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ABSTRACT

Bioactive compounds from microbial bioresources are among nature’s unprocessed chemical metabolites. These 
metabolites play a key function in creating inter-kingdom relationships. Scientists have been looking for bioactive 
metabolites with pharmacological activities in a variety of microbes over the last few years. Antibiotics, vitamins, 
antioxidants, enzymes, and anti diabetics are all known to be found in microorganisms. The quantity and quality 
of microbial metabolites being evaluated have increased rapidly as a result of the development of high-throughput 
methods. According to some reports, microbial metabolites are much more effective in terms of effectiveness and 
potential for treating human diseases than their chemical counterparts. The present review deals about bioactive 
compounds producing microbes, their taxonomic diversity, various technologies for their extraction, the clinical 
status of these compounds, genomics and metagenomics-based approaches, and the biotechnological application of 
these compounds in healthcare.

1. INTRODUCTION

The microflora of the earth is significantly influenced by microbes. 
They coexist in their biological environment in symbiotic 
relationships with other creatures [1]. These microbial interactions 
with other organisms take place at the molecular level through the 
release of a variety of molecules known as bioactive substances [2]. 
These bioactive molecules play a vital role due to their different 
chemical features, leading researchers to investigate their full 
potential [3]. The distinct properties of these bioactive chemicals, 
as well as their impact and effects in biotechnology domains like 
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the food industry and medicine discovery and development, have 
been studied.

Over the last few years, researchers and scientists have investigated these 
bioactive metabolites for potential applications in the pharmaceutical 
and therapeutics industry. These bioactive compounds have tremendous 
potential and are thought to be more reliable than existing chemical 
substitutes in drugs [4]. Numerous isolated metabolites from fungi 
and bacteria have also demonstrated tremendous potential in treating 
lethal diseases such as diabetes, cancer, and Crohn’s disease [5-7]. 
Even though bioactive metabolites are widely recognized for their 
therapeutic properties, it is crucial to establish efficient technologies 
that will allow bioactive molecules to achieve the designated target.

The advancement of knowledge in this field is increasing day by 
day, and a significant number of microbial-derived drugs are being 
discovered daily. It is worth noting that this emerging field has evolved 
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into a fruitful scientific endeavor in the investigation of bioactive 
compounds from microbial communities. This review covers the 
summary of taxonomic diversity and various technologies for the 
extraction of bioactive compounds producing microbes. Significant 
advances in genomics and metagenomics related to novel bioactive 
compounds from microbes, the clinical status of these compounds, and 
then, the biotechnological applications of various bioactive compounds 
in human health.

2. BIOACTIVE COMPOUNDS PRODUCING MICROBES

2.1. Fungi
Fungi are ubiquitous, occurring eukaryotic, heterotrophic organisms 
found worldwide in diverse habitats. Fungi have been used as remedies 
and in everyday life for thousands of years. Nearly 3000 years ago, 
fungi were used to treat intestinal ailments [8]. Fungi, especially 
endophytic fungi, are among the novel bioresources of natural 
bioactive compounds with their major biotechnological potential in the 
food industry, medicine, and agriculture. Numerous valuable bioactive 
compounds with a range of the bioactivities, such as antimicrobial, 
cytotoxic, and anticancer, have been successfully discovered from 
endophytic fungi [9]. Existing drugs of fungal origin include β-lactam 
antibiotics, cyclosporine A, ergot alkaloids, griseofulvin, lovastatin, 
and taxol; however, increasingly more novel natural products of the 
varied chemical structure be produced by fungi [10,11].

2.1.1. Macrofungi
Macrofungi, including mushrooms are an emerging bioresource of 
bioactive compounds. Many bioactive compounds have been reported 
from mushrooms. Ruksiriwanich et al. [12] reported allantoin, 
alkaloid, monosaccharide, mucopolysaccharide, and polyphenolic from 
Dictyophora indusiata. Zaki et al. [13] reviewed bioactive compounds 
from Leucocalocybe mongolica. About 100 chemical components 
have been isolated from L. mongolica. This mushroom is known to be 
a rich source of amino acids, lectins, laccase, polysaccharides, sterols, 
and volatile compounds. Further, the bioactive compounds from 
L. mongolica possess antitumor, antiproliferative, antidiabetic, and 
hypotensive activities. Krümmel et al. [14] reported linoleic, chlorogenic 
and vanillic acids from Pleurotus sajor-caju. WA, Daba  [15] reviewed 
the bioactive potential of some edible mushrooms, including the species 
of Amanita, Grifola macrolepiota, Russula, and Vovariella.

2.1.2. Microfungi
Microfungi are considered to be a treasure trove of bioactive 
compounds. Wang and Xu [16] reviewed beauvericin, which is a 
cyclic hexadepsipeptide mycotoxin. It is known to possess cytotoxic, 
antiviral, insecticidal, and antimicrobial activities. It is also known 
to be a potential agent for pesticides and medicines. Its production 
has also been known in Beaveria bassiana and Fusarium spp. Kumar 
et   al.   [17] reviewed endophytic fungi as a source of bioactive 
compounds with antimicrobial activities. Manganyi et al. [18] 
screened bioactive compounds from endophytic fungi of Pelargonium 
sidoides. The chemical analysis of the extract from Alternaria spp. 
indicated that linoleic acid (9,12-octadecadienoic acid (Z,Z) and 
cyclodecasiloxane and concluded that both the compounds could be 
responsible for the antibacterial activity. Nuraini et al. [19] reported 
dihydropyran and 4H-Pyran4-one, 5-hydroxy-2-(hydroxymethyl-
(CAS) Kojic acid from Aspergillus minisclerotigens and Aspergillus 
oryzae respectively. Jamal et al. [20] reported bioactive metabolites 
of isoelemicin, terpinen-4-ol, eucalyptol, oleic acid, and β-pinene 
from endophytic fungi isolated from Gynura procumbens. Kumar and 
Prasher [21] reported dodecane, ethyl 2-thiopheneacetate, tetradecane, 

hexadecane, octadecane, benzaldehyde, 4-(1-methylethyl)-, and 
griseofulvin from Fomitopsis meliae.

2.2. Bacteria
Bacteria are another important bioresources for the isolation and 
screening of bioactive compounds. Bioactive compounds such 
as alkaloids, flavonoids, peptides, polyketones, quinols, steroids, 
terpenoids, and phenols have been known to be produced by bacteria, 
especially endophytes [22-24]. These compounds have agricultural, 
industrial, and medical applications [25]. Christina et al. [26] 
reviewed a diverse range of bioactive compounds, especially from 
different endophytic bacteria. Pseudomonas viridiflava is known to 
produce ecomycins. Ecomycins possess bioactivities against various 
human and plant pathogenic fungi [27]. Pseudomycins are peptide 
antifungal compounds reported from Pseudomonas syringae [28]. 
Ghiasvand et  al. [29] reported harmine, myricetin, and achillin, from 
Paenibacillus polymyxa.

2.3. Actinomycetes
Actinomycetes are an untapped source of potential bioactive 
compounds. The diverse range of actinomycetes have been isolated 
and used for the production of key drugs and biomedical agents [30]. 
Penicillin, cephalosporins, carbapenems, thienamycin, cephamycin, 
and nocardicin are some of the important β-lactam antibiotics reported 
from actinomycetes [31]. Balachandar et al. [32] reported the presence 
of 3, octadecene (E), behnic alcohol phenol, 2,4-bis(1,1-dimethyl 
ethyl) 1-nonadecene, 1-heneicosanol, milbemycin 3-eicosene (E), 
and 1-docosanol from vermicast isolated actinomycetes. Janardhan 
et al.   [33] reported (Z)-1-([1-hydroxypenta-2,4-dien1-yl] oxy) 
anthracene-9,10-dione from Nocardiopsis alba.

2.4. Microalgae
Microalgae have been explored for their ability to produce bioactive 
compounds with promising applications as antibacterial, antiviral, 
antifungal, and antialgal agents [34]. Numerous secondary metabolites 
with antioxidant, antitumor, anticancer, and anti-inflammatory activities, 
including β-carotene, astaxanthin, lutein, zeaxanthin, violaxanthin, 
and fucoxanthin have been reported from microalgae   [35]. Diatoms 
are rich sources of fucoxanthin   [36]. Fucoxanthin has inhibitory 
effects on cancer cells by having proapoptotic activities [37,38]. The 
major algal species used to produce astaxanthin belongs to the genus 
Haematococcus. Some of the species of Chlorella, such as Chlorella 
zofingiensis, is also known producer of astaxanthin [39] [Tables 1 and 2].

