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ABSTRACT

Cold-active enzymes and their anticipated application in various industries including food industry attracted attention 
of worldwide scientific community. Cold-active enzymes, also known as psychrophilic enzymes, possess high 
catalytic activity at low and moderate temperatures. Due to low-temperature activity, these enzymes utilize less 
energy in biochemical reactions and also stabilize fragile compounds in the reaction medium. The source of cold-
active enzymes is basically psychrophilic/psychrotrophic microorganisms which are found in cold environments. In 
comparison to mesophilic and thermophilic enzymes, till date, very few cold-active enzymes are known and least 
explored so far in the food industry. This review contains latest development and innovation in cold-active enzymes 
along with their applications in food biotechnology.

1. INTRODUCTION

The role of enzymes is well known in the production of foods 
since ancient times [1]. One of the most common examples is the 
production of beverages using an industrial enzyme. Nowadays, the 
finding of novel enzymes for its commercial applications in the food 
industry is a challenge for the food scientists and biotechnologists. 
However, biotechnology is emerged as an advance tool for food 
industries. This technology is providing new products, improving 
nutritional value, lowering production costs, improving food 
processing and also deal with waste problems, food safety problems, 
and packaging issues. In future also this is going to play an important 
role in food producing and processing industries. Nowadays, 
production of almost all commercial foods or its ingredients includes 
enzymes or enzyme-catalyzed reactions. Some common examples of 
enzymes application include production of alcoholic beverages, fruit 
juices, syrups, sweeteners, chocolates, infant foods, egg and bakery 
products, cheese and dairy products, candy, flavor development, and 
meat tenderization.

Enzymes have many advantages in food production and processing. The 
leading one is the replacement of old chemical-based technology with 
eco-friendly enzymes that provide biodegradable products along with 
environmental care. Moreover, enzyme-catalyzed processes produce 
less waste products (byproducts) due to the specific action of enzymes 
in comparison to chemical catalysts. Although plants, animals, and 
microbes produce most of the food enzymes, the enzymes produced by 

microbial sources are more advantageous than their equivalents from 
plant and animal sources due to the following reasons: (1) Low production 
cost, (2) more predictable and controllable enzyme contents of microbes, 
(3) easy availability of raw materials with constant composition for 
their cultivation, and (4) microbes comprises less injurious constituents 
in comparison to plant and animal tissues. In food industries, there are 
numerous possible applications of cold-active enzymes along with their 
producing organisms. Some common specific microbial enzymes used 
in food industries include α-amylase, β-amylase, β-glucanase, glucose 
isomerase and oxidase, aminopeptidase, amyloglucosidase, catalase, 
cellulase, pectinase, xylanase, cyclodextrin, glucanotransferase, 
transglutaminase, glucoamylase, hemicellulase, invertase, lactase, 
lipase, and protease [2-6].

Since past few years, it has been recognized that the cold-adapted 
enzymes along with its producing microorganisms deals vast 
prospective at commercial and biotechnological level [7-16]. In the 
coming days, it is expected that probably the significance of cold-
active enzymes will be more than the thermostable enzymes. The 
important characteristics of psychrophilic or cold-active enzymes 
that fascinated its scope in biotechnology are; (1) they are cost 
effective as less amount of enzyme is required, (2) they are able to 
catalyze reaction without additional thermal aid, and (3) they can 
be inactivated selectively by mild heat input [17]. The application 
of cold-active enzymes can be beneficial not only for low energy 
requirement and their high specific activity but also due to their 
informal inactivation by relatively low heat. Furthermore, during 
the food processing adverse chemical reactions and bacterial 
contamination may be reduces at low temperature [18]. Nowadays, 
specific catalytic activity of cold-active enzymes is under 
consideration of global scientific community and need to explore at 
industrial level.
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2. SOURCE OF COLD-ACTIVE ENZYMES

The literatures suggested that cold-active enzymes are found in 
both prokaryotes and eukaryotes. However, most of the cold-active 
enzymes are obtained from microorganisms and fishes living in 
Arctic zones [15]. Most of our planet Earth has cold regions as it 
is surrounded by deep oceans that always bear temperature near 
about 3°C [19]. Psychrophiles are those extremophiles which are 
inhabitants of cold places [17]. Psychrophilic organisms are further 
categorized, on the basis of growth temperature, into psychrophiles 
and psychrotrophs/psychrotolerants. The optimum growth temperature 
for the psychrophiles is below 15°C; however, for psychrotrophs 
it is about 20-25°C [20]. These organisms are located in the cold 
regions of the Earth including polar zones, high mountains, glaciers, 
and deep oceans along with exteriors of flora and fauna surviving in 
cold atmospheres [21-27]. Psychrophilic microorganisms, including 
bacteria (e.g. Pseudoalteromonas, Psychrobacter, Polaromonas, 
Psychroflexus, Polaribacter, and Pseudomonas), archaea 
(e.g. Methanogenium and Methanococcoides), yeasts (e.g. Candida 
and Cryptococcus), fungi (e.g. Penicillium and Cladosporium), 
and microalgae (e.g. Chlamydomonas and Chloromonas) are 
basically located in soils, waters, plants, and animals of cold regions 
[10-11,13,15-16]. The isolation of these microorganisms and potential 
applications of cold-active enzymes are already described in many 
published literatures [10,13,15-16]. These psychrophiles are able to 
produce cold-active enzymes, namely, amylase, cellulase, pectinase, 
protease, and lipase that are able to degrade starch, cellulose, pectin, 
protein, and lipid, respectively [8-11,13-16]. Some of the latest cold-
active enzymes and its producing microorganisms are presented in 
Table 1. The details of recently isolated enzymes and their mechanism 
are described by Santiago et al. [28].

