miR-122 and miR-21 as clinical biomarkers in hepatocellular carcinoma: A review

Nishant Kumar1, Priyvart Choudhary1, Narotam Sharma2, Alok Tripathi3, Nishesh Sharma1*

1School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand-248007, India.
2DNA Labs Dehradun, Uttarakhand 248001, India.
3Aavya Life Science Pvt. Ltd., Geeta Nagar, Kanpur, Uttar Pradesh-208025, India.

Abstract

Molecular diagnostics represent techniques implemented to search and identify, biological markers located in genome or cellular pool. Molecular markers are looked upon an indispensable tool for diagnosis of wide range of diseases. Hepatocellular carcinoma (HCC) development is attributed to liver diseases and risk factors such as, hepatitis-C virus, hepatic abnormalities, cirrhosis, and metabolic disorders causing liver damage. A challenge for available treatment methods for HCC is lack of early stage diagnosis. Micro-RNAs (mi-RNAs) are regulatory non-coding RNA, smaller in size having a significantly key role in the modulation of gene expression, post-transcriptional modification of messenger RNA (mRNA), and controlling cell progression, differentiation, and apoptosis. The serum and plasma of HCC patients contain dysregulated mi-RNAs during migration, invasion, and development of HCC. It is evident that mi-RNA expression is increased or decreased in specific cancer cell lines and tissues, and thus it could be considered as disease biomarker for the investigation of HCC. In this review, the functional level of mi-RNAs (miR-122 and miR-21), its molecular aspects, and gene regulation is reviewed to identify their role as potential biomarkers for HCC diagnosis and treatment.

1. INTRODUCTION

Non-coding RNAs are class of functional regulatory non-protein coding RNAs and have potential role in different biomedical applications [1]. Scientific studies related to non-coding RNAs have expand impetus continuously from past to current time showing its ability in the area of gene expression modulation and control in cellular innate and adaptive immunity [2]. Micro-RNAs (mi-RNAs) are members of the small non-coding RNA family, have an important role in regulation of gene expression. They are non-coding regulatory RNA, small in size of approx ~22 nucleotides belongs to class of endogenous post-transcriptional regulators known to interact with expression of other genes, commonly identified as target genes [3]. Interaction of mi-RNA with target genes generally results in suppression of gene expression of target genes, by the means of translational repression, messenger RNA (mRNA) cleavage, and deadenylation [4]. Mi-RNAs and their associated proteins are found in abundance in the ribo-nucleoprotein complexes in the cells. As per the research report of different studies, it is proved that mi-RNAs are found in different biologically important body fluids such as serum, plasma, urine, peritoneal cavity fluid, cerebrospinal fluid, and fluid of follicles [5,6]. These mi-RNAs released in extracellular fluids and cells act as potential biomarkers for several diseases and cancer [7].

Now, it is evident from research result that mi-RNAs have role in the development of the several types of cancer and it is due to the dysregulation of the different oncogenic and tumor suppressor mi-RNAs. Each transcribed mi-RNA targets specific mRNA in the cytoplasm and performs regulatory mechanisms in a complex manner by formation of mi-RNAs-based RNA silencing complexes (RISCs) [Figure 1] [8]. The pre-transcribed mi-RNAs (pri-mi-RNAs) are dysregulated by unregulated expression of DROSHA/DGCR8 microprocessor proteins by either mutation or epigenetic factors [9]. The mi-RNAs may be upregulated or downregulated in HCC and perform transverse actions on tumor progression. The upregulated mi-RNAs act as onco-miRs, while the downregulated mi-RNAs act as a tumor suppressor.

The clinical significance of mi-RNA was identified in the therapy of several diseases. Mi-RNA antagonists and mi-RNA mimics are two approaches involved in utilization of mi-RNA molecule as therapeutic agents. Mi-RNA antagonists represent antisense RNA approach in which chemically modified mi-RNA are introduced to bind to target mi-RNA, that is, over expressed mi-RNAs in diseased cell type results in formation of irreversible mi-RNA duplex which is ultimately degraded. Mi-RNA antagonists find their application when target mi-
RNA acquires a gain of function in diseased cell type. On the other hand, mi-RNA mimics come into play when target mi-RNA encounters loss of function. Mi-RNA mimics are introduced into diseased cell type to restore normal function. Advantages associated with utilization of mi-RNA as therapeutic molecules include their specific nature, tolerance in normal tissues, and few delivery issues as compared to protein encoding plasmid vector.

