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ABSTRACT 

Viruses are the obligatory intracellular parasites infecting microbes, plants, animals, and humans. They are 
dead outside host cell but can take-over the host’s cell machinery as soon as they are into it. Several studies on 
inhibitor compounds have been done for animal viruses including those that are affecting humans, but there 
is inadequacy in terms of research and literature for plant viruses that are responsible for losses in crop yield 
and quality loss all across the globe. This could be focal point to study plant viruses, their transmission and 
pathogenicity, and to establish widely used, effective, and advanced approaches for their control. The purpose 
of this review is to discuss various approaches to control plant viruses that have been developed and applied to 
combat plant viral infections. We have divided these approaches into two categories conventional (meristem-
tip culture, cryotherapy, thermotherapy, and chemotherapy) and advanced (nucleic acid-based approaches 
like RNA Silencing, cross-protection, transgenic plants, gene pyramiding, and protein-protein interaction). 
Moreover, we have discussed and compared the principles, methodologies, advantages, and disadvantages of 
each technique. The approaches have been explored to promote their application in best suited way on various 
plants to control viral diseases and to improve food crops quality with increase in production.

1. INTRODUCTION
Viruses are obligatory intracellular parasites whose 
replication and pathogenicity strictly depends on their host 
cell machineries [1]. Viruses have caused significant damage 
to plants, livestock, and human health and are still the most 
prominent threat to any living beings. Moreover, a number 
of wild plants are always found to be surrounded by viruses 
[2,3]. Tobacco mosaic virus (TMV) was the first plant virus 
to be studied, which is responsible for the mosaic disease in 
Tobacco [4]. According to the International Committee for 
the taxonomy of viruses, there are about 900 species of plant 
viruses [5] and studies indicate many more new plant viruses 
are yet to be discovered [3].

Most of the viruses that cause damage to cultivated plants are 
acute, i.e., they bring about a dreadful infection for a short-
time period, but in case of wild plants, a vast number of 
viruses have a persistent lifecycle that is they continue with 

their plant hosts machinery [2]. These viral infections in plants 
result in substantial damage to the crop production and quality. 
Plants infected with TMV, Papaya ring spot virus, Potato virus 
Y, etc. show symptoms such as leaf distortion and yellowing, 
whole plant stunting, and abnormality in flowers and fruits. In 
agricultural field, the worldwide estimated cost yield losses 
due to plant viruses are more than $30 billion annually [6] 
[Table 1].

Thus, it is imperative to study these viruses and develop and 
deploy strategies to curb plant viral diseases. The plant virus 
control techniques either employ transgenic technology or 
utilize the natural resistance observed in some plants. The 
available plant virus control approaches can be broadly 
classified as conventional and advanced approaches, which 
we discussed elaborately in this review. Moreover, we 
highlighted the drawbacks of conventional methods and 
congregated the successes and failures of the techniques used 
in conventional approach and emphasized the use of advanced 
methods over conventional approach while targeting plant 
viruses.*Corresponding Author

Kapila Kumar, Manav Rachna International Institute of Research and 
Studies, Faridabad, India. E-mail: kapila.fet@mriu.edu.in

© 2019 Chauhan, et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlike 
Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/). 

Journal of Applied Biology & Biotechnology Vol. 7(04), pp. 89-98, July-August, 2019

http://crossmark.crossref.org/dialog/?doi=10.7324/JABB.2019.70414&domain=pdf


Chauhan, et al.: Journal of Applied Biology & Biotechnology 2019;7(04):89-9890

2. CONVENTIONAL METHODS

2.1. Meristem-Tip Culture
The meristem tip culture is performed by cutting out of 
organized shoot apex from mother plant for subsequent in 
vitro culture which confirmed to be the most active technique 
to eliminate phloem-associated viruses [18]. It began in 
meristem tips of Nasturitum (Tropaeolium majus) by the 
formation of rooted plants [19]. In several cases, meristem 
tip culture proved to be effective in removing plant viruses 
such as eliminating Sugarcane yellow leaf virus in sugarcane 
[20], Peanut stripe virus (PStV) in patchouli plants [21], and 
Piper yellow mottle virus (PYMoV) with 84% success rate 
in black pepper plants [22]. The advantage of this technique 
includes working with small explants devoid of pathogenic 
organisms taken from mother plant for the in vitro culture. 
The other advantage is the inherent genetic stability of the 
technique [23,24]. Disadvantages include expensiveness, 
acclimatization, variability, production scheduling, and 
contamination.