3. COLD-ACTIVE ENZYMES IN FOOD TECHNOLOGY

There are tremendous scope of cold-active enzymes in food industry 
and biotechnology [7]. Some of the important applications are in milk, 
juice, meat, and baking industries. Cold-active β-galactosidase is 
responsible for the decreasing of lactose amount in milk processing 
industry. Lactose, a disaccharide sugar, is accountable for lactose 
intolerance throughout the world. Pectinases are used during juice 
extraction process in the fruit juice industry that reduces the viscosity 
and refine final product. In the meat processing industry, cold-active 
proteases are used for meat tenderization process. Some enzymes 
including proteases, amylases, and xylanases are helpful in baking 
processes to reduce the dough fermentation time along with retention 
of aromas and moisture levels. Other cold enzymes may also be 
used as substitutes to mesophilic and thermophilic enzymes in many 
industries [7]. Advantages of cold-adapted enzymes over mesophilic 
and thermophilic enzymes are described in various publications 
[15,17,29,30]. Nowadays, psychrophilic enzymes are mostly used 
in meat tenderization, food processing, flavoring, baking, brewing, 
cheese production, and in animal feed. Due to specific characteristic 
of cold-active enzymes, we can conclude that cold-active enzymes 
have much more to contribute in the field of food biotechnology. Even 
though the cold-active enzymes have high specific activity but small 
half-life and low thermal stability are the major drawback that limits 
utilization of such enzymes at industrial level. To increase thermal 
and solvent stability of cold-active enzymes, different methods of 
enzyme immobilization are recommended by various researchers [31]. 
Along with immobilization, different molecular tactics, for example, 
protein engineering, recombinant DNA technology and metagenomic 
approach could also be used to cope the commercial expectations 

and development of unique cold-active enzymes. Hence, instead 
of traditional methods of cold-active enzyme production (Fig. 1), 
these novel approaches could also contribute significant role in food 
industries.

The latest example of novel cold-active α-amylase (AmyA1) isolated 
from Antarctic psychrotolerant fungus (Geomyces pannorum) 
and its application in baking industry is reported by He et al. [32]. 
The study revealed that AmyA1 would have a great potential in 
traditional baking and food industry. AmyA1 was also immobilized on 
magnetic nanoparticles to improve its stability for possible industrial 

Table 1: Production of some important cold-active enzymes by 
psychrophilic/psychrotolerant microorganisms (published from 2005 and 
onwards)

Cold-active 
enzymes

Source Reference

α-amylase Microbacterium foliorum GA2 [40]

α-amylase Bacillus cereus GA6 [41]

β-glucosidase Exiguobacterium antarcticum B7 [42]

Alkaline protease Stenotrophomonas maltophilia [43]

Chitinase Bacillus cereus GA6 [44]

Esterase Pseudomonas mandelii [45]

Esterase Monascus ruber M7 [46]

Esterase Psychrobacter pacificensis [47]

Esterase Streptomyces coelicolor A3 [48]

Lipase Pseudomonas sp. [49]

Lipase Pseudomonas sp. TK-3 [50]

Metalloprotease Curtobacterium luteum [39]

Protease Pseudoalteromonas haloplanktis [51]

Protease Pseudoalteromonas sp. [52]

Protease Aspergillus ustus [53]

Protease Clostridium sp. [54]

Protease Pedobacter cryoconitis [55]

Protease Bacillus cereus [56]

Protease Chryseobacterium sp. [33]

Pullulanase Exiguobacterium sp. SH3 [57]

Transglutaminase Euphausia superba [58]