At present, several mi-RNAs have been discovered with relevance to the different important diseases. Here, focuses are made to the mi-RNAs having important role in the genesis and progression of liver cancer. In this regard, two main mi-RNAs selected are miR-122 and miR-21, details are as follows.

1.1. Mi-RNA 122 (miR-122)
Liver is considered as one of the most vital organ of mammalian body system. This organ has ability of self-regeneration of hepatic cells as well as it is actively involved in metabolic activities. Several mi-RNA has been accounted to its specific key role in biological activities of liver [Figure 2][10]. Among liver related mi-RNAs, miR-122 is most abundant prominent biomarker for its biological activities and comprises about 52% of the total hepatic mi-RNAs. It is also among the highest expressed mi-RNA in liver cell with approximate 66,000 copies per hepatic cell. In humans, gene encoding miR-122 is specifically located on the chromosome number 18, has important role in several liver functions along with reported anti-inflammatory activity[11].

Studies suggested the multifunctional role of miR-122 in liver associated diseases and also involved in life cycle of pathogens infecting liver cells. It has been reported that down regulated miR-122 expression in liver fibrosis is due to prolonged chronic alcohol consumption. Regulation of inflammation, diet-induced obesity, cholesterol and iron metabolism, and fat metabolism are other clinical implications involving miR-122 [Figure 2]. However, now a days, most of the studies emphasized the crucial role of miR-122 in the development of liver cancer [12,13].

Figure 1 summarizes the outline of cellular processing of miR122.

1.2. Mi-RNA 21 (miR-21)
MiR-21 is the first time reported and discovered mi-RNA among all mi-RNAs identified, also known as has-miR21, miR-21 which is highly conserved and abundant micro-RNA. It is reported to be expressed in several cell types and is involved in several biologically important functions related to health and diseases [Figure 3]. The most promising application of miR-21 is in clinical diagnostics as a potential biomarker in early cancer diagnosis. The three main target of miR-21 are programmed cell death 4, tropomyosin 1 and phosphatase and tensin homolog (PTEN)[14-17]. The miR-21 is located in vacuole membrane protein-1 present on chromosome-7. High concentration of miR-21 supports its easy detection within different biological fluids named serum, urine, plasma, etc. The stability of miR-21 in body fluids supports utilization of miR-21 as a biomarker. The study conducted have reported miR-21 to act as oncogene and when over-
Cells of Hep3B cell line gradually corresponded miR-122 (Hep3B/miR122) among the studied cell lines showed a critical improvement of HCV in cell culture engendering [22].

Upregulation of an instant objective of miR-122 and arginine carrier SLC7A1 belongs to solute transporter family 7 involve in prolonged increment of arginine level inside cell. Arginine served as substrate for enzyme nitric oxide synthetase and this enzyme levels were extended in HCC cells with silenced miR-122 expression inside cell by extended safety by use of a kinase inhibitor anti-cancer drug sorafenib [23]. The most notable mi-RNA reported in the development of human liver cancer is miR-122, which is thought to be a prospective marker linked to the damage of liver tissue [24]. Due to the existence of the HCV core, miR204-HPCAL1-IncRNAHOTTIP and miR-122-TGFBRAP1 pathways were reasonably connected with the progression of cancer. Mi-RNAs such as miR-122 and miR-204 over-expression may control the progression of HCC by down regulating the expression of TGFBRAP1 and HOTTIP [25]. The transcriptional studies reported implicated that hypoxia-inducible factor 1α (HIF1α) in the enlistment of miR-122 and recognized the oxygen-detecting prolyl hydroxylase space 1 (PHD1) as a miR-122 target. Further investigations showed that HIF1α-subordinate acceptance of miR122 took part in a feed-forward pathway for liver security by means of the improvement of hepatic HIF responses through PHD1 repression [26]. Increased expression of GRHL2 in mice livers and liver of ALD patients inhibits the transcription of miR-122. Anti-miR-122 articulation reduced the extent of liver damage in mice after ethanol ingestion. By reducing HIF1 levels, miR-122 appears to protect the liver from damage brought on by ethanol. To diminish the harshness of ALD in patients, these cycles may be managed [27]. The capacity of miR-122 to advance separation of early stage and grown-up foundational microorganisms to hepatocytes in vitro suggests its expected outcome in dynamic hepatic separation program. As a key injury biomarker of liver, miR-122 has shown astonishing prospective for timely and susceptible in situ detection of DILI [28]. Glycyrrhethinic acid has positive impact on DILI, but its administration is challenged by long-term and/or high dose effect [29]. By raising Sirt1 and activating the AMPK pathway, Long et al. found that miR-122 suppression protects hepatic cells from lipid metabolic trouble such as non-alcoholic fatty liver disease (NAFLD) and suppresses lipogenesis [30]. ADAM10 and c-Met are directly targeted by both mi-RNAs miR-122 and miR144. Upregulated expression of mi-RNAs miR-122 and miR-144 prompted diminished articulation of ADAM10 and c-Met in the UM cell lines and impaired cell expansion, movement, cell cycle, and flaking of c-Met ecto-space [31]. Sorafenib is commonly utilized in the treatment of HCC; however, the drug dose not process to be uniformly beneficial for all patients [32]. A major issue associated with sorafenib is the acquired resistance [33]. Being a conserved liver specific mi-RNA, miR-122 has been reported to play a key role in liver metabolism as well as homeostasis. miR-122 is looked on a potential molecule to act as biomarker for detecting/diagnostics of liver damage [28]. Long et al. reported miR-122 to be a potential biomarker and also a suitable drug target for NAFLD [30]. In the study, both in vitro (free fatty acid treated Hep G2 and Huh7) and in vivo (mice fed with high fat diet) were analyzed with observations of excess lipid production and triglyceride secretion in presence of miR-122 upregulation which downregulates Sirt1. MiR-122 inhibition resulted in suppressed lipogenesis and reduced excess lipid production. Fauda et al. reported utilization of combination of four miRNA named as miR-299, miR-200, miR-335, and miR-21) to identify HCC [34]. Most of the studies conducted pertaining to application of miR-122 as biomarker is confined to liver related disorders.