2.2. Chemotherapy
Anti-viral compounds are useful to control plant viral diseases. 
Chemical compounds such as ribavirin (RBV) (virazole), 
azidothymidine, and 2-thiouracil [25] and some antiviral drugs 
such as inosine monophosphate dehydrogenase (IMPDH) 
inhibitors, S-adenosylhomocysteine hydrolase inhibitors, 
and neuraminidase (NA) inhibitors [26] are generally used 
in chemotherapy. These compounds and drugs enter the 
plant during soaking process and prevent viral replication 
[27]. Grapevine leafroll-associated virus-1 and -3 (GLRaV-1 
and 3) have been eradicated from plants by using selective 
chemotherapy. Specifically, IMPDH inhibitors were more 
active against GLRaV-1, whereas NA or purine biosynthesis 
inhibitor was found to be more effective against GLRaV-3 [28]. 
Grapevine rupestris stem pitting-associated virus (GRSPav) 
has been eradicated by using the antiviral IMPDH inhibitors, 
tiazofurin, RBV, and mycophenolic acid with exposure to 
in vitro chemotherapy [29]. Prior to meristem tip culture, 
chemotherapy was used and it resulted in complete elimination 
of Lily symptomless virus [30]. Although they incur some 

disadvantages as they all have different modes of action [31,32] 
and are not effective ex vitro even at higher concentration [30], 
this method proved to be successful in many instances (Table 2).

2.3. Cryotherapy
Researchers use saline solutions containing crushed ice 
at a temperature of −18° to −24°C for the treatment of 
human tumors (breast, cervical, and skin), which also help 
in decreasing pain [33]. Similarly in plant cryotherapy, 
pathogens such as viruses, phytoplasma, and bacteria are 
exposed to low temperature (−196°C) for a prolonged time, 
which successfully eradicates virus complexes resulting 
in virus-free plants with high frequency as compared to 
meristem tip culture [Table 2] [27,48]. It does not allow the 
occurrence of thermally directed metabolic reactions. It has 
been found that three Closteroviridae viruses who cause 
leafroll disease in grapevine are eradicated by vitrification 
(using dehydrating material) based cryotherapy of buds of 
contaminated clones [54]. Advantages of cryotherapy include 
treatment of large numbers of plantlets and the technique 
is applicable independent of shoot tip size, whereas major 
disadvantage includes large consumption of certain gases like 
Argon and Nitrogen [55].

2.4. Thermotherapy
In thermotherapy, heat treatment is given for a particular 
time, which kills the conserved pathogen with little effect 
on host. Heat is applied mainly by water, air, or vapor 
[56]. Temperature used for this technique is 52°C–55°C 
for 10–30 minutes. It has been found that increasing 
temperature significantly reduces the virus-related diseases 
as it disrupts viral ssRNA and dsRNA synthesis [27].  
Exposure of tubers to 37°C for 4 days followed by 34°C 
for 3 days up to two weeks has the highest survival rate of 
50% among the infected plants [57]. It has been found that 
thermotherapy becomes more effective when applied with 
other conventional therapies, e.g., Apple chlorotic leaf spot 
virus, Apple stem grooving virus, and Apple stem pitting 
virus, which infect apple plant, have been eradicated 
with the help of thermotherapy at various temperatures 

Table 1: Estimated cost of crop damage and crop loss per year by plant viruses across the globe.

Location Crop infected Estimated cost of crop damage by 
viruses per year Crop loss per year Virus responsible References

Africa, India, Srilanka Cassava crop 25 million tons Cassava mosaic 
begornovirus

[7–9]

US Potato $ 100 million Potato leafroll polerovirus [6,10]

UK Potato $ 30–50 million Potato leafroll polerovirus [6,10]

UK Barley, Oats, Rice, 
Wheat, Maize

$ 13.93 million Barlewy yellow dwarf 
luteovirus

[11]

South-East Asia Rice $ 1.5 billion Rice affecting culture virus [12–14]

Togo, Ghana, Nigeria Cacoa Trees 200 million trees Cacoa swollen shoot [15]

Worldwide Citrus Trees Citrus triteza closterovirus [16,17]
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with chemotherapy at different concentrations of RBV 
[58]. Chemotherapy along with thermotherapy is used to 
eliminate Arabis mosaic virus (ArMV), Prunus necrotic 

ringspot virus (PNRSV), and ArMV + PNRSV from rose 
infected plants with a success rate of 63.33%, 90.09%, and 
85.18%, respectively [53]. (Table 2)