3. TAXONOMIC DIVERSITY OF BIOACTIVE 
COMPOUNDS PRODUCING MICROBES

Microbes are amazing bioresources for the production of bioactive 
compounds. Bioactive compounds are greatly used as antibiotics. 
These compounds may be effective against many HIV-1, conditions 
of multiple bacterial infections or neural tube defects [40-42]. 
Some among them have also been found to show activity against 
carcinomas   [43]. Exploiting the diversity of microbial communities 
and their huge potential in finding new bioactive compounds is of 
immense importance. Ouchari et al. [44] investigated the antimicrobial 
potential of actinomycetes and their taxonomic diversity. In the study, 
the rep-PCR revealed a high taxonomic diversity of isolates. Dendro 
grams from the BOXA1R-PCR fingerprints showed a grouping of 36 
isolates in 16 clusters, containing from two to four isolates while some 
of them could not be grouped. The study of Liao et al. [45] explored 
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Table 1: Diversity of bioactive producing microbes and their activities.

Microbes Activity Activity against References

Microfungi

Alternaria alternata Bactericidal Gram positive and Gram negative bacteria Chatterjee et al. [222]

Alternaria alternata Antioxidant - Chatterjee et al. [222]

Alternaria brassicae Antimicrobial Escherichia coli Gauchan et al. [223]

Alternaria brassicae Antimicrobial Staphylococcus aureus Gauchan et al. [223]

Alternaria brassicae Antimicrobial Bacillus subtilis Gauchan et al. [223]

Alternaria brassicae Cytotoxicity Shrimp nauplii Gauchan et al. [223]

Alternaria spp. Antibacterial Enterococcus gallinarum Manganyi et al. [18]

Alternaria spp. Antibacterial Enterococcus faecium Manganyi et al. [18]

Alternaria spp. Antibacterial Enterococcus gallinarum Manganyi et al. [18]

Aspergillus minisclerotigens Antioxidant - Nuraini et al. [19]

Aspergillus oryzae Antioxidant - Nuraini et al. [19]

Cladosporium cladosporioides Antimicrobial Escherichia coli Gauchan et al. [223]

Cladosporium cladosporioides Antimicrobial Staphylococcus aureus Gauchan et al. [223]

Cladosporium cladosporioides Antimicrobial Bacillus subtilis Gauchan et al. [223]

Cladosporium cladosporioides Cytotoxicity Shrimp nauplii Gauchan et al. [223]

Cochliobolus sativus Antileishmanial - Do Nascimento et al. [224]

Fomitopsis meliae Antibacterial Bacillus subtilis Kumar and Prasher [21]

Fomitopsis meliae Antibacterial Pseudomonas aeruginosa Kumar and Prasher [21]

Fomitopsis meliae Antibacterial Staphylococcus aureus Kumar and Prasher [21]

Fomitopsis meliae Antibacterial Escherichia coli Kumar and Prasher [21]

Penicillium oxalicum Antioxidant DPPH, nitric oxide, superoxide 
anion and hydroxyl free radicals

Verma et al. [225]

Penicillium oxalicum Anti-proliferative HuT-78 Verma et al. [225]

Penicillium oxalicum Anti-proliferative MDA-MB-231 Verma et al. [225]

Penicillium oxalicum Anti-proliferative MCF-7 Verma et al. [225]

Macrofungi

Clavaria vermiculris Antimicrobial - Ramesh and Pattar [226]

Clavaria vermiculris Antioxidant - Ramesh and Pattar [226]

Dictyophora indusiata MMP-2 inhibition

Dictyophora indusiata Anti-inflammatory Nitric oxide (NO), 
interleukin (IL)-1β, 
IL-6, and tumour necrosis factor (TNF)-α 
secretion

Ruksiriwanich et al. [12]

Hypsizigus tessulatus Antimicrobial - Chowdhury et al. [227]

Hypsizigus tessulatus Antioxidant - Chowdhury et al. [227]

Lactarius deliciosus Antibacterial Bacillus cereus Barros et al. [228]

Lactarius deliciosus Antibacterial Bacillus subtilis Barros et al. [228]

Lactarius deliciosus Antifungal Candida albicans Barros et al. [228]

Lactarius deliciosus Antifungal Cryptococcus neoformans Barros et al. [228]

Lentinula edodes Antimicrobial - Chowdhury et al. [227]

Lentinula edodes Antioxidant - Chowdhury et al. [227]

Lycoperdon perlatum Antimicrobial - Ramesh and Pattar [226]

Lycoperdon perlatum Antioxidant - Ramesh and Pattar [226]

Macrolepiota procera Antioxidant - Erbiai et al. [229]

Marasmius oreades Antimicrobial - Ramesh and Pattar [226]

Marasmius oreades Antioxidant - Ramesh and Pattar [226]

Pleurotus eryngii Antioxidant - Koutrotsios et al. [230]

(Contd...)
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Table 1: (Continued).

Microbes Activity Activity against References

Pleurotus ostreatus Antioxidant - Zawadzka et al. [231]

Pleurotus ostreatus Antimicrobial - Chowdhury et al. [227]

Pleurotus ostreatus Antioxidant - Chowdhury et al. [227]

Pleurotus pulmonarius Antimicrobial - Ramesh and Pattar [226]

Pleurotus pulmonarius Antioxidant - Ramesh and Pattar [226]

Sarcodon imbricatus Antibacterial Bacillus cereus Barros et al. [228]

Sarcodon imbricatus Antibacterial Bacillus subtilis Barros et al. [228]

Sarcodon imbricatus Antifungal Candida albicans Barros et al. [228]

Sarcodon imbricatus Antifungal Cryptococcus neoformans Barros et al. [228]

Tricholoma portentosum Antibacterial Bacillus cereus Barros et al. [228]

Tricholoma portentosum Antibacterial Bacillus subtilis Barros et al. [228]

Tricholoma portentosum Antifungal Candida albicans Barros et al. [228]

Tricholoma portentosum Antifungal Cryptococcus neoformans Barros et al. [228]

Bacteria

Bacillus amyloliquefaciens Antibacterial Bacillus cereus Bhoonobtong et al. [232]

Bacillus amyloliquefaciens Antibacterial Escherichia coli Bhoonobtong et al. [232]

Bacillus aryabhattai Antibacterial Staphylococcus aureus Beiranvand et al. [233]

Bacillus australimaris Antifungal Candida albicans Ghiasvand et al. [29]

Paenibacillus polymyxa Antibacterial Bacillus subtilis Ghiasvand et al. [29]

Paenibacillus polymyxa Antibacterial Staphylococcus aureus Ghiasvand et al. [29]

Paenibacillus polymyxa Antibacterial Escherichia coli Ghiasvand et al. [29]

Paenibacillus polymyxa Antibacterial Pseudomonas aeruginosa Ghiasvand et al. [29]

Paenibacillus polymyxa Anticancer - Ghiasvand et al. [29]

Planomicrobium spp. Antibacterial Bacillus cereus Beiranvand et al. [233]

Actinobacteria

Kytococcus schroeteri Anticancer - Ghiasvand et al. [29]

Microbacterium maritypicum Anticancer - Ghiasvand et al. [29]

Microbacterium maritypicum Antioxidant - Ghiasvand et al. [29]

Nocardiopsis alba Antioxidant - Janardhan et al. [33]

Streptomyces spp. Antioxidant - Naine et al. [234]

Amycolatopsis tolypomycina Antibacterial Bacillus cereus Beiranvand et al. [233]

Amycolatopsis tolypomycina Antibacterial Bacillus subtilis Beiranvand et al. [233]

Amycolatopsis tolypomycina Antibacterial Citrobacter freundii Beiranvand et al. [233]

Amycolatopsis tolypomycina Antibacterial Escherichia coli Beiranvand et al. [233]

Amycolatopsis tolypomycina Antibacterial Klebsiella pneumoniae Beiranvand et al. [233]

Amycolatopsis tolypomycina Antibacterial Proteus mirabilis Beiranvand et al. [233]

Streptomyces spp. Antibacterial Pseudomonas aeruginosa Naine et al. [234]

Amycolatopsis tolypomycina Antibacterial Shigella flexneri Beiranvand et al. [233]

Amycolatopsis tolypomycina Antibacterial Staphylococcus aureus Beiranvand et al. [233]

Microalgae

Chlorococcum minutum Antimicrobial Bacillus subtilis Elshobary et al. [235]

Chlorococcum minutum Antimicrobial Klebsiella pnemoniae Elshobary et al. [235]

Chlorococcum minutum Antimicrobial Proteus vulgaris Elshobary et al. [235]

Oscillatoria spp. Antibacterial Pseudomonas aeruginosa Bhuyar et al. [236]

Chlorococcum minutum Antimicrobial Salmonella typhi Elshobary et al. [235]

Chlorococcum minutum Antimicrobial Staphylococcus aureus Elshobary et al. [235]

Oscillatoria spp. Antibacterial Staphylococcus aureus Bhuyar et al. [236]
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Table 2: Structures of bioactive compounds from microbes.