2. BIOMEDICAL APPLICATIONS

2.1. Mi-RNA-122 in Liver Cancer Diagnosis

Studies conducted have established miR-122 to exhibit potential to be utilized as biomarker in liver cancer diagnosis. The diagnostic potential application is attributed to differential gene expression of miR-122 in cancerous and non-cancerous cells. Dai et al., studied the applicability of miR-122 in the diagnosis as well as prognosis of cancer with specific reference to hepatocellular carcinoma (HCC). This study reported the elevated expression of miR-122 in the case of HCC in comparison to miR-122 expression in normal cells. As per the research result, it is also recommended that combination of miR-122 with alpha-feto protein can further enhance the diagnostic efficiency to utilize miRNA expression as biomarker for cancer diagnosis [20]. Another specifically studied clinical application of miR-122 is in Hepatitis C virus (HCV) infection. As HCV replication requires interaction of miRNA-122 with 5′ non-coding region of the virus, so decreased miR-122 expression has been directly related to reduction in replication of HCV [21]. The durable schematic representation regarding cell culture for HCV infection is limited only to the researcher using specific clones for HCV cell culture and cultured cells derived from human specific hepatoma cell line Huh7. Human specific hepatic cell lines specific to lentiviral vector showed a higher expression pattern of miR-122 comparable to endogenous expression pattern in Huh7 cell line.

Expressed results in malignancy [18]. Mi-RNA upregulation by cytokines indicates their potential role as inflammatory response. It is found in various reports that miR-21 has involved in neoplastic as well as non-neoplastic diseases. Jenike and Halushka have provided a detailed review including expression of miR-21 in sixteen non-neoplastic diseases and 13 neoplasics [19]. Besides being a highly expressed miRNA, miR-21 is also expressed in large numbers of cell types with extremely high concentration in monocytes, macrophages, and dendritic cells. However, high level of expression of miR-21 in several cell types appears as a challenge for clinical application of miR-21 as a specific biomarker. Hence, relevant researches are essential requirements for the establishment of miR-21 as potential biomarker or as regulatory molecule.

Figure 3: Major cellular function of miR-21 [15,16,18,19].
2.2. HCC Development by Oncogenic mi-RNAs

Oncogenic mi-RNAs are frequently expressed during different cancer cases such as breast, lung cancer, lymphoma, prostate cancer, melanoma, colorectal cancer, and liver cancer. OncomiRs are those dysregulated mi-RNAs that are upregulated in HCC and other cancer types. Many onco-miRNA types that are specific to their targets undergo specific mechanisms in tumor cell growth and invasion, whereby some are mentioned in Table 1. Specifically, miR-21 expression increased in cells, serum, and other body fluids of HCC patients [4]. miR-21 in HCC cases has oncogenic properties in most estimations [35]. Other miRNAs such as miR-21/-221/-451 suppress the activity of PTEN deleted on chromosome 10) tumor suppressor gene, a key control gene in cancer pathway [36,37].