Table 2: Success rate of virus elimination through various traditional methods#.
Methods Name of viruses eliminated Success rate (%) References

Meristem tip culture

Banana bunchy top virus (BBTV) 57.14 [34]

Banana mosaic virus (BMV) 64.28 [34]

Leek yellow stripe virus (LYSV-G) 100 [35]

Onion yellow dwarf virus (OYDV-G) 92 [35]

Garlic common latent virus (GCLV) 62 [35]

Onion mite-borne latent virus (OMbLV-G) <54 [35]

Grapevine fanleaf virus (GFLV) 92.5 [36]

Grapevine leafroll associated virus -1 (GLRaV-1) 95 [36]

Peanut stripe virus (PStV) >88.89 [21]

Piper yellow mottle virus (PYMoV) 84 [22]

Chemotherapy

Grapevine fanleaf virus (GFLV) 94 [37]

Grapevine leafroll-associated virus-1 (GLRaV-1) 72 [28]

Grapevine leafroll-associated virus-3 (GLRaV-3) 78 [28]

Grapevine rupestris stem pitting-associated virus (GRSPaV) 85.7 [29]

Cryotherapy

Plum pox virus (PPV) 50 [38]

Cucumber mosaic virus (CMV) 30 [39]

Banana streak virus (BSV) 90 [39]

Grapevine virus A 97 [40]

Strawberry mild yellow edge virus (SMYEV) 95 [41]

Potato leafroll virus (PLRV) 83–86 [42]

Potato virus Y (PVY) 91–95 [42]

Yam mosaic virus (YMV) 90 [43]

Cryotherapy + meristem tip culture

Thermotherapy

Chrysanthemum stunt viroid (CSVd) 100 [44]

Potato Leaf Roll Virus (PLRV) 45 [45]

Potato Virus S (PVS) 50 [45]

Grapevine leafroll-associated virus 1 (GLRaV-1) 91.2 [46]

Grapevine rupestris stem pitting-associated virus (GRSPaV) 67.6 [46]

Banana bunchy top virus 62.5 [47]

Thermotherapy + cryotherapy

Onion Yellow Dwarf virus (OYDV) 90 [48]

Leek Yellow Strip virus (LYSV) 100 [48]

Garlic Common Latent virus (GCLV) 80 [48]

Raspberry bushy dwarf virus (RBDV) 35 [49]

Thermotherapy + meristem tip culture

Plum pox virus (PPV) 86 [50]

Prunus necrotic ringspot virus (PNRSV) 81 [50]

Potato virus Y (PVY) 33.27 [51]

Sweet potato feathery mottle virus (SPFMV) 77 [52]

Sweet potato mild mottle virus (SPMMV) 77 [52]

Thermotherapy + chemotherapy
Prunus necrotic ringspot virus (PNRSV) 90.9 [53]

Arabis mosaic virus (ArMV) 63.33 [53]
#PVY is more efficiently eliminated by cryotherapy than combination of thermotherapy and meristem tip culture.
Elimination of OYDV and LYSV is almost same by meristem tip culture and thermotherapy + cryotherapy but GCLV elimination success rate gets increase by 18% using thermotherapy + cryotherapy instead of 
meristem tip culture.
Combination of thermotherapy and chemotherapy results in 90% PNRSV elimination while combination of thermotherapy and meristem tip culture decreases the success rate by 9% for same virus.
Against PLRV elimination, cryotherapy gives approx. 50% better result than thermotherapy.
PPV elimination is increased by 36% when used with thermotherapy +meristem tip culture than cryotherapy.



Chauhan, et al.: Journal of Applied Biology & Biotechnology 2019;7(04):89-9892

3. ADVANCED METHODS

3.1. RNA Interference (RNAi)-Mediated Response and 
Applications
RNAi is a technique in which a dsRNA is used to silence definite 
functions of a gene that is useful to protect the host organism 
against viruses and unfamiliar nucleic acids [59]. This mechanism 
is illustrated by different names in different organisms such as 
quelling, post-transcriptional gene silencing, and RNA interference 
in fungi, plants, and animals, respectively [60]. RNA Silencing is 
a diverse technique [61], first reported in Petunia hybrid [62] and 
was the first antiviral mechanism used against RNA viruses [63]. 

RNA Silencing is an innate antiviral defense mechanism initiated 
by dsRNA [62]. RNA viruses are both activators as well as targets 
of RNA Silencing [64]. The excess of leftover RNA is changed 
to dsRNA by RdRP (RNA dependent RNA polymerase), thus 
activating RNA silencing [65,64].

Majority of the plant viruses have ds secondary structure elements 
in their RNA genome and produce dsRNA intermediates by 
viral RdRPs during replication. Then, virus-derived small RNAs 
are produced by RNA silencing system with the help of dsRNA 
intermediates (VsRNAs). VsRNAs integration in RISC (RNA-
induced silencing complex) leads to the sequence-specific 
degeneration of viral genome and initiation of mobile-silencing 
signal, which proliferates via plasmodesmata between cells 
and over very large distances via a relay-amplification process 
associating host RdRPs [66]. This triggers the RNA silencing 
process in uninfected cells and is prominently liable for the plant 
recovery process. Immune responses induced by gene silencing 
are exceptionally unique and specific to the pathogen and it is 
generally approved that RNAi is classified to plant adaptive 
immunity [67,63].

Current studies have shown that maximum success rate of RNA 
silencing is seen against RNA viruses and rarely against DNA 
viruses. One such example is Gemini virus, which is a ssDNA virus 
in which RNA silencing mechanism was used to target its genome 
via bombarding with hpRNA construct having promoter sequence 
of Gemini virus, Vigna mungo yellow mosaic virus (VMYMV), 
under the regulation of 35S promoter. With this strategy, a large 
number of plants completely retrieved from VMYMV infection 
[68,69].

Since RNA silencing-mediated resistance deals with many of the 
interactions between various factors, such as sequence similarities, 
selection of target, pathogen titer, and surrounding temperature, 
it becomes challenging to accurately conclude the efficacy [70]. 
This is one of the major limitations of RNA Silencing-mediated 
resistance. Therefore, more scientific research is needed for 
the evaluation of resistance efficiency in the crop field and also 
to unveil the limitations in peculiar cases. However, the most 
important advantage of RNAi over other alternative techniques is 
that a normal cellular response is activated by dsRNA leading to an 
extremely specific RNA degradation and increasing gene silencing 
efficiency in numerous RNAi models at cellular level [71]. It is also 
a precise, efficient, rapid, and stable technique as compared to the 
anti-sense technology for the gene expression [72].

3.1.1. RNAi-based approaches for controlling insect vectors 
transmitting plant viruses
The mechanism of RNAi has been reviewed in approximately 
thirty insect species from different orders of class Insecta [73]. Two 
approaches used for silencing insect vectors are silencing that led 
to hindrance with the transmission and the other one is suppression 
of the target genes that leads to death and thus declining the insect 
population. RNAi has been applied to various insects that serve 
as vectors of plant viruses such as Aphids that are responsible for 
transmitting 28% of all the plant viruses including Turnip mosaic 
virus (TuMV), Cereal yellow dwarf virus (CYDV), and Barley 
yellow dwarf viruses (BYDV). The approach has been applied for 
Planthoppers transmitting approximately 3% of all plant viruses 
such as Phytoreovirus, Nucleo-rhabdovirus, etc. [74] and other 
insects including whiteflies, leafhoppers, beetles, and thrips as 
well [75].

3.2. Cross Protection
Prevention of infection by a similar virus called secondary virus 
or another isolate of the same virus on the basis of prior infection 
with primary virus is known as cross protection. This strategy was 
first reported in 1929 for TMV [76]. Although, by definition cross-
protection is a natural process where resistance of a plant to one 
virus strain is induced by systemic infection with a second [77], 
RNA mediated cross-protection is functionally equivalent to post-
transcriptional gene silencing [78]. There are several hypothesis 
explaining how primary virus infection prevents secondary 
infection such as encapsidation or the prevention of encapsidation 
of the RNA of second strain by the primary strain coat-protein 
(CP), competing for factors crucial for replication among different 
strains of viruses, and lastly the limitation of the replication sites 
by primary strain [77,79]. Among all the hypotheses put forth, 
RNA-mediated and CP-mediated cross protection are extensively 
acknowledged. Transgenic plants expressing TMV-CP are the 
focal point of CP-mediated cross protection and thus resistant 
to TMV infection [80]. This method has a drawback that CP-
deficient viruses and viroids can confer cross protection. Thus, 
RNA-mediated cross protection was preferred to justify the cross 
protection method not only for DNA and RNA virus but also for 
viroids [77]. Both sap-transmissible and non-sap-transmissible 
viruses such as Potato virus X (PVX) and Potato leaf roll virus 
(PLRV), respectively, as well as DNA viruses and RNA viruses 
have been successfully managed by Cross Protection [77,79]. A 
new model for viral cross-protection along with super-infection 
exclusion is successfully applied to control Turnip crinkle virus 
(TCV) [81]. Sour Oranges in Florida that were severely affected 
by Citrus tristeza virus (CTV) have also been controlled using this 
approach [82].

3.3. Transgenics in Viral Containment
Loss of productivity of crops due to viral damage is massive. 
Control measures available to date are inadequate and costly. 
The application of genetic engineering and plant transformation 
methods has enabled up the possibility of introduction of resistant 
gene to several crop species [83]. Transgenic technique had been 
applied in crops like tomato, potato, rice, legumes, cucurbits, 
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and other crops, where viral infection is a serious menace [84]. 
Transgenic plant research is based on plant transformation which 
is of two-type plant transformation using Agrobacterium as a 
biological vector (e.g., in maize and rice) and the other one is direct 
gene transfer method which involves insertion of foreign DNA into 
host cells through electrical, chemical, or physical methods. Single 
genes were included in the first generation of transgenic crops 
toward enhancement of traits. More recently, transgenic approach 
has proved beneficial in crop modification evoking new genes 
into plants that are essential for plant growth, metabolism, stress 
tolerance, and pathogen control [85]. Among all of them, the most 
widely used technique is involving Agrobacterium tumefaciens 
due to its natural DNA transfer capacity. It is an efficient technique 
with less complexity of host specificity and cell culture constraint 
[86] but limitations have been reported in some plant species like 
grape and maize where Agrobacterium infection leads to tissue 
necrosis [87,88] though it can be overcome by the development of 
specific plant cell culture procedures and defining inoculation and 
co-cultivation conditions [89,90]. The regeneration competency 
and the effectiveness of Agrobacterium transformation are 
dependent on the factors like plant genotype, selection of 
bacterial strain, external conditions during the pre-culture and 
co-cultivation. Direct gene transfer transformation techniques for 
DNA delivery are independent of species, cell culture constraint, 
and genotype for DNA delivery, but their efficiency is affected due 
to change in target cell. Moreover, in maximum cases, their utility 
in transgenic plants development is dependent on the regeneration 
ability of the targeted cells. It has been found that transgenic maize 
plants are available with resistance to Maize streak virus (MSV) 
by expression of a defective form of a viral gene involved in viral 
replications [91]. Another application is on transgenic rice plants 
with the introduced RNAi construct targeting the Rice dwarf 
virus factor for Pns VI (viroplasm associated macromolecule 
and movement protein), P8 (major outer capsid), and Pns12 
(viroplasm associated protein), which were nearly proof against 
RDV infection [92].

Transgenic plants provide advantages like higher yield, improving 
shelf life (tomato), increasing nutritional quality (yellow or golden 
rice, canola oil) [93], production of therapeutics drugs (potato 
and banana), insect resistance (Bt-cotton), herbicide resistance 
(tomato, potato, tobacco, and cotton), virus resistance (tobacco, 
potato, rice, and papaya), reduced environmental impact (heat, 
cold, and drought), which ultimately lead to economical benefits 
[94].

However, transgenic plants have their own set of problems. 
They may induce the development of super weeds and other 
environmental risk expansion of new allergens and toxins to 
traditional foods and cause antibiotic resistance by introducing 
new strains of viruses into the food chain [95]. It has been 
commonly observed that serious potential risk could result from 
recombination between a viral transgene mRNA and the genomic 
RNA of a non-target virus. It appeared in cucumoviruses that 
similar population of recombinant viruses show up in transgenic 
plants expressing a CMV CP gene contaminated by another 
cucumovirus and equal non-transgenic ones infected at the same 
time with two cucumoviruses [96].

3.4. Gene Pyramiding
Gene pyramiding involves production of durable resistance 
by stacking of multiple genes resulting in the simultaneous 
expression of multiple genes in a variety. It has gained importance 
because it enhances the capability of plant breeding directed 
toward the production of genetic stocks and accurate development 
of broad spectrum resistance potential. Gene pyramiding success 
is based on various important parameters like number of genes 
to be transferred, number of genotype selected in each breeding 
generation, the distance between the target genes and flanking 
markers, and germplasm nature. Advanced tools like micro arrays, 
DNA chips, and SNPs are very helpful in improving the evaluation 
of the functions of gene via genome wide experimental approaches. 
Gene pyramiding holds high resistance against biotic and abiotic 
stresses in crops; however, the disadvantage is the development of 
pyramid lines, which is a time consuming and expensive issue in 
addition to the epistatic effect [97]. In an individual study, though 
it has been shown that mosaic strategy (set of resistance genes 
when deployed individually in regional mosaics instead of being 
stacked into a single plant cultivar) often outperforms pyramiding 
strategy in some agricultural landscapes [98].

3.5. Protein–Protein Interaction Studies and Applications
Plant viruses exploit cellular factors in infected cells for their 
replication and to establish systemic infections. Proteomics 
methods or tools that are used to identify host protein interactions 
give considerable knowledge about viral protein functions. 
They can also reveal about unknown protein functions through 
interaction connections. Viral host interactome data also provide 
insights for function of interacting proteins [99,100].

Protein interactions have been found in tobacco and Arabidopsis 
where Alfalfa mosaic virus (AMV) is able to establish a compatible 
interaction with the hosts. Moreover, the coat protein (CP) of AMV 
interacts directly with transcription factor (TF) ILR3 of both the 
species. ILR3 is a basic helix-loop-helix (bHLH) family member 
of TFs, which has been shown to regulate NEET in Arabidopsis, a 
critical protein in plant development, senescence, iron metabolism, 
and reactive oxygen species (ROS) homeostasis [101].

3.5.1. Yeast-hybrid system
Yeast-hybrid system has been used in mapping protein–protein 
interactions on a global level [102]. In plants, this has been 
used enormously for analysis of known interactions, isolating 
new interacting partners, and also in study of various processes 
in which protein–protein interactions are involved such as floral 
development [103], self-incompatibility mechanisms [104], 
the circadian clock [105], plant disease resistance, and phyto-
hormone signaling [106]. This system has helped in the analysis 
of interacting transcription factors illuminating different control 
levels in plants development [107]. 

One of the examples of application of Y2H has been observed for 
Lolium latent virus (LoLV) infecting Nicotiana benthamiana leaf 
tissue. The information deduced from protein interaction studies 
have reduced the level of viral RNA in young leaves compared 
with levels in control plants suggesting an inhibition of virus 
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movement. Silencing of target interaction had no obvious effect 
on plant phenotype but is able to interfere with LoLV infection, 
opening the way for a new strategy for virus infection control 
[108].

3.5.2. Protein microarray
Protein microarray or Protein chip is a cost effective, solid-phase 
assay method, used in protein–protein interactions detection [109]. 
It is a highly sensitive and high throughput method requiring 
very minimal reagent sample. Successful application of protein 
microarray has been observed where an array of approximately 
5,000 Saccharomyces cerevisiae proteins were screened to identify 
proteins that could preferentially bind a small RNA hairpin attached 
with a clamped adenine motif (CAM). A CAM is required for the 
replication of Brome Mosaic Virus (BMV), a plant-infecting RNA 
virus that can replicate in S. cerevisiae. Several hits were selected 
for further characterization in N. benthamiana. Pseudouridine 
Synthase 4 (Pus4) and the Actin Patch Protein 1 (App1) modestly 
reduced BMV genomic plus-strand RNA accumulation, but 
dramatically inhibited BMV systemic spread in plants. Pus4 also 
prevented the encapsidation of a BMV RNA in plants and the 
reassembly of BMV virions in vitro. These results demonstrate 
the feasibility of using proteome arrays to identify specific RNA-
binding proteins for antiviral activities [110] [Table 3].

4. CONCLUSIONS
Undoubtedly, genetic engineering of crop plants for virus 
resistance is a fundamental biotechnological tool, which can be 

used to decrease the crop production losses due to viral diseases in 
our country as well as across the globe. Most of the viruses have 
been identified, and cloning as well as molecular characterization 
of their genomic components is at advanced stages. Engineering 
techniques for functional genomics must be harnessed to understand 
the interaction at molecular level between viruses, the resistant and 
susceptible plants leading to pathogenesis or resistance. Various 
advanced plant virus control approaches discussed in the review 
can be utilized according to the available resources and can be 
employed as anti-viral defense arrangements in plants. The aim is 
the improvement of high-health nursery material with agriculture 
potential with low running cost and the growth of virus free plant 
at a high frequency. The complicated interactions between host 
and virus have been underlined by recent evidence, such as gene 
silencing and silencing-suppressor proteins, leading to new tools 
and improved antiviral therapies.
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