Bioactive compound 
producing microbes

Bioactive compound Structure References

Alternaria spp. Linoleic acid (9,12-octadecadienoic acid (Z,Z) Manganyi et al. [18]

Alternaria spp. Cyclodecasiloxane Manganyi et al. [18]

Armillaria mellea Vanillic acid Erbiai et al. [229]

Armillaria mellea Cinnamic acid Erbiai et al. [229]

Aspergillus minisclerotigens Dihydropyran Nuraini et al. [19]

Aspergillus oryzae 4H-Pyran4-one,5-hydroxy-2-(hydroxymethyl-
(CAS) Kojic acid

Nuraini et al. [19]

Cochliobolus sativus Cochlioquinone A Do Nascimento et al. [224]

Cochliobolus sativus Isocochlioquinone A - Do Nascimento et al. [224]

Cochliobolus sativus Anhydrocochlioquinone A - Do Nascimento et al. [224]

Fomitopsis meliae Dodecane Kumar and Prasher [21]

Fomitopsis meliae Ethyl 2-thiopheneacetate Kumar and Prasher [21]

Fomitopsis meliae Tetradecane Kumar and Prasher [21]

Fomitopsis meliae Hexadecane Kumar and Prasher [21]

(Contd...)
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Table 2: (Continued).

Bioactive compound 
producing microbes

Bioactive compound Structure References

Fomitopsis meliae Octadecane Kumar and Prasher [21]

Fomitopsis meliae Benzaldehyde Kumar and Prasher [21]

Fomitopsis meliae 4-(1-methylethyl)- Kumar and Prasher [21]

Fomitopsis meliae Griseofulvin Kumar and Prasher [21]

Kytococcus schroeteri Berberine Ghiasvand et al. [29]

Kytococcus schroeteri Camptothecin Ghiasvand et al. [29]

Macrolepiota procera Protocatechuic acid Erbiai et al. [229]

Microbacterium maritypicum Harmine Ghiasvand et al. [29]

Microbacterium maritypicum Myricetin Ghiasvand et al. [29]

Microbacterium maritypicum Achillin Ghiasvand et al. [29]

(Contd...)
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the microbial taxonomy and functionality of two diverse mangrove 
ecosystems and their potential abilities to produce bioactive compounds. 
The study observed 83 bacterial phyla, 11 archaeal phyla, and 9 fungal 
phyla, in all the rhizospheric samples. Further, 675, 656, 452, 379, 
267, 205, 132, 90, and 766 biosynthesis gene clusters were inferred 
to synthesize terpene, non-ribosomal peptide synthetase, bacteriocins, 
NRPS-like, type I polyketide synthases, aryl polyene, type III polyketide 
synthases, beta lactone, and other products, respectively. In another 
study by Teimoori-Boghsani et al.  [46], taxonomic diversity and unique 
profiles of secondary metabolites from endophytic fungi of native Salvia 
abrotanoides plants have been reported. Molecular approaches classified 
endophytic fungi into 15 genera. Coniolariella hispanica, Paraphoma 
radicina, Penicillium canescens, and Penicillium murcianum have 
been reported to be the major producers of cryptotanshinone, the major 
bioactive compound of S. abrotanoides. Niego et al. [47] reviewed the 
taxonomy, and diversity Oudemansielloid/Xeruloid taxa Hymenopellis, 
Mucidula, Oudemansiella, and Xerula, which constitute an important 
bioresource of bioactive compounds. Several studies have shown 
antimicrobial, anti-oxidative, anti-cancer, anti-inflammatory, and other 
bioactivities of their extracts.

4. TECHNOLOGIES FOR EXTRACTION AND PRODUCTION 
OF BIOACTIVE COMPOUNDS

In modest amounts, natural compounds are usually synthesized in 
conjunction with or in conjugation with some other type [48]. As a 

result, the recurrent separation of extremely complex extracts into 
individual bioactive compounds is required for the purification and 
concentration of these conjugated products, which is a labor-intensive 
process that is unaffordable for industries. Many cutting-edge 
techniques for extracting and producing bioactive compounds from 
natural sources have been developed [49].

There are several steps that are involved in the extraction and 
production of natural compounds. The first step is to choose raw 
materials based on their nutritional or medicinal properties. Standard 
protocols are used to assess the toxicity of the materials chosen. The 
materials’ chemical composition and potential bioactivities are then 
determined using elemental analysis. The bioactive compounds are 
isolated from the crude extracts and are further evaluated under in vivo 
and in vitro conditions for their potential activities. In the last stage, the 
bioactive compounds are commercialized as medicinal products and 
found to be effective in the treatment of diseases [50]. Conventional 
and non-conventional methods are used for the extraction of bioactive 
compounds.

4.1. Solvent Extraction
Solvent extraction is one of the most popular and traditional techniques 
for extracting metabolites from microorganisms. To improve extraction 
efficiency, raw materials are frequently blended into powder form. For 
the extraction, non-polar and polar solvents such as ether, ethanol, 
chloroform, benzene, water, ethyl acetate, and hexane, also their 

Table 2: (Continued).

Bioactive compound 
producing microbes

Bioactive compound Structure References

Paenibacillus polymyxa Sanguinarine Ghiasvand et al. [29]

Paenibacillus polymyxa Daunorubicin Ghiasvand et al. [29]

Pleurotus sajor-caju Linoleic acid Krümmel et al. [14]

Pleurotus sajor-caju Chlorogenic acid Krümmel et al. [14]

Pleurotus sajor-caju Vanillic acid Krümmel et al. [14]
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mixtures in various ratios, were used [51]. Because of its ease of use 
and low price, this technique has been widely adopted. Nevertheless, 
certain organic solvents, which are commonly employed in enormous 
quantities during processing and extraction, are highly hazardous and/
or combustible. As a result, users must adhere to proper handling rules 
to ensure environmental compliance and users’ safety.

It is worth noting that organic solvents can cause bioactive compounds 
to degrade thermally [52]. Furthermore, the extraction procedure takes 
a lot of time and requires a lot of effort. Other advanced methods, 
such as soxhlet, ultrasound, and microwave extraction, have been 
developed to address these issues. Researchers have developed more 
advanced techniques like microwave-assisted extraction (MAE), 
pulsed-electric field extraction (PEF), pressurized liquid extraction 
(PLE), ultrasound-assisted extraction (UAE), and supercritical fluid 
extraction to overcome the shortcomings of conventional extraction 
methods [53]. It has been reveled that when, the extraction time was 
halved, and the thermal decomposition of compounds was prevented.

4.2. Soxhlet Extraction
It is a standard extraction method used to compare the results of other 
liquid-solid extraction methods [54]. The Soxhlet apparatus is a type of 
condenser used in this technique, which was developed in 1879  [55]. 
The traditional Soxhlet extractor is made up of a thimble-holder and a 
distillation flask. The solvent vaporizes and reaches the matrix when 
it attains boiling point, solubilizing suitable compounds. The solvent 
then strikes the condenser’s cooling pipes and condenses back into 
the original flask with the extracted compounds. This procedure is 
repeated until the entire extraction has been completed [55,56].