2.3. HCC Development by Tumor Suppressor mi-RNAs

Several mi-RNAs expression is reported to be downregulated during HCC development that serves as tumor suppressor by targeting immune cells and proteins for activation and silence oncogenes by targeting specific miRNAs employed tumor cell growth and invasion [44]. The downregulated mi-RNAs may have the capacity to silence the oncogenic activity and modify oncogenic proteins by targeting their mRNA sequences. The mi-RNAs of the let-7 family were named as tumor-suppressors since they target RAS-associated protein families [45]. These mi-RNAs have control over genes related to hepatic fibrosis, lowering tumorigenicity. Details are given in Table 2.

Gramantieri et al. reported in their study that miR-122a is abundant in HCC cases among which nearly 60–70% was down-regulated, and hence confirms the hepatocarcinogenesis potential of the down-regulated miR-122a [48]. The expression of five miRNAs, that is, miR-671-3p, miR-486-3p, miR-328-3p, miR-378a-3p, and miR-378a-5p was identified in another study and it was reported to be in a significantly reduced state in HCC cells compared to normal cells.

Table 1: Upregulated mi-RNAs functioning as oncogenic mi-RNAs for HCC

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Targets</th>
<th>Mechanism</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-21</td>
<td>Inhibit Kruppel like factor 5. miR-21 upregulation activates HCC tumor cell invasion, development, and migration Target programmed cell death factor 4</td>
<td>Cell growth, migration, and invasion</td>
<td>[38]</td>
</tr>
<tr>
<td>miR-25</td>
<td>Target on TNF-related apoptosis-inducing ligand</td>
<td>Apoptotic cell death</td>
<td>[39]</td>
</tr>
<tr>
<td>miR-96</td>
<td>Target and control SMAD signalling pathway</td>
<td>Promotes schistosomiasis-related hepatic fibrosis Increase collagen expression</td>
<td>[40]</td>
</tr>
<tr>
<td>miR-451</td>
<td>Target interleukin-6R-STAT3 pathway</td>
<td>Angiogenesis</td>
<td>[41]</td>
</tr>
<tr>
<td>miR-221</td>
<td>TRIAL resistance regulation and tumorigenicity enhancer through PTEN and tissue inhibitor of metalloprotease</td>
<td>Cell death/ apoptosis</td>
<td>[42,43]</td>
</tr>
</tbody>
</table>

Table 2: Downregulated mi-RNAs functioning as a tumor suppressor.

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Targets</th>
<th>Mechanism</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-122a</td>
<td>Modulate cyclin G1 expression</td>
<td>Control cell cycle</td>
<td>[46]</td>
</tr>
<tr>
<td>miR-486-3p</td>
<td>Target fibroblast growth factor receptor 4 and estimated glomerular filtration rate</td>
<td>Apoptosis the potent target for HCC treatment</td>
<td>[46]</td>
</tr>
<tr>
<td>miR-3622a-3p</td>
<td>Downregulate spalt-like transcription factor 4</td>
<td>Inhibit cancer cell proliferation and metastasis</td>
<td>[47]</td>
</tr>
<tr>
<td>miR-29b</td>
<td>Promote expression of tumor-suppressor genes</td>
<td>Repress DNA methyltransferase, Immune cell malignancy</td>
<td>[48]</td>
</tr>
</tbody>
</table>

HCC: Hepatocellular carcinoma

Table 3: Sensitivity and specificity of selected mi-RNAs as biomarkers in early-stage HCC [43,58,59].

<table>
<thead>
<tr>
<th>mi-RNA</th>
<th>Sample</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-21</td>
<td>Serum/plasma</td>
<td>84–89.5</td>
<td>71.2–92.0</td>
</tr>
<tr>
<td>miR-122</td>
<td>Serum</td>
<td>70.7–81.6</td>
<td>69.1–83.3</td>
</tr>
<tr>
<td>miR-29b</td>
<td>Serum</td>
<td>75.4</td>
<td>87.5–89.6</td>
</tr>
<tr>
<td>miR-15b</td>
<td>Serum</td>
<td>98.3</td>
<td>15.3</td>
</tr>
<tr>
<td>miR-215</td>
<td>Serum</td>
<td>78.7–80.5</td>
<td>91</td>
</tr>
<tr>
<td>miR-122a</td>
<td>Plasma</td>
<td>70.6</td>
<td>67.1</td>
</tr>
<tr>
<td>miR-223</td>
<td>Serum</td>
<td>80</td>
<td>76.5</td>
</tr>
<tr>
<td>miR-18a</td>
<td>Serum</td>
<td>86.1</td>
<td>75.0</td>
</tr>
<tr>
<td>miR-130b</td>
<td>Serum</td>
<td>87.7</td>
<td>81.4</td>
</tr>
<tr>
<td>miR-483-5p</td>
<td>Plasma</td>
<td>55.7</td>
<td>85.7</td>
</tr>
</tbody>
</table>