Fig. 1: Outline of cold-active enzyme production and applications
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applications [32]. In another study, production of the cold-active 
protease was reported from a novel Chryseobacterium sp. Along 
with low-temperature activity; this protease was tolerant to several 
organic solvents and surfactants. Furthermore, it increases meat 
tenderization process that could be used in food processing industry 
at low temperature [33]. Cold-active esterase obtained from the 
marine Arctic metagenomics libraries showed high activity under the 
influence of high salt concentrations. Due to salt tolerance property 
at low temperature, this esterase could be a highly valuable candidate 
for cheese ripening processes [34]. Lipases, another important 
enzyme in food processing, are isolated by many psychrophilic 
microbes [35]. Recently, the gene encoding lipase was isolated 
from Aeromicrobium sp. and cloned using Escherichia coli. The 

recombinant lipase showed high catalytic activity and stability at low 
temperatures that have potential value in industrial applications as 
well as in food additive [36]. Pectin, a complex heteropolysaccharide, 
is one of the main constituents of higher plant cells that creates 
complications during the extraction and clarification of fruit juice. 
Polygalacturonase, a pectin-degrading enzyme, is commonly used for 
the treatment of pectin compounds in fruit processing industries [37]. 
Ramya and Pulicherla [38] recommended applications of cold-active 
polygalacturonase from Pseudoalteromonas haloplanktis in various 
food industries. On the basis of in silico analysis, they proposed that 
cold active polygalacturonase would be a better choice in comparison 
to its meso and thermo counterparts [38]. Some of the important cold-
active enzyme and their applications are summarized in Table 2.

Table 2: Some of the cold-active enzymes produced by psychrophilic/psychrotolerant microorganisms and their applications in food industry (published from 
2005 and onwards)

Cold-active enzymes Source Possible application in food industry Reference

α-amylase Geomyces pannorum Baking and food industry [32]

α-amylase, glucoamylase Various microbes Cheese ripening
Single-cell protein from shellfish waste

[29]

β-galactosidase Paracoccus sp. Lactose hydrolysis in milk [59]

β-galactosidase Arthrobacter sp. 20B Dough fermentation
Bakery products

[60] 

β-galactosidase Arthrobacter
psychrolactophilus

Conversion of cheese byproduct to glucose and galactose [61]

β-galactosidase Arthrobacter sp. 20B Production of low-lactose milk
Synthesis of galactooligosaccharides

[62]

Chitinase Various microbes Meat tenderizing [63-64] 

Esterase - Cheese flavor [34]

Glycogen branching enzyme Rhizomucor miehei Wheat bread making [65]

Laccase Various microbes Removal of lactose from milk
Conversion of lactose in whey into glucose and galactose in dairy 
industry

[66-67]

Lipase Various microbes Protein polymerization and gelling in fish flesh
Improvement in food texture 
flavor modification
Production of fatty acids and interesterification of fats

[35]

Lipase Pseudoalteromonas haloplanktis 
TAC125

Animal feed for the improvement of digestibility and assimilation [68] 

Lipase Aeromicrobium sp. SCSIO 25071 Food additive [36]

Pectin methylesterase Penicillium chrysogenum F46 Food industry
Fruit firming

[69]

Pectinase Various microbes Degradation of pectin in food processing [70-71] 

Phytase Erwinia carotovora Food processing [72]

Polygalacturonase Cystofilobasidium capitatum PPY-1 Degradation of pectin compounds [37]

Polygalacturonase Pseudoalteromonas
haloplanktis

Pectin degradation [38]

Polygalacturonase Achaetomium sp. Xz8 Papaya juice clarification [73]

Proteases Various microbes In beer, bakeries, and cheese industry
Tenderization of meat
Functional food ingredients in the form
of soluble protein hydrolysates

[18]

Serine protease Chryseobacterium sp. Food processing industry [33]

Xylanase Pseudoalteromonas haloplanktis 
TAH3A, Flavobacterium sp. MSY-2

Xylan hydrolysis and improving bread quality [74]

Xylanase Pseudoalteromonas haloplanktis TAH3a Baking industry
Hydrolysis xylan to xylotriose and xylotetraose

[75]
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4. FUTURE PROSPECTS

It is well documented that most of the cold-active enzymes 
reported till date have high catalytic capability at low and moderate 
temperatures in comparison to their homologous mesophilic enzymes. 
This specific property of cold-active enzymes make them valuable in 
industry and research due to their less requirements, reduced process 
times, save energy costs, easy inactivation by mild heat, and the 
loss of volatile compounds [18,39]. However, in the field of food 
biotechnology, it needed extra effort to cope various bottlenecks 
specifically high cost of enzyme isolation and purification, low 
stability of most cold-active enzymes and least explored cold-adapted 
microbes from the cold habitats. Application of recombinant DNA 
technology, in the expression of specific genes and production of 
greater amount of recombinant enzymes, may be an essential and 
effective tool to achieve commercial requirement of the cold-active 
enzymes. It can be concluded that cold-active enzymes have much 
more to contribute in the field of food industry due to its high 
specific activity at low temperature. More studies are required to 
screen psychrophilic microbial strains from various cold habitats and 
apply r-DNA technology along with protein engineering to upgrade 
their biotechnological potential and cope commercial expectations 
of cold-active enzymes in food biotechnology. In this review, only 
specific examples of cold-active enzymes along with their potential 
applications in the food industry are discussed in Table 2. There is 
rife literature on cold-active enzymes and their applications in food 
and other industries. However, very few psychrophilic enzymes are 
used in real industrial applications, especially in food processing. 
Further, it is expected that these enzymes, along with their producing 
microorganisms, will be an asset to various industries in the near 
future.
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