This method of extraction has a number of advantages. To begin with, 
the continuous renewal of the solvent in touch with the matrix creates an 
imbalance between the compounds in the test and the absence of them 
in the solvent, endorsing compound extraction. Second, the system’s 
temperature is maintained all throughout the procedure. The final 
crude extract from Soxhlet extraction need not necessitate filtration or 
centrifugation because they are nicely isolated from the initial biomass. 
Finally, because the basic equipment is relatively inexpensive and 
simple, it enables the treatment of numerous samples in parallel at a 
minimal price and with simple operational processes [57].

Nevertheless, there are some drawbacks to Soxhlet extraction, such 
as the vast concentrations of organic solvents needed, the long time it 
takes to finish the last cycles [57], the high temperatures used to heat 
up the solvents, which can deteriorate the compounds [55], and the fact 
that this process cannot be speeded up by introducing agitation [58].

Nonetheless, Soxhlet extraction has evolved over time to make up for 
some of these drawbacks, such as automating the process and trying 
to minimize extraction times. More recently, Soxhlet extraction has 
been paired with innovative technologies such as supercritical fluid-
Soxhlet extraction, automated Soxhlet extraction, and high-pressure 
Soxhlet extraction, or by using auxiliary energies such as microwaves 
or ultrasounds, which results in higher efficiency [57,59].

4.3. Distillation
Distillation is among the oldest extraction methods still being used today. 
Its primary use is to separate liquid mixtures by using the boiling points 
of every component in the sample, followed by condensation steps [60]. 
Although distillation methods are still widely used, they have a number 
of disadvantages. The requirement for large amounts of energy to be 
consumed over long durations, including the use of high temperatures can 

deteriorate the ingredients of concern. Furthermore, the huge quantities 
of solvent are requisite, as well as the lengthy extraction times [57,61].

4.4. Infusions
Infusions are very brief macerations in which the plant is immersed 
in boiling or cold water for a short period [58]. Maceration entails 
breaking down the sample into smaller pieces to enhance the surface 
area available for mixing with the solvents. Both diffusion and the 
removal of the concentrated solution from the sample’s surface are 
made easier by the agitation involved in the maceration process. This 
method has been used to obtain bioactive compounds and essential oils 
for a long time [62]. Since infusions are very susceptible to fungus and 
bacterial growth due to the vast volume of water they consist of, they 
have a really limited lifespan and must be used right away. As a result, 
infusions are very seldom used in the industrial sector [63].

4.5. Green Extraction Techniques
Large volumes of organic solvents are often used in conventional 
extraction techniques, endangering the environment from chemical 
exposure. The idea of “green chemistry” was created to lessen the risks 
associated with chemicals, limit their use, and limit environmental 
exposure. By enabling to use nature without harming it, green 
chemistry also supports environmental sustainability. This idea has 
been used in synthesis, catalysis, separation, and monitoring, among 
other chemical processes. Waste, energy, and hazard are the three 
most important aspects of green chemistry, according to Anastas and 
Warner’s twelve principles [64]. The goal of these green extraction 
processes, according to Jacotet-Navarro et al. [65], is to obtain a 
quicker extraction rate, more efficient energy use, enhanced heat and 
mass transfer, smaller equipment, and fewer processing steps [65].

4.6. Supercritical Fluid Extraction
Supercritical extraction is characterized by pressure and temperature 
changes that transform the gas into a supercritical fluid with 
indistinguishable gas and liquid phases [66]. The extraction procedure 
is divided into several stages. Initially, the plant matrix absorbs the 
supercritical solvent, bulging the cellular structure and dilation the 
inter-cellular channels. As a result, the resistance to mass transfer 
decreases. Furthermore, the matter is being transferred from the 
internal matrix to the surface at the same time. Following that, these 
molecules are transported from the surface to the supercritical solvent 
before being excluded from the solvent [67].

The exclusion of harmful residues in the final product, high selectivity, 
short durations, high stability of the product acquired, low solvent 
consumption, and the fact that the residual biomass can be treated 
with other strategies to proceed with the extraction are all advantages 
of this method. This method can also be used to eliminate unwanted 
compounds such as pesticides, pollutants, and toxins [68]. Supercritical 
fluid extraction is an efficient and environmentally beneficial process. 
The most used solvent for supercritical fluid extraction is carbon 
dioxide (CO2); however, methane, ethylene, fluorocarbons, nitrogen, 
and xenon are also utilized [69]. This technique has been used to 
collect biologically active substances from marine invertebrates and 
microalgae (such as crawfish, starfish, crustaceans, shrimp, crab, 
urchin, squid), macroalgae and cyanobacteria [70]. Dunaliella salina 
a microalga belonging to the class Chlorophyta contains fatty acids 
and β-carotene. In order to extract these molecules, supercritical CO2 
(SC-CO2) was used at different operative conditions [71].
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4.7. MAE
In 1986, Ganzler et al. published the first description of MAE [72]. 
Microwaves are electromagnetic fields that oscillate perpendicularly 
between 300 MHz and 300 GHz. The solute is dissolved by the solvent 
as it diffuses into the solid matrix, but the concentration is constrained 
by the solid’s physical characteristics [73].

This technique has several advantages, including rapid temperature 
rise, high efficiency, improved process monitoring, short extraction 
time, and low energy consumption and cost [74]. The breakdown 
of some compounds as a result of the heat produced by irradiation 
is one drawback of MAE. The MAE’s efficiency is determined by 
factors such as the power of microwave irradiation, the nature of 
the extractant, the temperature, and the extraction time, as well as 
the matrices’ characteristics and the solvent-food relationship. Due 
to the local heating that contributes to matrix rupture, the extraction 
efficiency is usually directly proportional to the microwave power. 
However, microwave power has a limit, which can result in a decrease 
in extraction efficiency [56]. Compound extraction, on the other side, is 
influenced by the solvent used. A combination of organic solvents and 
water has been found to increase extraction effectiveness. Contrarily, 
compared to MAE which exclusively employs organic solvents, the 
inclusion of water in organic solvents causes the extractant to penetrate 
the matrix molecules more deeply, enhancing microwave heating and 
improving overall efficiency and extraction time [75].

The toxicity of the solvent is also an essential aspect to consider 
when selecting an appropriate extractant for MAE [76]. According to 
some theories, the selectivity and efficiency of MAE are affected by 
the dielectric constant of the solvent mixture [77]. The agitator effect 
influences the extraction process, which mitigates the adverse effects 
of the S/F ratio on extraction recovery [78].

4.8. UAE
UAE involves the mechanism of diffusion across cells and cell 
breakage caused by mass transfer. To extract the chemical components, 
UAE uses a sound wave at 20 kHz-100 MHz to compress and expand 
the cells [79]. By rupturing plant cell walls, ultrasounds can expedite 
mass and heat transfer and improve the release of the target substances 
from a range of natural sources [80].

Compared to other extraction techniques, ultrasound is relatively 
simple to use; it is flexible, versatile, and requires a low investment. 
Polysaccharides, peptides, essential oils, dyes, proteins, pigments, and 
bioactive compounds have all been extracted using ultrasound  [81]. 
This phenomenon can occur in either an indirect or direct manner  [82].

Among the benefits of this technology are reduced solvent 
consumption, time and temperature, low investment for equipment, 
and ease of implementation, allowing it to be used industrially in 
local companies   [83]. Heating can degrade the additives present in 
the sample, which is one of the main disadvantages of UAE [84]. 
Compared to traditional methods, UAE uses less solvent and is 
more efficient and cost-effective at extracting polyphenols and other 
compounds.

4.9. PLE
PLE, commonly called pressurized fluid extraction, and accelerated 
solvent extraction, was first introduced by Ganzler et al. [71], 
enhanced solvent extraction or Pressurized Hot Water Extraction [85]. 
PLE operates at high temperatures (50–200°C) and high pressures 

(1450–2175 psi) to maintain the solvent liquid above the typical 
boiling point   [86]. The polarity of the solvent is reduced at high 
temperatures, but the solubility and mass transfer rate are increased 
due to an increase in the dielectric constant. A very little solvent is 
needed because the liquid is pushed into the extracting cells under high 
pressure, and the extraction yield is higher as a result. Additionally, 
automated methods shorten extraction times and do not need solvents 
[87]. Using pressurized liquid extraction, pheophytins, and the 
carotenoid diatoxanthin were removed from Euglena cantabrica [88].

4.10. PEF
PEF is a non-thermal technique that extracts bioactive compounds 
using a short electric field pulse. During PEF, the electric field 
distorts or destroys the cell membrane, transferring electric 
potential to the cells [89]. Its mode of action is based on causing 
cell membrane permeability in a short period and with minimal 
energy consumption. This is performed by using well-known 
techniques for preservation, enzyme, and microbial inactivation, 
which involve administering brief pulses (μs to ms) of moderate 
electric voltage (usually 0.5–20  kV/cm) to a substrate of interest 
positioned between two electrodes [90]. Because of these properties, 
various studies have been conducted to improve the extraction 
performance of bioactive compounds such as anthocyanins, 
polyphenols, and vegetable oil from plant tissues and byproducts, 
as well as the soluble intracellular matter of microorganisms [91]. 
On the other hand, in plant systems and cell cultures, low to light 
PEF treatment intensities are frequently regarded as an efficient 
pretreatment technique for raising secondary metabolites extraction 
efficiency   [92]. Several procedures, such as pressing, extraction, 
drying, and diffusion, have used PEF. This method accelerates mass 
transfer while speeding up extraction by disrupting the membrane of 
the raw materials. The distortion or damage of the cell membrane is 
important for increasing permeability and proving to be beneficial 
over traditional extraction methods [50].

5. CLINICAL STATUS OF BIOACTIVE COMPOUNDS OF 
MICROBIAL ORIGIN

A bioactive compound tetrodotoxin isolated from microalgae 
Alexandrium tamarense had been undergoing phase III clinical trials. 
This compound has been developed as Halneuron® for the treatment of 
chemotherapy-induced neuropathic pain on cancer patients. Utilizing 
the satisfactory portions of tetrodotoxin has been displayed to have 
gainful impacts against intense, provocative, and neuropathic pain in 
animal models. The clinical trial has shown the benefits of tetrodotoxin 
on patients older than 18 years with severe cancer-related pain. Wex 
Pharmaceuticals Inc. has tested Halneuron® on more than 500 patients 
and reported that this medication is able to give pain relief for a longer 
duration with low side effects [93]. Kumamoto University had done 
a study on sacran a polysaccharide extracted from Aphanothece 
sacrum Cyanobacteria. The anti-inflammatory effect on 25 patients of 
atopic dermatitis was studied. The results of this study showed that 
all 25 patients treated with sacran had an improvement in the atopic 
dermatitis average symptoms. After 4 weeks of treatment, there was 
also significant improvement in the problem of sleep disorder and 
itching [94].

Plinabulin (NPI-2358), a compound derived from a marine fungus, is 
being tested in phase II clinical trials as a powerful and targeted vascular 
disruptor. This fungus compound was shown to have effectiveness 
over multi-drug resistant human tumor cell lines, according to 
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preclinical investigations. This compound also has shown enhanced 
efficiency of current chemotherapy and radiotherapy in animal 
models [95]. Another promising anticancer drug is salinosporamide 
A, which is undertaking phase I studies under the direction of Nereus 
Pharmaceuticals (San Diego, CA). It is a brand-new proteasome 
inhibitor that was discovered in the Salinispora tropica bacterium. 
Proteasome inhibition properties were effective at inhibiting a variety 
of solid tumor models and hematologic malignancies while causing 
minimal damage in normal cells [96]. A  marine bacterium-derived 
drug called Tasidotin, Synthadotin (ILX-651) is also undergoing 
Phase II clinical trials with Genzyme Corporation (Cambridge, MA). 
Under the direction of Aska Pharmaceuticals, Soblidotin (TZT 1027), 
another bacterial bioactive substance, is undergoing Phase III clinical 
preliminary testing (Tokyo, Japan). These two substances are both 
potential cancer-fighting substances [97].

Recent reports have verified the synthesis of the well-known marine 
anticancer drug bryostatin 1 from Candidatus Endobugula sertula  [98]. 
The National Cancer Institute (NIH, U.S.) is also conducting Phase I 
clinical trials with bryostatin 1 [99]. Sorbicillactone-A, another anti-
leukemic drug made by Penicillium chrysogenum, has begun to be 
researched for human trials. This alkaloid substance was said to have 
antiviral and neuroprotective effects [100].

6. GENOMICS AND METAGENOMICS-BASED 
BIOPROSPECTING OF MICROBES FOR NOVEL 
BIOACTIVE COMPOUNDS

Microbes have long been considered a possible source of bioactive 
molecules that may be turned into medications to fight cancer and 
diseases. In the past, novel microbe-produced chemicals were found 
through traditional bioprospecting, which involved isolating putative 
producers and testing their extracts in various bioassays   [101]. 
There are currently greater chances for the identification of novel 
bioactive chemicals due to recent developments in numerous 
methodologies, including metagenomics, genomics, combinatorial 
biosynthesis, screening techniques, expression systems, proteomics, 
and bioinformatics [102]. The integration of these modern techniques 
with classic techniques serves as an important tool in the identification 
of novel bioactive compounds [102].

Formerly, conventional microscopy was used to identify the 
microbes in a sample. However, it is now much simpler to identify 
and characterize the biodiversity and function within a microbial 
population due to improvements in DNA/RNA-based methodologies 
and sequence technology. Both partial community analysis methods 
and entire community analysis methods have been used to describe 
these methodologies [103]. PCR-based techniques and other ways 
are frequently used in partial community analysis. While focusing 
solely on one or a small number of genes, whole-community analysis 
methodologies provide a more comprehensive understanding of the 
genetic diversity inside a community [103]. These methods genuinely 
make an effort to examine every piece of genetic data included in the 
whole DNA that has been isolated from an ambient sample or a pure 
culture of bacteria. These methods include whole-microbial genome 
sequencing, metagenomics, DNA-DNA hybridization kinetics, G+C 
DNA content, and developing omics technologies.

A new method was created to cover the whole microbial variety 
from various biotopes in light of the lack of growing techniques for 
the majority of microorganisms. The foundation of this cultivation-
independent strategy is the creation of elaborate libraries using ambient 
DNA. The metagenome, also referred to as the collective genome of 

all extant microorganisms, is made up of isolated microbial DNA from 
a certain habitat [104,105].

The term “metagenomics” refers to the genetic analysis of microbes 
using the direct extraction method and the cloning of DNA from a 
variety of different species from environmental samples [106]. Gene 
clusters, genes that code for enzymes, and the creation of bioactive 
molecules may be the focus of metagenomics [107]. Extreme 
environments, naturally or intentionally enriched environments for 
the target gene, and extremely diversified habitats are some of the 
key categories of environments taken into account when utilizing 
this strategy [108]. The vast amount of metagenomic data that the 
sequencing platforms have collected is then analysed, which calls for 
the use of the appropriate data-analysis tools. Tools for managing huge 
datasets have been created using bioinformatics software.

7. BIOTECHNOLOGICAL APPLICATIONS OF BIOACTIVE 
COMPOUNDS IN HUMAN HEALTH

7.1. Antiviral Activity
Microalgae are quite possibly the most encouraging hotspots for 
new useful food items, because of their capacity to incorporate 
polyunsaturated unsaturated lipids, colors, and regular cancer 
prevention agents [109]. In a study, four strains of microalgae 
prospected were refined, and their antiviral effect was assessed 
in vitro against MAYV. The cell reasonability tests were done on 
VERO cells (Verda Reno Cells) to evaluate the lethality of the 
concentrates by CC50 designation and the deactivation limit of 
the MAYV as assessed by TCID50. The outcomes demonstrated 
that all the microalgae strains introduced adversary of the Mayaro 
movement and the overall strength was greater than ribavirin, 
the current antiviral. In addition, the basic portrayal by TLC and 
NMR 1H inquiry demonstrated in the concentrated configuration 
of terpenoid atoms and the greater part occurrence of unsaturated 
aliphatic particles [110].

Another study analyzed the polyunsaturated fatty acids. Carotenoids 
and cancer prevention agent movement of Phaeodactylum tricornutum, 
Nannochloropsis oculata, and Porphyridium cruentum activity got 
from SC-CO2 and subcritical n-butane extraction techniques SC-CO2 
strategy was particular in removing immersed unsaturated fats saturated 
fatty acids for all microalgae species contemplated [110,111]. To add 
up to carotenoids and cancer prevention agent action utilizing DPPH 
scavenging test, a critical connection coefficient (R2 = 0.80) was found 
among the concentrates autonomous of the extraction strategy tried. 
This shows that carotenoid mixtures may be a significant supporter 
of the cell reinforcement limits of these microalgae. Polysaccharide-
rich fractions isolated from D. salina and Haematococcus pluvialis 
extracts exhibit higher antiviral activity against herpes simplex virus 
type  1   [112]. Oscillatoria agardhii, Nostoc ellipsosporum reported 
lectins (Agglutinin OAA, Cyanovirin-N) which showed anti-influenza 
A-B viruses, anti-HIV1 and HIV2 properties [113,114].

Every year, marine fungi produce between 150 and 200 novel 
compounds, such as sesquiterpenes, alkaloids, polyketides, and 
aromatic compounds [115]. Recent studies have shown the enormous 
potential of marine fungi as a viable source for the creation of 
novel antivirals against a variety of significant viruses, such as the 
influenza virus, the human immunodeficiency virus, and herpes 
simplex viruses   [116]. Till date, Pleurotus citrinopileatus exhibits 
the highest anti-HIV-RT activity with IC50 (0.93). Pholiota adipose 
and Schizophyllum commune have lentins bioactive compounds with 
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inhibitory activity toward HIV-1RT with low IC50 values   [117]. 
Trichoderma spp. of fungi, when tested against the human Enterovirus 
71, SCSIO41004 (which contains 5-acetyl-2-methoxy-1,4,6-
trihydroxy-anthraquinone) significantly inhibited viral growth  [118]. 
Isolated polyketides from the fungus Diaporthe spp. SCSIO 41011 
exhibited strong antiviral activity against three different strains of 
the influenza A virus [119]. Isoprenylated cyclohexanols present in 
Truncatella angustata have shown inhibition activity against HIV 
and H1N1 virus [120].

7.2. Anticancer Activity
Triterpenes from  Ganoderma lucidum are known to initiate apoptosis 
of DU-145 cells in prostate malignant growth cells. Triterpenes had 
restrained the development of HT-29 cells by capturing cell cycle at 
the G0/G1 stage and furthermore accepted the modified cell passing 
Type II. Triterpenes from G. lucidum (GLT) restrain the development 
of prostate disease cells, stifle the relocation and intrusion and actuate 
apoptosis through the restraint of MMP articulation [121]. Triterpenes 
had likewise been displayed to hinder the development of growths 
in a xenograft model of colon disease [122]. Triterpenoids acquired 
from polyporus mushrooms, for example, ganolucidic corrosive 
E, ganoderenic corrosive D, iucidumol   A, ganodermanontriol, 
15-hydroxy ganoderic acis 5, 7-oxo-ganoderic corrosive Z, and 
ganoderic corrosive DM showed diminished cell development in three 
human carcinoma cell lines CaCo2, HEPA C12 and HeLa cells [123].

In another review, seven parts of triterpenoids were assessed for 
the anticancer exercises on malignant growth cell lines. Ganoderic 
corrosive D had shown high cytotoxic movement against Hep 
G2, Hela, and Caco-2 cell lines [124]. In a comparative report, 
lanostane triterpenoids were cleansed from Inonotus obliquus, for 
example, inotodiol, 3b,22dihydroxylanosta-7,6  (11), 24-triene, 
3bhydroxylanosta-8,24-dien-21-al, 22R-epoxylanost-8ene-3b,24S-
diol, lanosterol, trametenolic corrosive, inonotsulides A, B, and C, 
inonotsuoxides An and B, inonotsutriols A, B, and C, lanosta-8,23E-
diene-3b,22R,25-triol and lanosta-7:9(11), 23E-triene-3b,22R,25-
triol, spiroinonotsuoxodiol, inonotsudiol An and inonotsuoxodiol A, 
and inonotsutriols D and E had shown enemy of growth impact [125]. 
Triterpenes of the fruiting varieties of Fomitopsis pinicola and Fumaria 
officinalis were compared to the cell lines HeLa, A549, hepatocellular 
liver carcinoma (HepG2), and MCF7. These triterpenes show a 
significant influence on disease cells by inhibiting the expression of 
VEGF, IL4, and IFN gamma growth factors [126].

Polysaccharides cleansed from G. lucidum had shown antitumor action 
against different malignant growth cell lines. These mixtures hinder 
the development of Hep2 cells by the guideline of hepatic miRNAs 
and safe related miRNA. It has been seen that polysaccharides in blend 
with 5-fluorouracil showed synergistic cytotoxicity, apoptosis, and cell 
cycle capture against human colon malignant growth cells [127]. The 
polysaccharide from the maitake mushroom (Grifola frondosa), Part D, 
has demonstrated anticancer activity. When human breast cancer cells 
(MCF7) were exposed to maitake (D part) extract at various fixations, 
a significant decrease in the viability of the malignant growth cell line 
was observed. Due to the overexpression of BAK-1 and cytochrome 
C records, the apoptotic activity in a portion of the subordinate way 
significantly increased [128].

In a comparable report, the D-part of polysaccharides has likewise 
exhibited a direct effect on human and canine growth disease cell 
lines. This portion impacts the cell expansion through a tweak of 
quality articulation, cell passing, and metastasis in MCF7 human 

bosom disease cells. It was additionally exhibited that this compound 
has been able to straightforwardly follow up on the mammary 
growth cells and to module cell processes that are associated 
with the turn of events and movement of disease in people [129]. 
Polysaccharide compound se-gp11 was purged from Se-advanced 
G. frondosa which is made out of mannose, glucose, and galactose. 
This compound repressed the development of Hepa growth by 
expanding interleukin-2 and serum rot factor alpha which increment 
the heaviness of the thymus and spleen [130]. Polysaccharide GP11, 
which was removed from G. frondosa, inhibited the growth of Heps 
cells as well as exerted indirect cytotoxicity against HepG-2 cells. 
This substance stimulated the production of several distinct factors, 
including interleukin-1β, nitric oxide (NO), and tumor necrosis 
factor (TNF-α). It was hypothesized that the TLR-4-intervened up-
regulation of the production of NO and TNF-α was responsible for 
the anticancer effect of GP11 polysaccharide by strengthening the 
host insusceptible framework [131].

GFG-3a is an original glycoprotein refined from G. frondosa had 
shown cell apoptosis and capture of the cell cycle at S gradually 
works in human gastric malignant growth SGC-7901  cells [132]. 
Polysaccharide peptide compound krestin refined from tinea 
versicolor goes about as an adjuvant in the counteraction of bosom 
malignant growth. This compound had likewise been announced for 
antitumor impacts in growth-bearing transgenic mice and had critical 
hindrances of bosom disease development [133]. A  polysaccharide 
removes (Khz) decontaminated from the intertwined mycelia of 
Polyporus umbellatus and G. lucidum had shown hindrance to the 
development of A549 cellular breakdown in the lung cells. A  high 
sub-atomic weight novel polysaccharide PL-N1) was secluded from 
Phellinus linteus mycelium remove. This polysaccharide contains 
arabinose, xylose, glucose, and galactose and has shown antitumor 
exercises and critical hindrance against the development of HepG2 
malignant growth cell lines [134]. Two polysaccharides filtered 
from Grifola umbellata GUMP-1-1 and GUMP-1-2 had shown 
huge restraint of cancer development in hepatoma H22 relocated 
mice   [135]. Water-dissolvable intracellular polysaccharides were 
removed from refined mycelia of Phellinus igniarius, and their 
decontaminated ethanol part had shown anticancer exercises against 
Su480 and HepG2 cell lines  [136].

Numerous mixes that have been restricted from mushrooms contain 
anticancer workouts. Grifolin, a substance extracted from the crisp 
fruiting bodies of Albatrellus intersection, had been shown to inhibit 
the growth of various disease-related cell lines in vitro by up-guiding 
DAPK1 [137]. The anticancer and cancer prevention agent action 
of low atomic weight subfractions disconnected from auxiliary 
metabolites created by the wood corrupting growth Cerrena 
unicolor was additionally revealed against human colon disease 
cells [138]. Anticancer movement of this compound additionally 
covered nasopharyngeal and osteosarcoma disease by the enlistment 
of apoptosis and concealment of the ERK1/2 pathway  [139]. This 
compound can hinder DNMT1 articulation which helps in the 
working of mitochondrial oxidative phosphorylation edifices in 
nasopharyngeal carcinoma [140]. Isosullin acquired from the oil 
ether concentrate of Saillus flavus had shown apoptosis and G0/G1 
capture of the cell cycle in KS62 cell lines [141]. This compound had 
likewise answered to fundamentally diminish the cell practicality, 
G1 capture, and apoptosis in the SMMC-772 liver cell lines. This 
compound had the potential for cellular breakdown in the lung 
therapy because of the acceptance of apoptosis in H446 malignant 
growth cell lines [142,143].
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Ergone and polyporusterone B disconnected from P. umbellatus 
had shown anticancer movement against HepG2, Hep-2, and Hela 
disease cells. However, ergone had shown particular cytotoxic action 
against these malignant growth cell lines [144]. Ergosterol peroxide 
and trametenolic corrosive disconnected from Chaga mushroom 
had shown cytotoxicity in human prostatic carcinoma cell PC3 and 
bosom carcinoma MDA-MB-231 cell lines [145]. The ergosterol 
peroxide got from I. obliquus showed against malignant growth 
impacts in colorectal disease by down-guideline of the β-catenin 
pathway. This compound had shown apoptosis in CRC cell lines, and 
furthermore repressed colitis-related colon disease in AOM/DSS-
treated mice  [146].

Hispolon, a phenolic compound removed from I. obliquus could 
initiate apoptosis of bosom and bladder-malignant growth 
cells   [147]. A  vigorously glycosylated protein, proteoglycan, 
which was cleansed from P. linteus had shown antitumor 
impact on human disease cells by the hindrance of expansion of 
human colon adenocarcinoma (HT-29), human HepG2, human 
cellular breakdown in the lungs (NCIH 460), and human bosom 
adenocarcinoma (MCF-7) cells [148]. The polysaccharide 
compound of T. versicolor at a centralization of 20 mg/L had shown 
critical restraint of hepatoma malignant growth cell line (QGY) by 
influencing articulation of cell cycle-related qualities (p53, Bcl-2, 
and Fas,) and actuated apoptosis [149]. Trametenolic corrosive, a 
bioactive compound filtered from Trametes lactinea (Berk.) Pat, 
had likewise known to show cytotoxic exercises against gastric 
malignant growth cell lines [150]. GA3P (d-galactan sulfate) 
isolated from Gymnodinium microalgae had reported growth 
inhibition of different cell lines (HCC2998, KM-12, HT-29, WiDr, 
HCT-15, and HCT-116)   [151]. A  glycolipid mono galactosyl 
diacylglycerol had reported activity toward the HT-29 human colon 
adenocarcinoma tumors. Violaxanthin isolated from Chlorella 
ellipsoidea had proapoptotic and anti-proliferative activity against 
the HCT-116 colon cancer cell line  [152].

7.3. Antifungal Activity
A melodramatic shift approaching a more sustainable, environmentally 
stable, and natural way of living has been observed in recent 
years. Besides, many demerits and ill-effects related to existing 
antimicrobial agents, it is no wonder that a considerable number 
of humans, particularly those belonging to developing nations, are 
using naturally accessible bioactive alternatives for their health-care 
systems [153]. A substantial number of natural drugs can be obtained 
either from microbes or by their interaction with hosts [154]. Among 
the many antimicrobial agents’ antifungal peptides have also been 
extracted from numerous sources. It was in 1948 when scientists 
isolated antifungal compounds from Bacillus subtilis [155], the 
studies on the biosynthesis and their mode of action of antifungal 
substances began to limelight [156]. Antifungal compounds have 
been extracted from three kinds of microbes: Actinomycetes, bacteria, 
and fungi. Bacteria constitute the largest source among these three 
and Bacillus amyloliquefaciens, Bacillus cereus and B. subtilis are 
more widely utilized in research. B. cereus have the tendency to 
produce bacereutin, cispentacin, azoxybacilin, and mycocerein, 
which show strong activity against the proliferation of Candida 
albicans, Saccharomyces spp., Aspergillus species, and many other 
fungi [157]. Chernin et  al.  [158] reported the antifungal compound, 
namely pyrrolnitrin from Enterobacter agglomerans which shows 
antimicrobial action against a number of pathogenic fungi such 
as Aspergillus niger, Candida spp., dermatophytes, and other 

phytopathogenic fungi. Antifungal compounds extracted from a strain 
of B. amyloliquefaciens sybc H47 had shown a significant effect on a 
number of pathogenic fungi-like Aspergillus niger, Candida albicans 
Fusarium oxysporum and Penicillium citrinum [159]. In addition, 
many fungi, such as Aspergillus have also been known to synthesize 
antifungal compounds like echinocandins which are resistant to 
mycosis [160]. In recent years, the remarkable antifungal activity of 
marine actinomycetes has invited the attention of many researchers 
globally [161].

Various studies have been done on Streptomyces species which in 
known to have marked antifungal activity in addition to antiviral, 
antibacterial, and antiparasitic properties [162,163]. The crude extract 
of seven phyllospheric bacteria was tested against P. oryzae which 
demonstrated excellent antifungal activity [164]. Enormous tactics 
have been utilized to deal with numerous deadly fungal infections. 
Amphotericin B which is produced by Streptomyces nodusus, a Gram-
positive bacteria, is a first-line drug used against the commented 
problem and it works by disrupting the membrane system. Another 
great approach is the use of combinatorial therapy, which can lessen the 
risk of the antifungal battle against monotherapy [165]. Recently, the 
extract from macroalgae viz. Gracilariopsis persica has demonstrated 
excellent antifungal activity against four pathogenic fungi [166]. 
Recently, bioactive compounds from Lactobacillus harbinensis K 
V9.3.1Np were identified using nuclear magnetic resonance and mass 
spectrometry. This was accompanied by checking the activity against 
Penicillium expansum and Yarrowia lipolytica, which revealed a 
polyamine and benzoic acid as active compounds from L. harbinensis 
K.V9.3.1Np [167].

7.4. Antibacterial Activity
Soil is the best medium for the growth of microorganisms that 
produce antibiotics that can further be incredibly used in the 
treatment of bacterial diseases in humans. The demand for such 
kinds of antibiotics has been growing day by day [168,169]. Bacterial 
isolates from B. cereus and Klebsiella pneumoniae were discovered 
to have antibacterial action toward Escherchia coli, Salmonella 
typhi and Staphylococcus aureus and thus these could be used for 
the production of the broad range of antibiotics [170]. Lactic acid 
bacteria are known to produce antibacterial compounds such as 
bacteriocin, hydrogen peroxide, diacetyl, and organic acids, which are 
efficient against harmful bacteria. Bacteriocins are generally peptides 
that are antagonists for bacteria; however, their number is quite less 
in comparison to the developed antimicrobial peptides   [171,172]. 
Lactobacillus pentosus ST712BZ produces bacteriocin, which 
is effective against the proliferation of E. coli, E.   faecalis, 
K.  pneumoniae, Lactobacillus casei, Lactobacillus curvatus and 
Pseudomonas aeruginosa [173,174]. Bacteriocin properties of 
Serraticin A from Serratia proteomaculans have been reported [175]. 
The compound works by interfering with the synthesis of DNA [176]. 
Three methoxyphenol phytometabolites, namely eugenol, capsaicin, 
and vanillin exhibited antibacterial and antioxidant activities against 
Brochothrix thermosphacta, Shewanella putrefaciens, Lactobacillus 
and E. coli, P. aeruginosa, and S. aureus [177]. The isolates from 
Streptomyces spp. exhibited strong antibacterial activity against E. coli, 
S. aureus, P. aeruginosa, and B. cereus [178]. Nisin and gramicidin 
are the famous antimicrobial peptides extracted B. subtilis, Bacillus 
brevis, and Lactococcus lactis [179]. Antibacterial peptides constitute 
a large share of AMPs and have an extensive inhibitory effect on some 
common pathogenic bacteria, like Listeria monocytogenes, S. aureus 
Acinetobacter baumannii, and E. coli [180,181]. In addition, a total 
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of 64 fungal families were reported to show antibacterial activity 
against 32 species of bacteria from over the world [182]. Antibacterial 
activity of endophyte fungi strains against the growth of pathogenic 
bacteria like S. aureus and E. coli has been studied [183].

7.5. Antimalarial Activity
Malaria is a disease which is widespread in subtropical and tropical 
regions, including parts of America, Asia, and Africa. An estimated 
241 million malaria cases and 6,27,000 malaria deaths have been 
reported worldwide in 2020. Plasmodium falciparum, one of the 
five species of infectious malaria parasites is the most dangerous 
one because it causes dreadful infection even death. The available 
drugs against P. falciparum are increasingly losing efficacy because 
of the growing emergence of resistance, so there is an ongoing need 
to develop new, effective, and affordable antimalarial agents [184]. 
Ferreira et al. [185] studied 285 fungal isolates and their antimicrobial 
and antimalarial activities were examined. These endophytic fungal 
isolates were grown in solid-state fermentation and their crude 
extracts were recovered in dichloromethane. Chromatographic 
fractionation and NMR were used to analyze the bioactive extracts, 
which showed five fungi producing antimicrobial and antimalarial 
compounds. Extracts of endophyte Diaporthemiriciae produced 
epoxycytochalasin H which displayed high antimalarial activity 
against chloroquine-sensitive and chloroquine-resistant strains 
of P. falciparum. The compound epoxycytochalasin H with high 
anti-malarial activity against the chloroquine-resistant strains of 
P. falciparum has IC50 approximately 3.5-fold lower than that with 
chloroquine. Bioactive compounds from Streptomyces, a Gram-
positive bacterium, have been used as a most popular source of 
antibiotics [186]. Trioxacarcins A, B, C, and D isolated from marine 
Streptomyces have been tested against P. falciparum. Of these, 
Trioxacarcins A and D had a high antiplasmodial activity with IC50 
value1.6 ± 0.1 and 2.3 ± 0.2  ng/mL, respectively comparable to 
artemisinin with IC50 value 0.7 ± 0.1  ng/mL [187] Trioxacarcin B 
with IC50 value 102 ± 4.9 ng/mL has anti plasmodial activity about 
100 times less than that of trioxacarcins A and Dwhereastrioxacarcin 
C with IC50 value is >5000  ng/mL has been found to be inactive. 
Coronamycin from endophytic Streptomyces spp. growing inside an 
epiphytic vine, Monstera spp., showed an antiplasmodial activity 
against P. falciparum with IC 50 of 9.0  ng/mL [188]. A  series of 
unique wide-spectrum antibiotics called munumbicins A, B, C, and D 
of which Munumbicin D showed activity against P. falciparum(with 
IC50 of 4.5±0.07 ng/mL) [189].

Similarly, Kakadumycin A, Munumbicins E-4, and E-5 also showed 
antimalarial activity [190,191]. In vivo testing of Gancidin- W isolated 
from Streptomyces spp. SUK 10 on P. berghei NK 65 infected mice 
showed a remarkable 80% inhibition of malarial parasite at 6.25 
and 3.125 µg/kg body weight [192]. McCarthy et al. [193] screened 
the role of marine microbes as potential antimalarial agents. They 
identified 17 dominant extracts produced by the actinomycetes, 
fungi and Gram-negative bacteria out of 2365 tested samples due to 
their inhibitory action against the multidrug chloroquine-resistant 
P. falciparum and their cytotoxic nature toward the mammalian cells. 
Parapini et al.   [194] screened a group of 14 different inhibitors of 
Rac1 as potent antimalarial agents. Their study showed E-Hop-016 
as the potent inhibitor of P. falciparum in vitro but did not impede the 
parasitic invasion of erythrocytes. An outcome of the results depicted 
the role of E-Hop-016 in affecting the intraerythrocytic growth of the 
parasite.

7.6. Antidiabetic Activity
Diabetes mellitus is a collection of non-communicable metabolic 
disorders characterized by a persistently high blood glucose level 
resulting from decreased insulin production, insulin action, or even 
both. Diabetes mellitus, if left untreated, can cause serious health 
problems, which include cardiovascular disease, blindness, chronic 
kidney disease, neuropathy, stroke, and even death [195-197]. 
American diabetes association, 1997, classified Diabetes mellitus 
as Type  1 Diabetes mellitus, which results from the destruction 
of beta cells of the pancreas due to an autoimmune disorder 
accounting for 3–10% of cases, Type  2 Diabetes mellitus which 
occurs due to the body’s ineffective use of insulin and accounts for 
85–90% cases and Gestational Diabetes (2–5% cases) which occurs 
during pregnancy   [198]. Several researchers have reported that gut 
microbiota such as Bifidobacterium, Lactobacillus, Bacteroides, 
Roseburia, Faecalibacterium, Clostridium cluster IV and subcluster 
XIVa and Akkermansia have shown promising results against 
T2DM  [199-201]. Jayant and Vijayakumar [202], reported in vitro anti 
oxidant and anti-diabetic potential of ten fungal endophytes isolated 
from Ficus religiosa viz., Aspergillus aculeatus, Penicillium spp., 
Aspergillus sydowii, Curvularia lunata, Cephaliophora irregularis, 
Diaporthe spp., Aspergillus quadrilineatus, A. flavus, A. versicolor 
and Aspergillus spp.

The antidiabetic and antioxidant potential of the fungal extracts 
were determined by inhibition of DPPH and enzyme α-amylase. 
Interestingly, all the extracts displayed moderate DPPH and α-amylase 
inhibitory activity with Curvularia lunata being the lead. In another 
study made by Ushasri et al. [203], it was reported that ethanol and 
acetone extracts of endophyte Syncephalastrum racemosum extracted 
from the sea weed Gracilaria corticata exhibited maximal α-amylase 
inhibitory action. Besides these, several wild edible mushrooms 
possess various nutritional and pharmacologically active components 
such as fibers, alkaloids, lectins, proteins, polysaccharides, 
and polyphenols which show antitumor, anti-inflammatory, 
immunomodulatory, antioxidant, antihypercholesterolemic, 
antihypertensive, hypoglycemic, antimicrobial and various other 
properties [204-207]. Anti-diabetic action of six medicinal and 
edible mushrooms such as Agaricus blazei, Coprinus comatus, 
Cordyceps militaris, I. obliquus, Morchella conica and P. linteus has 
been reported [208]. In addition, hypogycemic potential of several 
mushroom species viz., Lentinus swartzii, Tremella fuciformis 
(glucuronoxylomannan [209], Wolfiporia extensa (dehydrotumulosic 
acid, dehydrotrametenolic acid, and pachymic acid)  [210], G. lucidum 
(G. lucidum polysaccharides)   [211], Ganoderma applanatum (Exo-
polymer (GAE) [212] and Collybia confluens (Exo-polymer (CCE) 
[212], Auricularia auricula-judae (Polysaccharide (FA) [213], 
Agaricus campestris, Agaricus subrufescens (Beta-glucans and 
Oligosaccharides [AO])   [214], I. obliquus, Hericium erinaceus, 
Agrocybe aegerita, C.  comatus (Vanadium) [215], Cordyceps sinensis 
(Polysaccharide CSP-1)  [216], G. frondosa (Alpha-glucan, MT-alpha-
glucan) have been reported  [217-221].

8. CONCLUSION

A greater knowledge of the significance of bioactive compounds and the 
identification of novel specialized metabolites would provide the world 
with hope for the future. The extraction of bioactive metabolites via 
traditional methods was time-consuming and labor-intensive. UAEs, 
microwave extraction, pressurized liquid extraction, and supercritical 
fluid extraction all have improved extraction yield and efficiency. 
Unquestionably, genomics has made a significant contribution to the 
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revitalization of microbial product screening. Furthermore, microbes 
are an environmentally friendly and renewable drug discovery option. 
As a result, compounds derived from microorganisms may be the 
answer to the ongoing battle against antibiotic-resistant bacteria and 
a variety of terrible diseases. The discovery of novel biologics may be 
aided by the advancement and development of easily accessible NGS 
technologies, bioinformatics tools, and other emerging approaches. 
The growing demand for bioactive compounds of microbial origin 
in the pharmaceutical industry necessitates the development of 
more efficient, productive, and environmentally friendly extraction 
techniques. As a result, we are optimistic that the near future will 
persist to provide a plentiful bounty of novel bioactive molecules 
derived from microbial sources.
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