HCC: Hepatocellular carcinoma
Table 4: Summary of clinical studies conducted to diagnose/analyze liver disorders thorough miRNA as biomarker.

<table>
<thead>
<tr>
<th>mi-RNA</th>
<th>Clinical implication/Disease</th>
<th>Target cell/Molecule</th>
<th>Critical finding</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-122</td>
<td>DILI</td>
<td>Glycyrhetinacid</td>
<td>Clinical diagnosis and treatment of DILI</td>
<td>[29]</td>
</tr>
<tr>
<td>miR-122</td>
<td>mi-RNA as potential candidate to enhance hepatic ischemia tolerance</td>
<td>Murine modes of hepatic IR injury</td>
<td>Study depicted potential role of miR-122 in enhancing hepatic ischemia tolerance</td>
<td>[26]</td>
</tr>
<tr>
<td>miR-122</td>
<td>Identical of miR-122 to negatively affect expression of cytotoxic gene in λ AAV vector</td>
<td>miR-122 enriched Huh7 cell line</td>
<td>• The study reported HEK293 miR-122 cells with 122T sequence to effectively attenuate cytotoxic transgene expression • γ AAV vector possessing tcs-122T decreased hepatocellular carcinoma cell proliferation</td>
<td>[60]</td>
</tr>
<tr>
<td>miR-122</td>
<td>Implication in NAFLD pathogenesis</td>
<td>HepG2 and Huh-7 cells</td>
<td>miR-122 inhibition protects liver cells from lipid metabolic disorders like NAFLD along with suppression of lipogenesis</td>
<td>[30]</td>
</tr>
<tr>
<td>miR-21</td>
<td>Diagnosis of HCC</td>
<td>PDK1/AKT</td>
<td>miRNA-21 could alter HSCs to CAFs by downregulation of its descendent target PTEN to activate signaling pathway PDK1/AKT. In extension, CAFs advanced cancer enhancement by angiogenesis through secretion of interleukins IL-6 and IL-8. Further crosstalk between HSCs and cancer cells explicate the molecular mechanism involved in HCC invasion</td>
<td>[61]</td>
</tr>
<tr>
<td>has-miR-122</td>
<td>Diagnosis of HCC</td>
<td>HepG2.2.15 and Huh7-1.3 cells</td>
<td>The study reported down regulation of has-miR-122 in HCC patients which further acts as biomarker for diagnosis of HCC in blood sample</td>
<td>[24]</td>
</tr>
<tr>
<td>Inc-RNAs, mRNA, Circ-RNAs</td>
<td>Diagnosis of HCC</td>
<td>Huh7 cell line</td>
<td>Over expressed miR-122, miR-204 was reported to be linked to inhibition of HCC progression through down regulation of TGFBR1 and HOTTIP</td>
<td>[25]</td>
</tr>
<tr>
<td>miR-122</td>
<td>miR-122 expression in ethanol induced liver disease</td>
<td>C57Bl/6 mice</td>
<td>GRHL2 inhibits miR-122 expression resulting in low level of miR-122</td>
<td>[27]</td>
</tr>
<tr>
<td>mi-RNA</td>
<td>Diagnosis of HCC</td>
<td>Epithelial-mesenchymal transition (EMT), HCC</td>
<td>mi-RNAs (122,148a, 1246) raised in serum exosomes in HCC patients contrasted with liver cirrhosis (LC) and normal control (NC) individuals</td>
<td>[62]</td>
</tr>
<tr>
<td>mi-RNA</td>
<td>Development of inflammatory bowel diseases (IBDs)</td>
<td></td>
<td>Potential role of miR (miR-122, 196A2, 124A) polymorphism in clinical phenotype modulation among IBD like Cronn’s disease and ulcerative colitis</td>
<td>[63]</td>
</tr>
<tr>
<td>miR-122</td>
<td>miR-122 regulation by free fatty acids and impact of miR-122 on triglyceride synthesis</td>
<td>Huh7 BNL-IME HEK293</td>
<td>Histological studies of different tissues from mice exhibited FFA to increase hepatic expression secretion of miR-122</td>
<td>[64]</td>
</tr>
<tr>
<td>miR-21</td>
<td>miR-21 dysregulates phosphatase and tegin homolog (PTEN) resulting inhibition of At R</td>
<td>HCC cells</td>
<td>miR-21 is potential therapeutic agent to overcome cellular resistance against sorafenib</td>
<td>[65]</td>
</tr>
<tr>
<td>miR-193a</td>
<td>HCC, Negative regulator of UPA</td>
<td>HCC cell lines</td>
<td>• miR-193a transfected 00HA22T/VGH HCC cells exhibited anti proliferative potential • miR-193a and sorafenib treatment in combination was reported to be complementary and resulted in further inhibition of cellular proliferation</td>
<td>[32]</td>
</tr>
<tr>
<td>miR-122</td>
<td>Establish cell line for HCV propagation</td>
<td>HCC cc Huh7</td>
<td>New permissive cell line for HCV cc can be potential for research related to HCV and other therapeutic methods</td>
<td>[22]</td>
</tr>
<tr>
<td>miR-122</td>
<td>miR122 target gene expression in liver disease</td>
<td>HCC, HCV</td>
<td>miR-122 was recently shown to modulate miRNA and target gene articulation in the liver and result in the deficiency of HCV with negligible poison levels in a non-human primate</td>
<td>[66]</td>
</tr>
</tbody>
</table>

