alkane groups are indicated by the peaks 
at 2850.41 cm-1 and 2924.32 cm-1, respectively. They may be methyl 
(CH3) or methylene groups in the ester chains of the biodiesel, and they 
need more energy to create stretching vibrations within their bond than 
typical C-H bending vibrations of alkene groups, which are visible at 

low energy and frequency ranges [71,72]. We got peaks at 2853.59 and 
2923.19 which are indications of symmetric and asymmetric stretching 
vibrations of C-H alkane groups, respectively. The bending vibration 
of C-H methyl groups in the fuel is responsible for the band region 
between 1377.23 and 1465.03 cm-1 [71]. We found alkane bending and 
primary alcohol stretching by peaks at 1460.76 cm-1.

3.4.3. NMR unveils biodiesel
Two characteristic peaks by 1H NMR spectrum are indication of the 
existence of methyl ester in FAME [73]. The signal for the -CH2- group 
next to the carbonyl group, which is utilized as an internal benchmark 
to roughly measure the other groups in the biodiesel molecules, is 
at 2.27 ppm and the signal for methyl ester is at 3.63 ppm [74-76]. 
In the 1H NMR spectrum obtained from Bacillus transesterified 
lipids, the methoxy proton shown as a singlet at 3.65  ppm and an 
alpha –CH2 protons shown at 2.26 ppm are characteristic of methyl 
esters. 1.28 ppm is for the aliphatic -CH2, and neither the ester group 
nor the double bonds have an impact on their chemical shifts [76]. 
In our result, backbone CH2, especially –(CH2)n was confirmed by 
proton shift at 1.22–1.42 ppm [Figure 6a]. The carbon resonance from 
triglycerides was shown by 13C NMR spectrum. The signals for the 
terminal chain methyl (-CH3) carbon are at 13.9 ppm, and the signals 
for the aliphatic methylene (-CH2-s) carbons are in the range of 34 

Figure 4: Gas chromatography–mass spectrometry spectrum.

Figure 5: Fourier-transform infrared spectroscopy measurements.
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to 27  ppm [76]. In our study, peak observed at 14.3  ppm suggests 
the presence of terminal carbon of methyl groups. Moreover, bands 
between 22.0 and 34.0  ppm are due to carbon of methylene group 
(-CH2-)n. The signals for the unsaturated (--CH=CH-) carbons and 
the outer carbons of the nun-conjugated (-CH=CH-CH2-CH=CH-) 
are at 129.8  ppm and 127.9  ppm, respectively [76]. The observed 
peaks between 120 and 135 ppm suggest the presence of sp2 -C in the 
present study. At 174.0 ppm, the carbonyl carbon signal (-COO-) is 
detectable [76]. In our study, we observed peak at 173 ppm which is 
assigned to carbonyl carbon of ester groups [Figure 6b].

3.5. Biodiesel Revealed: Unraveling Physicochemical Properties 
of Biodiesel
Biodiesel properties were tested by the American Society for Testing 
and Materials (ASTM) along with the recommended values for 
biodiesel ASTM-D6751 which are presented in Table 2. One of the 
most important properties of fuel is viscosity as it causes changes in 
the operation of fuel injector and it is affected by temperature. Bacillus 
fuel possessed 4.8 Mm2s-1 viscosity, which can be considered in normal 
range given by ASTM standards. Higher cloud point and pour point are 
indications of fuel having more polyunsaturated fats and less viscosity. 
Moreover, these properties are better suited for varying weather 
conditions. Biofuel from test organism showed 0.8823 g cm-3 density 
at 40°C, which is also in the range of ASTM standards. The product 
showed specific gravity slight higher with comparison to standards of 

ASTM, which is 0.8895  g cm-3 at 40°C. The temperature at which 
biodiesel starts turning into wax form is known as cloud point while 
pour point can be defined as the temperature at which fuel remains in 
fluid form. The cloud point and pour point of the FAME were 4°C and 
14.4°C, respectively, which are also in the range of standard biodiesel. 
Minimum temperature at which vaporization can be done is known as 
flash point. The flash point for the test sample is 106.5°C which falls in 
the normal range for standard biofuel. Cetane number for the biodiesel 
obtained in our study is 61. Cetane number measures the quality or 
performance of diesel fuel. The higher the number, the better the fuel 
burns within the engine of a vehicle.

4. CONCLUSION

B. paralicheniformis (OQ202112) isolated from seawater sample was 
found to be very effective in utilizing groundnut husks as an agro 
waste and accumulating PUFAs. The organism accumulated PUFA 
using groundnut husks and these fatty acids are proven effective in 
FAME formation. Biodiesel produced by the test organism using 
the agro waste showed suitable properties on comparing with the 
standards given by ASTM and ASAM. The cetane rating obtained 
for the biodiesel was in the range that marks good quality of the fuel. 
Thus, we can conclude that the isolated organism shows promising 
capacity to be used as a single-cell oil factory and the oil produced 
by the organism is suitable for biodiesel production. This organism 
uses agro waste which is harmful for the environment and produces 

Table 2: Properties of biodiesel produced by Bacillus paralicheniformis (OQ202112).

Properties Standard Biodiesel Biodiesel from Bacillus paralicheniformis (OQ202112) Units

Kinematic viscosity @ 40°C 1.9–6.0 4.8 Mm2s‑1

Density @ 40°C 0.86–0.90 0.8823 g cm‑3

Specific gravity @ 40°C 0.88 0.8895 g cm‑3

Pour point −15–16 ‑14.0 °C

Cloud point −3–12 4.0 °C

Flash point 100–170 106.5 °C

Acid number 0.5 0.66 mgKOH/g

Iodine number ‑ 115.54 %(m/m)

Cetane number 47 minimum 61 ‑

Figure 6: Nuclear magnetic resonance (NMR) spectroscopy measurements. (a) 13C NMR spectrum. (b) 1H NMR spectrum.
b

a
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biodiesel that helps in minimizing dependence on non-renewable 
energy resources. Thus, it can be used as a potential source for future 
fuel factory.
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