HCC: Hepatocellular carcinoma, HCV: Hepatitis C virus, DILI: Drug induced liver injury
Kumar, illustrates an outline of down and HCC development. With specific reference to cancer biology, depict the potential role of mi-RNAs as biomarkers for liver diseases modulation of the mi-RNAs expression in various tumor affected cells, development of treatment targets. Analysis of published literature on as biomarker are particularly under study for cancer diagnosis and tool for identification of candidate genes for various diseases and diagnosis. Mi-RNAs have been recognized as effective molecular mediated gene modulation advances the utility of miRNAs for disease investigation of their biogenesis, regulatory mechanisms, and mi-RNAs based studies. Such objectives and goal-oriented research can change the perspective of diagnostics on global scale with mi-RNA’s to be among key players.

3. THERAPEUTIC POTENTIAL OF MI-RNAS FOR HCC

Applications of mi-RNAs for the development of therapeutic targets for practical implementation are enticing by the regulation of numerous targets in cascades related to HCC pathway and enhancement of mi-RNA based cancer therapy. As already mentioned, the downregulated mi-RNAs act as tumor suppressors and activate tumor suppression proteins. The downregulated mi-RNAs can be restored in liver cancer patients as tumor treatment. In some cases, the upregulated mi-RNAs that act as onco-miRNAs were knocked down in HCC cases using the CRISPR/Cas9 system to silence the oncogenes activation [46]. Figure 4 illustrates an outline of down regulation of miR-122 and upregulation of miR-21 involved in tumor formation in liver cells. Table 3 summarizes specificity and selectivity of selected mi-RNAs.

5. CONCLUSION

The present review indicates that the biological aspects of mi-RNAs mainly miR-122 and miR-21 can be potentially employed as a biomarker and diagnostic tool for HCC diagnosis. There are existing challenges which needs to be addressed to explore complete potential of mi-RNA in the field of molecular diagnostics. Manipulation of pathways and biogenesis in immune cells could lead to new treatment methods for cancer, infectious illness, autoimmune diseases, and other immunological malignancies on a practical level. The combinations of mi-RNAs in place of targeting single mi-RNA could be utilized as effective early stage prognostic biomarker which provide high diagnostic accuracy and efficiency. Finally, it could be concluded that the molecular expression pattern of miR-122 and miR-21 provide molecular information for the development and progression of HCC.

6. AUTHORS’ CONTRIBUTIONS

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agreed to be accountable for all aspects of the work. All the authors are eligible to be an author as per the International Committee of Medical Journal Editors (ICMJE) requirements/guidelines.

7. FUNDING

There is no funding to report.

8. CONFLICTS OF INTEREST

The authors report no financial or any other conflicts of interest in this work.

9. ETHICAL APPROVALS

This study does not involve experiments on animals or human subjects.

10. DATA AVAILABILITY

Data available on request.
11. PUBLISHER’S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES

How to cite this article: